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OF TAIL INDICES 

Abstract. We propose a class of weighted least-squares estima- 
tors for the tail index of a regularly varying upper tail of a distribution. 
Universal asymptotic normality of the estimators is established over 
the whole model. Asymptotic mean square errors of these and earlier 
estimators are compared within a submodel of regular variation, more 
general than Hall's model. We also discuss the choice of the optimal 
weights and the choice of the number of extreme order statistics to bc 
used. 

1. Introduction and main result. Let X ,  XI, X,, . . . be independent ran- 
dom variables with a common distribution function F (x) = P {X < x), x E R ,  
and for each integer n 3 1, let X I , ,  < . .. d X,,, denote the order statistics 
pertaining to the sample XI, . .., X,. We assume that . 

(1-1) l-F(~)=x-~/"Z(x), O<x<oo, 

where 1 is some function slowly varying at infinity and a > 0 is a fixed unknown 
parameter to be estimated. The class of distribution functions satisfying (1.1) 
will be denoted by B!=. Several estimators exist for the tail index a among which 
Hill's estimator is the most classical (see Hill [15]): 

k" 

(k,) : = k,- l C log* X,, + 1 - i ,n -log* X ,  -k",n, 
i =  1 

where the k, are some integers satisfying 

(1.2) l < k n < n ,  k , + m  and k,/n+O a s n + m ,  

and log* x = log max (x, I), x E R. The class of kernel estimators of Csorgo et 
al. [5 ]  generalizes the Hill estimator: 
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250 L. Viharos  

where K (.) is a non-increasing non-negative function such that I ~ K  (v)  dv = 1; 
the Mill estimator corresponds to K ( v )  = l[o<vGll. For simplicity of notation, 
we assume without loss of generality from now on that F (0) = 0 for all F E B,, 
is. X is positive; otherwise one only has to replace log by log* in what follows 
with some trivial extra reasonings in the proofs. The dficult problem of the 
asymptotic normality of &kHl has been investigated by Hall [13], Hall and 
Welsh [14], Haeusler and Teugels [12], Csorgo and Mason [7], Beirlant and 
Teugels El] and their references, and, more generally for oiAm, by Csorgo et al. 
[S]. However, as was shown in Csorgo and Viharos [a], diH), is not universally 
asymptotically normal over the whole class 9,. 

' Recently, Schultze and Steinebach [I71 proposed three new estimators of 
a, which are based on least-squares considerations under the restricted model 
in which I(x) = a' in (1.1), for all x beyond a threshold and for some constant c. 
(In a mathematically equivalent fashion, they in fact do this in a corresponding 
exponential model.) Taking the logarithm of (1.1) in the restricted case, sub- 
stituting x = X,+l-i,, into -log(l -F  (x)) = -c+a-"ogx and approxima- 
ting the left-hand sides by 

where Pn(.) is the sample distribution function, for some 2 < kn < n we have 
log Xn+ - i ,  w d + a log (nli), i = 1 ,  . . ., k,, where d = ac. Least-squares fit 
based on these approximative equations gives the first estimator of Schultze 
and Steinebach [17]: 

Independently of Schultze and Steinebach [17], Kratz and Resnick [I61 also 
proposed oi,$')(k,) at about the same time, using a mathematically equi- 
valent heuristic argument. Csorgo and Viharos [9] proved that for suitable 
k@(kJ + a the sequence kj12 (diis)(k,) -p$s)(kn)) is universally asymptotically 
normal over ga for all (kn)  satisfying k,Jlog4 n -, oo as n + co. In contrast, 
Csorgo and Viharos [8] constructed distribution functions F E  9, such that 
dim ( L n2I3] ), where I-] denotes the integer part, does not have a non-degene- 
rate asymptotic distribution for any centering and norming sequences. Since the 
Hill estimator was also constructed in the restricted model I(x) = 8, it may be 
concluded that the asymptotic normality of dis)(kJ is more robust against 
deviations of I from a constant; see Csorgi, and Viharos [9] for more on this 
aspect. 

Beirlant et al. [2] obtained a subclass of kernel estimates of Csorgo et al. 
[5] using a weighted least-squares method fitting an appropriate regression line 
through a fixed data point. In the language above, this class of estimators, 
containing the Hill estimator, has a lack of robustness properties similar to that 
of the original Hill estimator. Beirlant et al. [2] also discussed the difficult 
problem of the choice of the parameter k, in their estimators. 
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These results raise the question of weighted least-squares versions without 
forcing the regression line through any fixed point as a generalization of Schul- 
tze and Steinebach's [I71 method. We show that, using appropriate weights, we 
obtain a weighted estimator diAw) which inherits the universal asymptotic nor- 
mality of &AS], and hence the asymptotic normality of $Aw) is also more robust 
than that of the Hill estimator and the generalized Hill estimator $AK). In the 
restricted Hall submodel of regular variation, discussed in Section 3 below, 
Csiirgo and Viharos [9] compared &As) to the optimal kernel estimator and to 
other proposals, through the investigation of the asymptotic mean square er- 
ror, and the kernel estimator proved to be the best. In Section 2 we show that, 
in a more-general submodel, the asymptotic mean square error of the optimal 
oi:w) is the same as that of the optimal kernel estimator. 

Choosing some weights wi,, 2 0, i = 1, . . ., kn, and minimizing the corre- 
sponding weighted error sum of squares 

we obtain the weighted generalization of &As): 
diy1 (k,) : = 

In what follows we shall study the class of weights of the form 

Wi,+ = Wj,, ( J )  : = 
kn J ~ ~ ~ l l b n  J ( x )  dx 

-log (i/kn) + log x,  ' 

where J t )  is a weight function specified by conditions (i)-(v) below and xJ is 
a shift parameter chosen so that all the weights wi,,, i = 1, ..., kn, are 
non-negative. Let rxl denote the smallest integer not smaller than x and take 
the step function 

and set X J , : =  e-l. Then wi,(Js) =- 1 ,  and therefore we get the original least- 
-squares estimator gS). For the sake of technical simplicity we will consider a class 
of smooth weight functions ( J ( x ) :  0 < x < 11, which preserves the properties of 
the function J ,  ( x )  : = -log x - 1 x Js (x), described by the following 

C O ~ I ~ S .  (i) J: J (x) dx = 0. 
(ii) J (-) is non-increasing on (0, 11 such that limxl, J (x) > 0 and 

J ( 1 )  < 0. 
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(iii) The derivative J'(.) is monotone on (0, 11. 
(iv) SUP,+, x lJ'(x)l is finite. 
(v) The integral 1: x-(l'Z'-v IJ(x)l dx is finite for some v > 0. 

Condition (ii) forces v ~ ( 0 ,  1/2) in (v). Assume that y, satisfies J (y,) = 0. 
Then the x, appearing in wi,,(J) has to be close to y,. Observe that, for any 
number cn, 

Set 
ilkn 

gn+l-i,n:=k, j J I x I ~ x  
( i  - 1)Ik" 

and choose 
kn c,:= logx,+log -. 
n 

Then we have 

resulting in 

z i ~ ~  gn+l-i,n1ogxn+1-i7n 
ajW' (k,) = xz 1 g n  + 1 - i,n 10s (kJO 

' 

So we see that the final estimate oijW)(kA does not depend on the shift parame- 
ter x, within the class of shift parameters specified above. 

Introducing Q (s) : = inf{x: F (x) 2 s), 0 < s < 1, Q (0) : = Q (O+), the in- 
verse or quantile function of F, and letting Q (1 -s  -) denote the left-continu- 
ous version of the right-continuous function Q (1 - s), 0 < s < 1, it is well 
known that F €9, if and only if, for some function L ( a )  slowly varying at zero, 

Let 3 denote convergence in distribution and let M @ ,  a') be the normal 
distribution with mean p E R and variance a2 > 0, and define u A v = min (u, v) 
and u v v = max(u, v) .  Understanding limiting and order relations and asymp- 
totic equalities -- as n -, co throughout if not specified otherwise, we can state 
now the main limit theorem of the paper. All the proofs are in the fourth section. 

THE~REM 1.1. If k, is any sequence of positive integers such that (1.2) holds, 
then, whenever F E B, for some D I E  (0, co), 
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where, with r (J) : = -ji J (u)logudv, 

2 1 " U A V  p J : =  - 1 j - Jju) J(v)dudv 
r2 (5) 0 0 uv 

- 1 k,ln 
and p$w(kn) : = n (7 (J) k,) j, J (ntlk,) log Q (1 - t -) dt + a. 

In Theorem 1.1 we do not need the restriction k,/log4 n -F co as in Theo- 
rem 1.1 of Csorgii and Viharos [9]. The reason is that Theorem 1.1 above deals 
with estimators di,$W(k,) = diiw)(k,, 3) with smooth weight functions J satisfy- 
ing conditions (i)-(v). On the other hand, Theorem 1.1 of 191 deals with 
&As) = i:W)<k,, Is) with the step function 3, not satisfying conditions (iHv). The 
proof of Theorem 1.1 of [9] is partly based on the step 

kit2 ($Aw) (k,,, 4) - oiAwl (k,, J,)) = 0, (l), 

where J,(x) = -1ogx-1 satisfies conditions (iHv). This step requires the 
growth condition kJog4 n + a (cf. the notice preceding Lemma 5.4 of Csorg8 

t 

I 
and Viharos [9]). After this step, asymptotic normality of &iw)(k,, Jo) is estab- 

I lished, which is the main point of the proof of Theorem 1.1 of 191. 

2. Asymptotic mean square errors. The theorem above suggests defining 
I the asymptotic mean square error of aiiw) as 

I M , $ ~ '  = M , ! ~ '  (k,, J) : = b,2 (k,) + a2 u: kk, for some b,, (k,) - {piw)  (k,) -a )  ; 

the sum of the asymptotic squared bias and variance (cf. Csbrgo and Viharos 
[9], Section 4). We shall discuss the behavior of Miw in a submodel of (1.3) 
studied by Beirlant et al. [2], restricting L to satisfy 

(2.1) 
(L(st)/L(s))-1 - t-@-l -- +St (s), where lim 8, (s) = 0 for all t > 0, 

g (4 Q 810 

for some rate function g(-) of constant sign and some constant q < 0, where 
(t-P- I)/@ is understood as -log t if q = 0. Condition (2.1) implies that g (-) 
is regularly varying at zero with index -q (g (.) E RP,) and there exists a 
positive decreasing function h ( - )  regularly varying at infinity with index 

I 2q-1 (~(-)ERV~:-~)  such that 
m 

(2.2) g"l/t) - 1 h(s)ds as t +  oo, 
t 

where for q = 0 we assume limslo g(s) = 0 and gZ(l/t) is asymptotic to a non- 
increasing function as t + oo (see Dekkers and de Haan [ll], Lemma 2.8). To 
evaluate the asymptotic mean square error, we need further conditions on the 
underlying distribution which control the speed of convergence in (2.1): 

(2.3) lim sup t"16,js)l = 0 and lim sup t" 
sJ* 04tSb s1° O < t < b  
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for some constants I, p 2 0 and b > 0 .  Define 

Jg  ( x )  = (9 + 1)  9-' -(9 -t- I)= 9-I xa for any 9 > 0, 
and set 

J,(x):= lim J,(x) = -1ogx-1. 
P/Q 

Then (J , :  9 2 0) is a subclass of weight functions satisfying conditions (iHv) 
of Section 1. Note that z(J$ = 1 and a;, = (23 + 2)/(29 + 1) for all 9 2 0. Set 
4, (t)  : = (t-@ - I)/@ for e > 0 and q ,  (t)  : = -log t .  The next theorem gives the 
optimal weight function J, in the model given in (2.1H2.3). 

. THEOREM 2.1. Assume that (2.1), (2.2) and (2.3) hold with some Q G 0, some 
rate function g ( - ) ,  and sowe constants A, p 2 0, R + ~ E  [0, 2-I + v ) ,  and b = 1 ,  
where v is specified in condition (v). For g = 0 suppose that limsL,g(s) = 0 and 
g2 (l/t) is asymptotic to a non-increasing function at t + m. Then 

~ n d  the optimal k, is determined asymptoticaIly by 

where L.1 denotes integer part, h' (.) is the generalized inverse of h(.).  More- 
over, if g < 0 ,  then 

J J,e (2.5) M ~ W )  (kz) - (aa )4e/(2e- 1) Bll(l-2e) 

and 
d n a i W )  (kn * , Js) = AILw) (k:, J - e )  
9 3 0  

If e = 0  und (kn g2 (kJn))-' + 0,  then M : ~ )  - g2 (kdn). 

We conjecture that the J- ,  in Theorem 2.1 is optimal over the whole class 
of weight functions specified by conditions (i)-(v) above. To compare &AW) to the 
class of kernel estimators, we generalize Theorem 5 of Csorgi, et al. [5 ]  for the 
model given in (2.1H2.3) (cf. the first example in the next section). We use 
almost the same conditions on the kernel function K assuming left-continuity 
instead of right-continuity in (H2) to involve the K(v)  = 110,,,11 Hill case in 
the restricted class (cf. Csorg6 and Viharos [lo], Section 2.2): 

(HI) K ( u ) a O  for O < u <  co. 
(HZ) K ( . )  is non-increasing and Ieft-continuous on (0, a). 
(H3) j , " ~ ( v ) d v  = 1. 
(H4) j , " ~ - ~ / ~ ~ ( o ) d v  < m. 
(H5) There exists a 0  < A < cc such that K(u)  = 0 for u  > A. 
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(H6) There exists a 0 < A < m such that dK(u)/du = k(u) is defined for 
u > A and limutm u3l2 k ( ~ )  = 0. 

Beside (2.1H2.3) we assume the following conditions on the underlying 
distribution: 

( D l )  The quantile function in (1.3) satisfies Q(0) = 1. 
(D2) (i) In the Karamata representation given in (4.2) below, one has 

either (H5) is satisfied and a(s) = a, for 0 < s < E for some s > 0, or a (s) = a, 
for O < s <  1.  

(ii) One has either (H6) is satisfied, or the function b ( - )  in (4.2) may be 
chosen sueh that b( . )  is -bounded on (0, 1). 

THEOREM 2.2. Assume that the conditions (HI)-(H5) and (DIHDZ),  and all 
the conditions of Theorem 2.1 above are satisfied for the underlying distribution, 
restricting this time A+p from [0, 2-'+v) to the interval LO, 2-I)  and chang- 
ing b = 1 to b = A. Then the asymptotic mean square error of i iK1 is given by 

The optimal k ,  is determiwd asymptotically by 

n 
k" = k::= 

h' a : ) / n ~ K , e )  

Moreover, $ Q < 0, then 

and the optimal K(-) is given by 

if 0 < v < (2 - 2 ~ ) / ( 1 -  ZQ), K: (u)  = 0 otherwise. If Q = 0  and (k,, g2 (k,Jn))- ' + 0, 
then MlfL) - g2 (kJn). 

The optimal kernel K: has the same analytical form as the one obtained in 
the Hall model given in (3.1) below (cf. Theorem 5 of Csorgo et al. [5 ] ) .  The 
optimal 3, = J - ,  also depends on the unknown nuisance parameter Q so that 
further study is needed to find methods to pre-estimate Q (cf. the discussion of 
the Hall example in the next section). Using Theorems 2.1 and 2.2, it is possible 
to compare diLW)(k,*, J) to dihs)(k,*), the Hill estimator and the optimal kernel 
estimator. For each of these, the corresponding smallest possible asymptotic 
mean square error M, under (2.1H2.3) is of the same order with the same 
leading constant u4e/(2e-1), so the comparison can be made by means of the 
corresponding functions 

m (Q) : = lim M, n / { ~ x ~ e / ( ~ e - l )  h' ( l /n))  , Q < 0. 
n+ m 
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Figure 1, drawn by the mathematical program package Maple V, depicts the 
m ( ~ )  of di!,')(k,*), of the optimal Hill estimator aiiE)(k:) and of ai(wl(k,*, JJ for 
9 = 1/2, 1,  2, 3, - Q tagged by the corresponding values of 9 of the five weight 
functions J ,  considered, as they leave the picture. As was pointed out by 
Csorgii and Viharos [ l o ] ,  the m ( ~ )  of oi[W)(k:, J - , )  is identical to that 
of the optimal kernel estimator so that the latter is not included separately in 
Figure 1. It can be calculated that lime+- m ( ~ )  = 2 for aiis)(k:), 
lim,+ - , m (Q) = (28 + 2)/(29 + 1) for oiiwl (k:, J&, 3 2 0, and limp_ - m (e) = 1 
for dikW!(k:, 3 - , ) ,  BLH)(k9 and for the optimal kernel estimator. The optimal 
estimator ai[q)(k,*, J - , )  is uniformly better than the other estimators studied in 
~ i ~ a r e - 1 .  These coincide with the finding in CsiirgIj and Viharos [9 ] .  

1 : : : : : : : : : : : : : : : : : : : : : : : : ? 0 . 7  
-10 -8 -6 -4 -2 0 

P 
Fig. 1. The curves of m (e) for oiLs)(k:) (dashed), oi,!H)(& (dotted), B'R7(@, J,), 3 = l/2, 1,2, 3 

(solid) and 9 = -Q (dash-dotted) 

3. Examples. In this section we study two submodels satisfying the con- , 

ditions of Theorems 2.1 and 2.2. Hall [13] and Csorgo et al. [5 ] ,  Theorem 5, 
investigated the asymptotic normality of the Hill estimator in the model given 
by 

(3.1) L ( s ) = D , [ 1 + D 2 s a ( 1 + o ( 1 ) ) ]  ass-+O, 
r 

where D, > 0 ,  D, # 0 and /3 > 0 are constants. In some practical situations the 
parameters Dl, D,, /3 can be previously estimated from a given sample (6. 
Csorg6 et al. [5] and Hall [13]). This is a submodel of (2.1) corresponding to 
g (s) = - /3Dz sB and p = - /3, and, by a routine calculation, satisfying (2.3) with 
any b > 0 and A, p > 0. This restricted model contains those distributions for 
which the corresponding function L(s )  (or equivalently 1 (x)) is nearly constant 
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for small s (for large x). Plots of the graph of xllzn(l -f,(x)] for large x, with 
preliminary estimates oi,, maybe helpful in exploring this. In this case, based on 
Figure 1, it is reasonable to use &Aw) with some 9 8 1. 

Next we discuss another model containing a typical family of L functions 
that are not bounded near zero, given by L(s) = L, (s) : = exp (logY (lls)} , 
0 < y < 1, taken from Bingham et al. [3], p. 16. This model, by a routine 
calculation, corresponds to g (s) = y logy - (11s) and g = 0 jn (2.1). This sub- 
model also satisfies (2.3) with any positive constants b, A and p, as a tedious 
calculation shows. From Theorems 2.1 and 2.2 we know that this time 

for all the istimators under investigation. Define 

By calculation from (1.3) we obtain 

1 
pLW) (kJ - a = - 1 J (v) log L 

~ ( 4  0 

To see differences within this model between the original least-squares estima- 
tor and the weighted versions, we shall study for finite n the behavior of the 
asymptotic mean square error 

M ; ~ '  (k,, J ,  L, a) : = A;",, (L) + a2 g; k,- . 
Introduce the function M,* (t; J, L, a): = A: (L)+ a2 652 t - l  n-l, 0 < t < 1, and 
notice that 

for any L in (1.3) and any k ,  as in (1.2). 
Figure 2 contains the graphs of Mf,,  (t; J,, L,, 11, t ~(O.O1,0.36], for 

y = 1/4, 112,213, 3/4 in dotted curves, tagged by the corresponding y values of 
the four slowly varying functions considered. These curves correspond to diAsl. 
Figure 2 also contains the graphs of Mg,, (t; J,, L,, I), y = 114, 1/2, 2/3, 3/4, 
for 9 = 0.05,0.2,0.5, 1 in solid curves. For each y investigated, the correspon- 
ding curves for the different 9 values are close to each other. As numerical 
evaluation shows, for y = 1/2 and y = 213, the absolute minima of the curves 
become smaller and smaller as the value of 9 increases, albeit the decreases are 
hardly noticeable. For y = 1/4 the minima are approximately the same, while 
for y = 3/4 the estimator 2s) is slightly better than 8;"). So there is a slight 
advantage of the use of the weights for y values less than 3/4. For 9 > 1 the 
minima shift more and more upwards as the value of 9 increases. From these 
two examples we conclude that the choice 9 = 1 appears to be reasonable for 
bounded and unbounded functions L as well. 
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Fig. 2. The curves of MZo, (t; J,, L,, 1) for 8 = 0.05, 0.2, 0.5, 1 (solid] and 9 = 0 (dotted), 
7 = 1/4, 1/2, 2/3, 3/4 

For sample sizes n = 400, 300, 200, 100 the curves shift more and more 
upwards, but the whole global picture remains the same. Based on these and 
additional figures belonging to further slowly varying functions as in Csorgo 
and Viharos [9], the following pragmatic rule of thumb appears reasonable for 
estimating a near 1 using the weight function J ,  = 3,: For 100 < n < 300 use 
BAR3(k,J with 7n/100 < k, d 26n/100, and for 300 d n d 3000 use dAw)(kJ with 
6n/100 < k, d 25n/100. Several rules may be formulated for the adaptive 
choice of k, within the indicated ranges. For example, choose that k, for which 
diP1 (k,) and diAa(kJ are the closest to each other; this is a part of the suggested 
rule and it uniquely determines the choice of a data-driven k, for n 2 100. 
From a further study as in Csorgo and Viharos [9], Section 4, it follows that 
this rule of thumb can be extended to the range 0 < a < 2, which range ap- 
pears to cover all cases that are important in practice. 

Various adaptive versions of both the present weighted least-squares and 
the kernel estimators are proposed in Csorg6 and Viharos [lo] and are inves- 
tigated in an extensive simulation study. These are based on the respective 
classes {J , :  9 2 0) and {Kg: 9 < 0) of weight and kernel functions, suggested 
by Theorems 2.1 and 2.2, and the procedures provide data-driven choices of 
both k, and the shape parameter 9 in both cases. 

4. Proofs. Throughout, Csorgo and Viharos are abbreviated to CsV, and 
P b 
= denotes distributional equality. We use the convention ja = when we 
integrate with respect to a left-continuous integrator if not specified otherwise. 
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To prove Theorem 1.1, we use the probability space constructed by Csdrgo et 
al. [4]. It carries a sequence (U,),", , of independent random variables uniformly 
distributed on (0, I ) ,  with U,, ,  4 . . . < U,, as the order statistics of U,, . . ., U,, 
and a sequence (B,(t): 0 < t  < I),"=, of Brownian bridges such that, letting 

n 

G,(s):= n - I  C l { U k < s ) ,  0 < s <  1, 
and k= 1 

U , ( S ) : = U ~ . ~ ,  ( k - l ) / n < s < k / n ,  k = 1 ,  ..., n, 

and putting 

- 8. (9)  : = nl/'-{~,, (s) - S )  and y, (3)  : = n1l2 {s - U n  (s)) 

for the respective uniform empirical and quantile processes, we have 

for any fixed B E  [0, I/?), xwm 1/2) and s r 0. 
Set kn : = (I (4 k,J- Cj: , gn + -,.log Xn + , - i,,, , where r (4 is defined in 

Theorem 1.1. The next proposition states that ol, is an equivalent version of 
aiiw) in Theorem 1.1. 

FROPOS~TION 4.1. Assume that the conditions of Theorem 1.1 are satisfied. 
m e n  

and 

Proof. The proof of the first statement follows the genera1 outline of the 
proof of Theorem 1.1 of CsV [9]. The main difficult point in the present case is 
to handle a whole class of weight functions ( J )  instead of the single one 

Set g ( t ) :  = log Q ( 1  - t  -) and introduce the modified centering sequence 

l / n  

Further, let G,*(s):= { G , ( s ) ~ ( l - n - l ) )  vn- l  and, for 1 d m  < r  < n ,  

4 - PAMS 19.2 
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Fix any integers m and 1 such that 1 < na < I < kn. Then we obtain 

=: An(m, I ) +  K ( k , ) f  @ , ( I ,  k,,) 

as an analogue of (5.6) in CsV [9], where 

Rn : = gn, (g I U I , ~ )  - g ( l /n)) /kn = 0, (gn,n/kn) 

by an application of Lemma 5.4 (iv) in CsV [9]. Using condition (v), we obtain 
1 /kn l / k n  

; gn,n = knn j J ( x )  dx = k, J  XI^/^)^^ x-('12)-' J ( X &  

whence R, = 0 , (k~ f1 i2 ) -V) .  Next we show that On (m, I )  = O p ( J  (l/k,J/kn) for 
any fixed I d rn < 1. It is well known that 

a (Uibn: i = 1, ..., n)= (Si/S,+l: i = 1 ,  ..., n), 
where Si = Y, + . . . + for some Y, , Y,, . . . independent exponentially dis- 
tributed random variables with mean one. Then 

P 
(nG,(v/n): 0 < u < n} = (N(vS,+,/n): 0 < v < n) ,  

where N (.) is a Poisson process with jump points S,, S , ,  . . . Set 
fs(v): = g (sv) -g (s) and notice that (1.3) implies S, (v) + log v-a as sJO for 
every v > 0 by applying Lemma 5.4 (iv) in CsV [9 ] .  Let us define 
y,:=inf(y: J ( y ) = O )  > O .  On the event 

En : = (l/nMkn < ~ , ) n ( l / n  < Un,,), 
for some zn  (v) between nG,* (v/n)/k, and v/k,, for which necessarily J (1,  (v)) > 0 ,  
we have 

where the right-hand side equals in distribution 

Since P {En) + 1, we indeed have On (m, E )  = O,(J (l/kJ/kn), and similarly one can 
prove that (1) = Op (J (l/kn)/kn). Using an argument similar to that in the 
proof of Theorem 1.1 of CsV [9], we also have (k3 = op (k,- '1,) and 
kit2 (jL, -Aw)) = o (1). These steps heavily rely on conditions (ij(v) described for 
the weight function J .  Next observe that tllz J( t )  = o(1) as tJ0  by condition (v). 
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Then by a diagonal selection procedure, similar to the one used in the proof of 
Theorem 1 in Csorgo et al. [6], we can construct sequences 1  < rn, & 1, < k, 
such that m,, + cm, Z,/rn, 4 m, k,/l,  4 co and k i i 2  A ,  (m,, 1,) = o p ( l ) .  It follows 
that 

k:" z ( J )  (en - f in)  = k;I2 On ( l n ,  k,) + op (11, 

and an argument as in the proof of Lemma 2 in Viharos [I&] and the ap- 
proximations (4.1) give 

ki i2  0, (En, k,J = N ,  + ( I ) ,  

where N,, -4 - (n/k,,)li2 c:;: B,, ( t )  J (nt/kn) dg (t) is a normal random variable 
with mean zero and variance 

(cf, the proof of Theorem 1.1 of CsV [9]). Thus 

by using kt1' (j, = o (1 ) ,  which proves the first statement of the proposi- 
tion. 

To prove the second half of the statement write 

x :~  1 g n  + I - i,n log (kn/i) 
- 1  

z ( J )  k ,  

and note that sup IJ (x)l = O ( J  (ilk,)) and log x  & x  - 1 for all x  > 0. 
Thus 

k i l < x < l  

By conditions (ii) and (v) we have 

for all n large enough. Hence tn = o (k; ' I 2 ) .  Finally, decompose [, as 

l l k n  1 1 ikn 
in = J ( x )  log - dx  - j J ( x )  log x d x  = : 5:') - ti2'. 

0 kn 0 
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Then, for all n large enough, 

A similar argument yields that [k2) = o (k; ('/2'-v log k,J,  which completes the 
proof. ra 

P-r o of.of Theorem 1.1. Based on Proposition 4.1, it is enough to prove 
that d A : ) ( k J  + a .  For L(s) in (1.3) we use the Karamata representation for 
slowly varying functions: 

where lims , a ( s )  = a, for some a, E (0, m) and lirnlLo b (s)  = 0. The first equa- 
tion in (3.1) in combination with condition (i) ylelds 

1 knln b (u) 
a(skJn) ds+j J ( ~ ) (  j - du}ds = : I , + I , .  z ( J )  (pLw' (k,)  - a) = j J (s) log - 

' 0 %I 0 sk./n 

From the equality 

the theorem follows. w 

P r o  of of Theor  em 2.1. In order to prove the first statement, we establish 
1 

(4.3) ,c (4 (LW' (k.1 -a) - g ( k h )  j q, (0 )  J (0) dv 
0 

Set 
E (x )  : = (log (1 + x) - x)/x and f ,  (v)  : = {L  (k,  v/n)/L (kn/n)) - 1. 

Then, using (1.3), condition (i) and (2.1), we obtain 
1 1 

(4 (dm ( k 3  - a) = j J (4 log (1 +f, (4) dv = j J (vlfn (0)  [I+ E (f. (el))] dv 
0 0 

- 1  = 1: n.(v)J(*dvl G c SUP t(l 'Z1+v lqn ( t ) ~  
j n ) q , ( v ) ~ ( v ) d v  o c t ~ i  

using condition (v) in the last step, where C > 0 is a constant. Noticing 
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that le(x)l < ]log (1 +x)l, x > - 1, we see that condition (2.3) implies 

S U P ~ < t s l  t(112)+v lqn (t)I + 0 ,  which proves (4.3). To obtain the optimal k,  replace 
n/kn by t and write 

Mkw' = M!,m (t) = g2 (l/t) B j ,  + (tu2 cr!/n). 

By Lemma 2.8 of Dekkers and de Haan [ll], Miw)(t) is minimized by 

t = t* = n/k,* - ht ( ~ 1 ~ c r i / ( n B ~ , ~ ) ) ,  

from which (2.4) follows. For .g < 0, by h (-) E RVZ-, , we have 

Hence 

Using ~ + ( - ) E R ~ $ , - ~ , - I ,  we easiIy get (2.5). The optimal 3, can be ob- 
tained by calculating the first and second derivatives of i@iwl(k:, JJ in (2.5) 
with respect to 9. If Q = 0, then B,,, = 1, which implies the last statement. ra 

P r o  of of Theorem 2.2. The asymptotic squared bias and variance of 
are given by (jt K (v) b (k,, v/n) dd2  and a2 k, K' (v) dv, respectively, where 

b (.) is defined in (4.2) (6, Theorems 1 and 5 in Csorgo et al. [ 5 ] ;  they do not 
formally include the factor a2 in their variance term). In the rest of the paper we 

A use the integral convention 1, = j(,,,,. For some constant a, E (0,  co) we may 
assume a (s) = a, in (4.2) as in condition (D2) (i). Hence b (s) = - sI: (s)/L (s) and 
A A kn vn - I: (kn v/n) A 

1 K ( v )  b (k, v/n)dv = -1 K(v)  dv = - 1 vK (v) d log L (kn v/n) 
0 0 (kn v/n) 0 L (kn/n) 

A 

= 1 log L(kn 'In) d (vK (v)) , 
0 Ltkdn) 

where partial integration with the convention 1; = & , ,  and Lemma 1 of 
Csi5rg6 et al. [5]  were used in the last step. Similarly, by partial integration, 

j v- ,  K (v)dv = - j  vK(v)dq, (v) = j q, (v)d(vK(v)). 
0 0 0 

Hence, as in the proof of Theorem 2.1, 

j. K (0)  b (k" v/n) dv 
-11 = I r (kn/n) K (v) dv 

L(kn V / n ) d ( U ~  (v)) 1: log L(kJn) 
-1 

a (k,Jn) 1: 4, (v) d (OK (0)) 

= 
I, n. (v) (VK (0)) )l 

1.q. ( v ) ~ ( v K ( ~ ~ ~  
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where we used the equation d (vK (v)) = K (v )  dv + vdK (v). Using condition 
(H4), we obtain A,, < C sup ,,,,, t1I2 [q ,  (t)[ for some constant C. Partial inte- 
gration, condition (H4) and Lemma 1 of Cs6rg6 et al. [ 5 ]  imply that the 
integral it ul/' dK (u) is fmite, and hence An, < C' sup,,*,, t1I2 lq, (t)l for some 
constant C', As in the proof of Theorem 2.1, by condition (2.3) we have 
SUP,,,,, t l i2  Ign(t)l + 0. The rest of the proof is the same as the proof of 
Theorem 2.1 above and the proof of Theorem 5 in Csorgo et al. [ S ]  and, 
therefore, is omitted. 
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