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Abstract. The existence of McKean’s nonlinear jump Markov
processes and related Monte Carlo type approximation schemes by
interacting particle systems (propagation of chaos) are studied for
a class of multidimensional doubly nonlocal evolution problems with
a fractional power of the Laplacian and a quadratic nonlinearity involv-
ing an integral operator. Asymptotically, these equations model the
evolution of density of mutually interacting particles with anomalous
(fractal) Lévy diffusion.
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1. Introduction. The present paper can be viewed as a continuation of our
article [8], where we studied global and exploding solutions for equations of
the form

1) u, = —(—A)y?u+v-(uBu).

Here u: @x (0, T) = R*x R* — R, (— 4)*? is a fractional power of the minus
Laplacian in R?, 0 <« <2, and

B(u)(x) = | b(x, y)u(y)dy
Rﬂ
is a linear R%valued integral operator with the kernel b: R x R*— R®. The

dimension is restricted to the physically interesting cases d = 1, 2, or 3. The
goal here is to establish the existence of McKean’s nonlinear diffusions, and
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related interacting particle approximation schemes (propagation of chaos in
a wide sense) for the same class of equations.

Equations (1.1) describe various physical phenomena involving diffusion
and interaction of pairs of particles when suitable assumptions are made on the
possibly singular integral operator B. Since our main interest is in u as a de-
scription of the density of particles in R% we will only consider nonnegative
solutions to (1.1). ’

In the case of classical Brownian diffusion, i.e., « = 2, a deterministic study
of these models in [7] was initially motivated by the Fokker—Planck type
parabolic equations-with nonlocal nonlinearity and.we studied them mostly in
bounded domains of R?, supplemented with suitablem:ﬂinear) boundary con-
ditions. For instance, if

(1.2) b(x, y)=clx—y)lx—y~"

then the equation (1.1) models the diffusion of charge carriers (¢ < 0) in elec-
trolytes, semiconductors or plasmas interacting via Coulomb forces. If ¢ > 0, it
describes gravitational interaction of particles in a cloud, or galaxies in
a nebula.

Related equations and parabolic systems appear in mathematical biology
where they are used to model chemotaxis phenomena (see [3]). There, we have
been mainly interested in the possibility of the continuation of local in time
solutions of (1.1) up to T = + co. The answer to this question depends strongly
on the type of interaction. For instance, for Newtonian attraction of particles
or chemotactic attraction of cells, finite time collapse of solutions is possible
(see [2] and [3]), while for the Coulomb forces global in time existence of
solutions is guaranteed (cf. [5]).

Further, for the Biot-Savart kernel

(1.3) b(x, y) = @m) ! (X3 =y, ¥y —Xy) Ix =2

s

‘in R?, the equation (1.1) with o = 2 is equivalent to the vorticity formulation

of the Navier—Stokes equations. Its solutions are global in time. Also, formally,

~ the singular kernel b(x, y) = cd(x—y) leads to the classical Burgers equa-

tion
(14) U, = Uy, +c(u?),.

A new important ingredient of a more general class of model problems
(1.1) in [&], studied in the whole space R?, was the anomalous Lévy o-stable
diffusion described by a fractional power of the Laplace operator in R? In the
physical literature such fractal diffusions have been vigorously studied in the
context of statistical mechanics, hydrodynamics, acoustics, relaxation phenom-
ena and biology, see e.g. [1] and [29]. They also appear in nonlinear models of
interfacial growth which involve hopping and trapping effects [25].
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In probabilistic terms, replacing the Laplacian by its fractional power
leads to interesting questions of extension of results for Brownian motion
driven stochastic equations to those driven by Lévy a-stable flights; the latter,
of course, having discontinuous sample paths. Linear equations with a-stable
processes have been considered e.g. in [19], [20], and [31].

In fact, the probabilistic theory of interacting particle systems and theory
of McKean’s diffusions have been our immediate theoretical inspiration for [8].
McKean’s processes and “propagation of chaos” results connect the detailed
Liouvillean picture of the evolution of diffusing and-interacting particles and
the reduced hydrodynamic description. We cite only a few of references that
deal with different aspects of this connection in the case of classical Brownian
diffusion: [9], [10], [16], {21], [26], (28], [32], and [35].

The analogous interacting particle system approximation questions for the
“fractal” Burgers equation with a-stable processes

(1.5) u, = —(—A*?u+a- VW)

have been dealt with in [14] for d =1 and r = 2, see also [35]. Based on
various estimates of solutions to the deterministic Burgers equation with fractal
diffusion in [4], theorems in the “propagation of chaos” spirit have been re-
cently proved in [14]. This paper relates to [8] as [14] to [4]. Also, in [6] we
studied the first and the second order asymptotics of equations similar to (1.5).

Let us note that a direct numerical approach to equations like (1.1) or (1.5)
is extremely difficult because of the doubly nonlocal character of these equa-
tions. First, the linear operator (— 4)¥? for 0 < a < 2 is no longer a differential
operator but an integro-differential one. Second, the nonlinearity of B (u) in-
volves integrals over the whole space R% However, if the “propagation of
chaos” property is established even in a wide sense considered below, then an
efficient numerical analysis of these equations via Lévy a-stable Monte Carlo
simulations becomes available; cf. the references [9], [15], [27], [33] for analo-
gous aspects of the numerical analysis of classical PDE’s.

The original propagation of chaos property does not seem to hold because
insufficient regularity is gained from the fractional Laplacian (see remarks in
Section 5). :

The composition of the paper is as follows: Section 2 recalls and extends
some results from [8] on local and global in time solvability of equations (1.1).
A construction of McKean’s nonlinear diffusion is provided in Section 3. Here
we also formulate our main results on the stochastic particle approximation
scheme for a smoothed version of (1.1), including some error estimates; the
proofs are in Section 4. The notion of propagation of chaos in a wide sense is
introduced in Section 5 and results pertaining to the equation (1.1) can be

- found there, as well as some comments relating the class of equations (1.1) to

the fractal Burgers equation (1.5). Our probabilistic constructions rely on pa-
pers [26], [11], [12], [19], [20] and [32]. The first reference started with
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a study of (1.1) with « = 2 and B defined by a Lipschitz kernel b, see also [32].
Our kernels motivated by the above-mentioned applications are far more sin-
gular. As a general reference for PDE theory we cite [23] together with a brief
note [17] used for various interpolation inequalities.

Notation. |u|, stands for the Lebesgue I¥ (R%)-norm of the function u,
llull,,, — for the Sobolev W*?(R*-norm, and l|jul}, is the H* = W*2norm.
Inessential constants will be denoted generically by C, even if they vary from
line to line.

2. Local and global existence of solutions. In this section we provide exist-
ence results for the local and_global in time (weak) solutions of the initial value
problem for (1.1). We consider n\he sequel only the simplest case of 2 = RY,
although most of results in this section extends to u defined on an open subset
Q of R’ and satisfying suitable boundary conditions on 4Q.

We restrict ourselves to the case of convolution operators B in (1.1), the
most important in the applications, so that from now on b(x, y) = b(x—y).
Moreover, we assume that b satisfies potential estimates like either

2.1) b (x)l < Clx|~?
or
(2.2) IDb(x)| < Cx'~*

for some 0 < f < d, 0 <y <d, which is motivated by the examples (1.2) and
(1.3). Formally, (1.4) corresponds to the limit case § = 0 but, of course, the
operator B(u) = cu, 0 # ce R, is not an integral one. In fact, assumptions (2.1)
and (2.2) can be weakened as, e.g., in Section 2 of [8], but we prefer to keep the
potential character and smoothing properties of B clear. This permits us to
obtain some extensions of results in [8].

By the fractional power of the minus Laplacian in R’ we mean the Fourier
multiplier

(=AY v(x) = D*v(x) = F " 5(¢) (%),

which has also the representation
—(=4y?o(x) =K [ (s(x+y)—0()—Vv(x)-y A +1p) )y dy
R4

for the range of parameter a, ae(0, 2), we are interested in. Here K = K, 4 is
a constant.

Now, we recall results from [8] on the local in time existence of solutions
to (1.1) with the initial condition

23 u(x, 0) = uo (x),

under the assumptidn (2.1) or (2.2) specified to the case d < 3, in order to use
the framework of Hilbertian Sobolev spaces H*(RY). By a solution we mean
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a weak one, i.e. a function ue I? (0, T); H**(R") such that the integral identity
t t

fule, )nx, ydx—{ds § un,dx+[ds { (D> uD"*n+uB(u)- Vn)dx
0 R4 (]

R4 Rd

= jd o ()1 (x, 0)dx

holds for every test function ne H' (R*x (0, T)), cf. [8], Section 2.

THEOREM 2.1. Suppose that a+f>d/2+1 in (2.1), ae(0, 2], B(0, d),
d =1, 2, 3, and the initial condition is 0 < uye I (RY)n L' (R%). Then there exist
T > 0 and a weak solution u = 0 of the Cauchy problem (1.1), (2.3). Moreover,
[u (@), = lugly for all te(0, T).

The above theorem contains Theorems 2.1 and 2.2 in [8], and improves
over those results for some 0 < § <1 and for d =1 not considered there.

Proof. We give only a crucial a priori estimate of u(f) in I? referring to
[8] for a description of the construction of u. Observe that

d
(2:4) — w2 +2|D%?ul} = —2 { uB(u): Vudx
dt R

and the right-hand side of (2.4) can be transformed into
— {V@?) Bwdx = | u*V-B(u)dx.
R4 Rd

Then we estimate, from the Schwarz inequality and the condition (2.1) which
assure smoothing properties of B,

(2.5) || w7 Buydx| < w2, 1B@)l; < Clulzllull;—g.
R4

Note that the assumptions (2.1) and (2.2) on the potential nature of the kernel
b are stricter than those imposed in [8], thus permitting stronger estimates
than IP-estimates in that paper.

Next, by interpolation we get

(26) || w?V-Bwdx| < Cllullgz" 2P ul3 9207 < JlullZ, + C lulf
Rd

for some m > 01if 1 — 8 < /2 and d/a+2 (1 — B)/a < 2, which is the assumption
in Theorem 2.1. Now, (2.4) and (2.6) lead to the differential inequality

d
@7 7 [ulz + D2 ul < C(|ul3 +|ul3)

which implies a local bound |u(t)|, < C(T) < oo for some T = T'(Jug|,) > 0 and
all te(0, T).

Note that for > 1 the proof of Theorem 2.2 in [8] involved another
reasoning based on the Hardy-Littlewood—Sobolev inequality.
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The positivity and total mass preserving properties of (1.1) are the con-
sequences of those properties of Lévy and Gauss semigroups

exp(—t(—4y2) = F (exp (~1 |¢%) F)

of probability measures corresponding to the cases 0 < a <2 and a.= 2, re-
spectively. Moreover, weak solutions to (1.1) enjoy some supplementary regu-
larity properties, due to parabolic smoothing by (—4)*?, see Section 2 in [7],
Sections 2 and 3 in [5], and [8]. =

Remark 2.1. Although the calculations above are not directly applicable
to the Burgers equation (1.4), the assumption «+f > d/2+1 gives a correct
result. This guarantees even the global existence of solutions if d =1, § =0,
u,e H*(R), so that a > 3/2 (see [4], Theorem 2.1). Concerning the higher
dimensional quadratic Burgers equation (1.5) with r =2, the condition
a+f>d/2+1 may suggest that no weak solutions exist for d > 2 and
(0, 2]. This can serve as an heuristic motivation for the study of another
kind of solutions, namely mild ones in [4], Section 6.

The theorem below recalls sufficient conditions for the global in time
existence of solutions, see [8], Section 3.

THEOREM 2.2. Suppose that a+f>d+1 in (2.1), ae(0, 2], (0, d),
d=1,2,3. Then any local solution to the Cauchy problem (1.1), (2.3) with
uoe 2 (RYNL (R% can be continued to the whole half-line (0, ).

Proof. The right-hand side of the energy identity (2.4) can be estimated as
in (2.5) for 0 < f < 1. After interpolation of norms this quantity is bounded by

C ”u||2;1{(at+d)+(d+2—2ﬂ)/(at+d)lu|7{t

with some m > 0. Our assumption shows that the exponent of |[u||,;, above is
strictly less than 2. Hence, (2.4) implies that

d
EIMI% +ID*?ul3 < C(jul3 +ult),

so a locally uniform estimate of |u(t)|, follows, and by the results of Theo-

~rem 2.1 u(t) has a continuation to (0, co).

For § > 1 we apply to the second factor on the right-hand side of (2.7) the
Hardy-Littlewood—Sobolev inequality, and then the interpolation to obtain

IB@Il; < Clul, < Cllullés luli ™" .
with 1/2 = 1/q—(f—1)/d and k = (d+2p—2)/(x+d). The conclusion follows
now as before when 0 < < 1. =

For a = 2 we recover Theorem 3.1 in [8] where § > d—1. This result is
sharp as Section 4 in [8] showed. Namely, if § < d—1, there exist equations of
type (1.1) and their particular solutions u that cannot be continued beyond an
interval [0, T) with a finite time 0 < T < 0.
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Note that under essentially the same growth assumption y > d—« in (2.2)
(since B = y—1 for smooth kernels b satisfying (2.2)) Theorem 2.2 for 0 < o < 2
has been proved in [8], Theorem 3.2.

3. Nonlinear Markov processes and approximating particle systems for
regularized equations. We begin this section with the construction of a nonlinear
Markov process for which the equation (1.1) serves as the Fokker—Planck—
~Kolmogorov equation. The assumption «e(1, 2) permits us to use freely the
expectations of the a-stable processes involved in the construction.

Let u > 0 be a (local in time) solution of (1.1). Without loss of generality
we can assume that u is bounded, i.e.

(3.1) ' sup  Ju(x, t)] < oo.

xeR4,tef0,T]

This is a property similar to that in Theorem 2.1 (iii) in [8] where the case « = 2
was considered. Whenever a local solution u can be defined, the parabolic
regularization property of (— A4)¥2, ae(1, 2], leads to an instantaneous smooth-
ing of u to a locally bounded function. Indeed, by standard arguments of Moser’s
type ([5], Theorem 3) it can be proved that ue L, (0, T); L® (R%). Here, the key
estimate is an IP-analog of (2.4). The full exposition of this line of reasoning is
omitted; the details are laborious and essentially repeat step-by-step, with

~ appropriate adjustment of exponents, the proofs of Section 2 in [5].

Shrinking, if necessary, the time interval of existence of the solution {(or
assuming from the beginning that u,e L (RY) L (RY is regular enough), we
obtain (3.1). Moreover, since we are working with (I} n I*°)-solutions, the estimate
(3.2) sup  |B(u(5)(x)| <

xeR4%,te]0,T]
follows from the potential estimate (2.1), the Sobolev embedding theorem and (3.1).
Consider a solution X (t) of the stochastic differential equation

(3.3) - dX(8) =dS(@®)—B(u@®)(X () dt,

where u is a given (bounded) solution of (1.1), X (0) ~ u(x, 0)dx in law, and S (t)
is a standard a-stable spherically symmetric process with its values in R%. Recall
that it has the structure

S(1) ~(4Y2Gy, ..., A2 Gy,

where A is an (x/2)-stable, totally asymmetric positive random variable, and

Gy, ---, G, are independent identically distributed Gaussian random variables.
So, conditionally on A4, S(1) is Gaussian with characteristic function
exp (—[¢[%).

Since the coefficient B(u) in (3.3) is bounded, based on the work [20], we
infer that the stochastic differential equation (3.3) has a unique solution X. The
measure-valued function

(34) v(dx, t) = P(X (t)e dx)
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satisfies the weak forward equation

(35) & (o), 1> = 0O, Lugnd

for all ne & (R%), the Schwartz class of functions on R’ with the initial con-
dition v(0) = u(x, 0)dx, and the operator

&, =—(—A4)"*—BW)-V, u=u(x).

ProposITION 3.1. Let 1 < a < 2 and u be a solution of (1.1) satisfying (3.1).
The process X (t) in (3.3) is the McKean process (nonlinear Markov process)
corresponding to (1.1), that is, it satisfies the relation

P(X () edx) = u(x, t)dx.

Proof From the results of [11] (see [12]), the following two statements
are equivalent:

o The martingale problem for the operator %, is well posed.

® The existence and uniqueness theorem holds for the corresponding
linear weak forward equation (3.5).

Here, the martingale problem associated with (3.3) is well posed. However,
u(dx, t) = u(x, t)dx is also a solution of (3.5) since

£ (), ny = (—~(= 477w+ V(@B @), 1> = Cus (~(~ 47~ BG@)- 7).

Since the coefficients of the linear equation (3.5) are regular (B(u)e L*), the
problem

w,= —(—=A)">w—Bw)-Vw, w(0)=0,
has the unique solution w = 0. This can be easily seen from the energy es-

timates as in the proof of Theorem 2.1. Now, the uniqueness for (3.5) implies
that v(dx, t) = u(dx, t), which yields Proposition 3.1, =

The classical propagation of chaos result for the partial differential equa-
tion (1.1) would show that the empirical distribution

(3.6) ) = % zl 5(X*(9)

of n interacting particles with positions {X*"(f)};=1,. ., Whose dynamics is
described by the system of stochastic differential equations

3.7) dXn (1) = dSF (t)—;ll- Y b(X*" (1), X" (1)) dt,

JjFi

is close to the distribution of the McKean process X (f) in the sense that

(3.8) X" (t)=>u(x, t)dx in probability as n— co,
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where = denotes the weak convergence of measures. In our situation
{S*()}i=1,... . are independent copies of symmetric Lévy a-stable processes with
the common infinitesimal generator —(—4)*2,

Results in this spirit, when S is replaced by a more familiar Wiener pro-
cess, have been proved in various situations after the pioneering work [26]. We
have chosen some classical as well as new references containing reformuiations,
extensions and generalizations of the above scheme for various evolution prob-
lems of physical origin: [16], [10], [217, [28], [15], [321, [35], [91, [27], [33].
Besides a purely mathematical interest, they give also reasonably well-working
tools for the numerical approximation of solutions, especially when conver-
gence rates can be found.

The recent paper [14] deals with the first, to the best of our knowledge,
“propagation of chaos” result for Lévy a-stable processes driven stochastic
differential equations associated with the fractal Burgers equation. As we men-
tioned in the Introduction, because of a rather weak parabolic regularization
. effect of (—4)¥?, a preliminary step involving the replacement of X" by solu-
tions of regularized stochastic differential equations ((3.10) below) seems to be
necessary in order to have an analogue of (3.8).

Let us consider a standard smoothing kernel

(3.9 0,(x) = 2me)~ % exp(—|x*/(28)), &>0,

and the system of regularized equations (3.7):

(3.10) dXime () = dS' (t)-—% Y b, (X5 (1) — X (1) d,

JFi

where b(x, y) = b(x—y), b, = b*§,. Then define random empirical measures

Y™E(t) =

S =

i 5 (X:',n,z (I)),

instead of previously considered X” in (3.6).

First, we prove the “propagation of chaos” property for a regularized
version (3.14) (below) of the equation (1.1), including an error estimate. In
Section 5 we will prove a weaker property “propagation of chaos in a wide
sense” for the original equation (1.1), which is, however, a satisfactory basis for
an approximation scheme for numerical solving of that equation. The exten-
sion will rely on purely analytic estimates of solutions u® of (3.14).

THEOREM 3.1. Let the conditions of Theorem 2.1 ensuring the local in time
existence of solutions to (1.1) on R*x (0, T) be satisfied. Moreover, assume that

@G1y 6O < C(L+1¢77)

(which is, of course, compatible with the potential estimate (2.1)) and that the

5 — PAMS 19.2
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initial conditions {X*"*(0)}i=1,... satisfy
(3.12) sup sup nl Y (1 + A7)~ E[{Y™ (0)—t#(x, 0), x,0] < ©

n jeRd

for some a =0 and all the characters y,(x) = ¢**. Then:

(i) For each &> 0 the empirical process is weakly convergent
(3.13) Y™ (t) = u®(x, t)dx in probability as n— 0.

The limit density u* = u*(x, t), xe R%, te(0, T), solves the regularized equa-
tion (1.1): . N .
(3.14) - u = — (=4 u+V-(u* B, ()
with B, = 0,+ B defined by the kernel b, = d,%b.

(ii) For each ¢ > 0, there exists a constant C_ such that for any ¢S (R'i)

(3.15) EKY™ ()= (), $| < Cyn'l*7? Id (L+1A1°) ¢ (3)| dA.

(iii) Under the assumptions of Theorem 2.2 guaranteeing the global in time
existence of solutions to (1.1), the conclusions (i) and (ii) are valid for all t (0, co0).

We will prove Theorem 3.1 in the next section. The case o = 2 is, of course,
classical (see the approach in [32]), but it can be also handled using the scheme
of proof in Section 4.

4. Proof of Theorem 3.1. The proof of Theorem 3.1 needs some represen-
tation formulas for the a-stable process S(t). Recall a decomposition of the
process S (t):

@4.1) Sey=§ [ yN@sdy)+ | [ yN(dsdy),

0 o0<|yl<1 0 [ylz1

where N (dsdy) is a Poisson point process with~intensity N (dsdy) = fisv(dy),
_v(dy) = K|y|~% *dy is the Lévy measure, and N (dsdy) = N (dsdy)— N (dsdy),
see, e.g., [18].

Proof of Theorem 3.1. The assertion (3.13) follows essentially from
(3.15) since « > 1. Hence, it is sufficient to prove the rate of convergence in
(3.15). The following decomposition lemma prepares the quantities in (3.15) to
be estimated easily.

LEMMA 4.1. Let us define
4.2) () = Y™ (1) —u* (1).
Then for each ¢eCP(R? the identity
@3) <9"(0), $>—<5"(0), &> t t
=m"(¢, t)+(]; (8" (s),— (=) ¢ dS+£q"(¢, s)ds



Particle approximation 277

holds, with

wh o=

t

(6 (X" (=) +y)—§ (X (s =) N (ds dy),

R?

D=
O

1
and

435  q'(¢, )= —<3"(dx, ) 9" (dy, 1), b, (x—y) V¢ (x)>
— < (dx, ) §" (dy, )+9" (dx, )u'(dy, 1), b, (x—y) Vo (x))

1
+; bs(O) <Y"’£(r)’ V¢>

Here N* = N'—N, and N' = N'(dsdy) are independent Poisson point processes
with identical intensity N(dsdy) = K|y|™* *dsdy.

Proof. First note that
S0, $y == T BE0)— W), 6.

Then, by the decomposition (4.1) of S(t) and the It6 formula for a-stable pro-
cesses [18],

(8" (1), > —<9"(0), ¢

S| =

=% n ‘j, j. (d’(Xi’"’e(s_)+y)_¢(Xi'n'S(S—)))Ni(dey)
i=1 0 R4

+% é £ (—(— Ay ¢ (X" (s)

‘“;1" ‘ _bﬂ ()(i’"’2 (s)— X /me (S)) ) (Xi,n.e (S))) ds

t

—J (= (=AY u (s)+ V- (u* (5) B,(w* (5))), ¢ ds

=m(¢, )+ [ (3"(s), —(— 4y > ds+[r" (¢, s5)ds,
.0 1]

where the last term is defined as

r(¢,s)= —n" 2 _il ; b, (Xi,n,a (s)—Xj’"’E (S)) Ve (Xi,n,s (s )
+<u(s), B,(u*(s)) Vo).

Since

E Y b, (X" (s)— XI5 (5)) = (Y™ (s), b, (X (s)—.)>-% b, (0)

j#i

= {9"(s), b, {X"™(s)— )> +u° (s)* b, (X" (s)) —% b, (0),
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we obtain

P, )= —

L
F10) B0 (9) 1 B,00) P (X429 + 0, B 6) P
= (™ (dx, 97y, ), by (k=) P —CY(S), ()b, V)
42 5,0 <Y, P9y + (9, BLE) 79
=~ (dx, 99y, 9), b)) VP
—u(dx, 99y, 9, b, (x— )V ()
(86, )+ b VB +, b.0)- Y, V)
=q" (9, 3),

as claimed. =

§: (0. B 9-))

Proof of (3.15). Now, we shall prove estimates for the quantities 9" (z)
. defined in (4.2). We apply the decomposition Lemma 4.1 with ¢ = y, and
%, (%) = e** to get

t

(@), 1>+ lAP J<87(s), 12> ds = {3"(0), x> +m" (a5 O+ [ " (s 5) ds,

since (—A)%y, = cl(/)ll"‘ X2, Where ¢ = c(d, &) is a positive constant. Observe
that
d(exp(c|H*8) <8" (1), 1) = exp(clAI* ) (dm” (x;, t)+q" (x,, 1) dt),
so that
(@.6) @), 1> = I+, +1s,

where I; = I''*(t) are defined as follows:

t+

Iy = exp(—claf* ) <9"(0), 220, I, = [ exp(—clAl*(t—s))dm" (x,, ),

V]
t
Iy = [ exp(—c|A*(t—5))q" (12, 5)ds.
4]
We will show a uniform estimate for the quantity

(4.7) g"(t) = sup (1+ |4t n = E[IK9" (1), )01, tel0, T,

AeRd
remembering that the assumption on I,, i.e. on the initial positions of X*™¢(0),
was sup,_g" (0) < oo for some a = 0. In the next two lemmas we will handle the
integrals I, and I, separately.
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LEMMA 4.2.

sup sup sup a' " YFE[|I5*(1)[] < oo.
" AeRd 1ef0,T]

Proof. Since the I!-norm is dominated by the weak I-norm, o > 1, we
can write

E|n1—1/a Izl < pl—1lla sup z{P(IIzl > z)}lla

z>0
< C{E [;‘ i lexp (c|Al* (s— 1) F|" ds]} =,
where °
Ponin gy [EE)HS Q=S o) (o)
s<1,84(s)# Si(s—) S'(s)—S"(s—) |

The second inequality above is a consequence of the finite-dimensional vector
version

sup z* P (sup } F(r)-dS(r)>z)<c,E [j' |F (s)I*ds]
0

z>0 s€t 0
of Theorem 9.5.3 from [22]. Finally, since |[Fi* < n™ ! |AI*, Lemma 4.2 is proved. m
In order to bound I, we begin with ‘
LEMMA 4.3,

14" 0t O < JA(J B @), x-1+I<" @), A2+ 1) 16, () E+n |, 0))).

R4 »
Proof. We shall estimate the three terms in the definition (4.5) of ¢". For
the first summand we have

<8 (dx, 1) 5" (dy, 1), b, (x—y)- Vy,(x))|
=| § 5.()-<8"(dx, 1) 3" (dy, 1), €57 iAe*) d¢
< § 1B, N (1), 2= K8 (1), 2a+221dE < 214 [ 16, (DI IKS" @), x| dE,
R4 R4

because [<8"(t), xa+e)| < 2.
For the second term we obtain

|<us (dxa t) 9 (dya t)! be (x _y) ' VXz(x)|
= |] 6.9 dx, ) 9" (dy, 1), &4 ey de|
RY

<A J 1B OIKS @), x- K (@), xa+1dE < 1A [ 1B, (I (1), 2~ dE,
R4 Rd

and, similarly,
1<9" (dx, )u* @y, ), b, (x—y) V2 0| < Al 1B, () I<9" (1), g2+ )1 dE.
Rd

The third term is easy; remember that Vy, =ily,. =
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Thus, we arrive at

(48)  EII5| < [1Mexp(clA(s—1) | ELIKS"(s), 121 (316, ()| +16. (£ — D) dE ds
V] R4

+ [V exp (c | (s— D)™ Ib, (0) ds.
0

Now we are ready to derive an integral inequality for g” () defined in (4.7).
Combining Lemmas 4.2, 4.3, and the assumption on the initial data we get

@9 . gFO<g (0)+C+Cj(t—s) Vagr(syds+C,
where the constants C may depend on o, & T. Indeed,
|Alexp(—c|Al*t) < Ct~ 1
holds for all AeR? and te(0, T]. Moreover, the integral
J = ‘_L(l+|fif")_1(1+I€|“)(3|5£(5)I+I55(<§—11)I)d€

is uniformly bounded in Ae R? for each fixed a > 0. To see this, note that
b,=06,b has an exponential decay at || = co and (by (3.11)) an inte-
grable singularity at f 0. Its integrand is majorized, e.g., by

(lEaIZ (6)|+|55;z (&—A)), de/2(€) = exp(—e&|¢I*/4) compensates polynomial fac-
tors in J, so J is uniformly bounded; cf. (4.12) in [14]. Using the Gronwall
lemma, from the integral inequality (4.9) we obtain

n' Y ELKS" (), xl] < C,(L+]A).

Reconstructing ¢, ¢(x) =cfP(N)x,(x)dA, we see that <3, > =<9, x>
x ¢ (4)dA, so finally we obtain

mt U ETICS(0), @31 < mt 1 [ ELIK9(0), 10116 ()] di
R4
< C 1+ (D) dA,
R4

which completes the proof of the convergence rate (3.15). Note that the regu-
larization b, of b was useful only in obtaining uniform bounds for J. =

5. Approximations for nonregularized equations. In this section we will
prove the “propagation of chaos in a wide sense” for the equation (1.1), b
which we mean that given any sequence of regularizations (3.14) with ¢ —» 0, the
family of empirical distributions {Y™*(f)} contains a subsequence weakly con-
vergent to a solution u(t) of (1.1).

THEOREM 5.1. Let the general conditions of Theorem 3.1 be satisfied. As-
sume that u’(t) are solutions of the regularized equation (3.14) such that their
initial conditions satisfy |u®(0)—u(0)|, — 0 as &¢ — 0 for some u(0)e I? (R%). Then
given any sequence g, — 0-as k — o, there exists a sequence n, — oo and a weak
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solution u(t) of (1.1) such that for each ¢€CZ (R% and all te(0, T)
(5.1) E|KY™ % (t)—u(t), 21— 0.

Moreover, under the assumptions of Theorem 3.1 (iii), the convergence (5.1) can be
strengthened to the global in time convergence for all te(0, o).

Proof. The proof requires only the following purely analytic weak con-
vergence result to be demonstrated below in Propositions 5.1 and 5.2:

(5.2) I<u™ () —u(®), ¢>1 -0

as ¢ — 0 for each ¢ in a suitable function class containing C§ (R%). Indeed,
(3.15) combined with (5.2) shows that

E[KY™™*(t)—u(@), ¢>|1 >0
for some sequence ¢ — 0 and suitably large n, » o as k—c0. =m

Remark 5.1. Under fairly general assumptions of Theorem 3.1 (i)—(ii),
when only local in time solutions exist (and it may actually happen that they
blow up in a finite time), (5.2) is a rather weak result. When stronger assump-
tions in Theorem 3.1 (iii) guarantee the global in time existence of solutions,
convergence of solutions of regularized equations (3.14) to those of the original
one (1.1) will be, of course, stronger. To obtain those convergence properties
(the proofs of Propositions 5.1 and 5.2 below state them), we will show com-
pactness of the family of approximating solutions using either the Aubin—Lions
or the Ascoli-Arzela criteria for vector-valued functions.

Remark 5.2. Note that so far the issue of uniqueness of solutions to (1.1)
was not addressed in this paper. For o = 2 the uniqueness of weak solutions
holds true, see [8] and Remark 5.4 below. For 1 < a < 2, we can only prove
the uniqueness of more regular solutions in L* (0, T); H' (R%). However, we
do not develop this issue here because, although the convergence in (5.2) would
then be improved to all ¢ — 0, in (5.1) we still would need to select a subsequence
n, — oco. We suspect that the solutions to (1.1) with sifficiently regular initial
data are unique, but they are not necessarily unique in general. In such a case
our interacting jump Markov processes approximation selects a solution of
(1.1) similarly to the way the viscosity method selects a unique, so-called vis-
cosity, solution of conservation laws (cf. [30]).

Remark 5.3. Unlike the case of the one-dimensional fractal Burgers equa-
tion in [14], the estimates of u* leading to (5.2) (gaining extra information from
the degree of approximation of 6, * u*—u®) will be similar to those of u in the
existence Theorems 2.1 and 2.2. It seems that in the higher dimensional case,
d = 2, we cannot obtain results in the same spirit for the fractal Burgers equa-
tion (1.5) with r > 1, because the diffusion operator (— 4)*2, « < 2, is too weak
compared to the nonlinear term; see also the remark after the formulation of
Theorem 2.1.
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PRrOPOSITION 5.1. Assume all the hypotheses of Theorem 2.1 as well as the
hypothesis |u® (0)—uy|, — 0 as & — 0 are satisfied. For the family {u*},- o of solu-
tions of regularized equations (3.14) approximating (1.1) and any sequence ¢, — 0,
there exist a subsequence (still denoted by ¢,—0) and a function
ueI?((0, T); HY*(R%) solving (1.1) such that |{u®*(t)—u(t), ¢>| -0 for each
te(0, T) and ¢eCg (RY).

Proof. Recall the energy relation (2.4), now for u = u*, and observe that
we obtain the inequality (2.6) with a constant C good for all the approximating
equations (3.14). Indeed

B,(u) =0,xbxu=>bx(5,*u), |5, =1.
In such a manner (2.7) implies a local bound

(5.3) lu ()3 + I ID*2u(s)3ds < C(T)

(since |#°(0)|, is bounded in &) for all tef0, T], u = u* with some Tindependent
of &. The inequality (5.3) means that the set {u°},., is bounded in L*((0, T);
(RY)NIZ(0, T); H? (RY).

To get some regularity of u = u® with respect to t, take any test function
YyeH'(RY, |||, <1, and estimate <u,, Y> = (DY u, D¥*y>—(uB,(u), V).
We have ‘

[<u, YOI < D1l + [l |B, @)l < D™ il +July B, @Iy < 21Jtdl2 + C lul¥,

since L' (RY) < H* (R?) for d <4, and ||B,(u)||, is estimated as in (2.5). This,
together with (5.3), gives {u},> o bounded in I? ((0, T); H™*(R%). It is almost all
we need to apply the Aubin-Lions lemma (see [24], Ch.1, Sec. 5.2), except for the
lack of compact embedding of Sobolev spaces over the whole space R’. A stan-
dard remedy in this issue is to consider like in [14] weighted Sobolev spaces

(5.4) HY = {v: ve *eH%} > C?,

where 0 < 0 is a C*-function such that 6(x) = |x| for |x| > 1, g, A€ R, as in-
‘troduced in, e.g., [13] (where they have been used, however, for quite different

purposes). Now, if ¢ < ¢ and u > 4, HY is compactly embedded in Hj. This

- suffices to conclude that each sequence {uf} contains a subsequence converging

to a function ueI?((0, T); H} (R%) for each A > 0, which is a solution of (1.1)
with u, as the initial data. =m

PROPOSITION 5.2. Assume all the hypotheses of Theorem 2.2 as well as the
hypothesis |u™(0)—u(0)|, - 0 as ¢ - 0 are satisfied. For the family {u*},>, of
solutions to regularized equations (3.14) approximating (1.1) and any ¢, — 0, there
exist a subsequence (still denoted by &, —0) and a function ue I? (0, T); H*? (R%)
solving (1.1) such that [{u®™(t)—u(t), ¢ )| — Oforeachte(0, oo)and all p € CZ (RY).

Proof. Using essentially the same argument as in the proof of Theo-
rem 2.2, modified as in the demonstration of Proposition 5.1 to adopt it to the
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approximating solutions u = u*, we have a locally uniform bound on |u(t)],,
te[0, T] for each T< <0, ie.

ue L* (0, T); Z (RN (0, T); H'*(RY).
Next we derive a stronger estimate of |ju (Ollay2- Multiply (3.14) with u = »* by
2(—A4)"%u to obtain
d
(5.5) 7 ID*?ujf +2|D*ul3 =2 | V- (uB, W) (— )" *udx.
Rd

The right-hand side of (5.5) can be bounded from above by
D" ul3 +1iuB, @I} = ID*ul3 +|uB, @3 +|Vu- B, ()3 +u¥ - B, (3.

It suffices to consider the last two terms since the first one is absorbed in (5.5),
and the second one is easier to manipulate with than others.
Thus we begin with

[Vu-B, W)l < [Vul3, |B, )3, < CIVulip lul? _
< C|lullg - aEpTamaGa= e aD |yt < Fjullz + Clult',

where 1/p+1/q =1,1/2q) = 1/r—/d, m, M > 0, are suitably chosen. The last
inequality follows from (1+3d/2—f)/(x+d/2) <1, since the assumption in
Theorem 2.2 is just a+f > d+1.

The last term is bounded by

uV - B, (w3 < [ul3,1V - B, ()3, < Clul3, lul?
< Cljufj2¢7 4@ a=d@I = DI A [y)d < 3 llullZ + C lul,

where again 1/p+1/g =1, 1/2q) = 1/s—(8—1)/d, m, M > 0, but they are not

necessarily the same as previously. The last inequality is a consequence of

(3d/2— B+ 1)/(x+4d/2) < 1, which is exactly the assumption a+f > d+1.
These computations lead to

d
7 llllZ 2 + 112 < Clul3 + C luli.

After the integration we get
ue > ((0, T); H*(R))NI2((0, T); H*(R%) for each T< 0.

Now, our goal is deriving an estimate for the time derivative of u°. Dif-
ferentiating (3.14) with respect to ¢ and multiplying by u, we get

d
(56 - w3 +2|D*?u)3 = —2 | u,B,(u)- Vu,dx—2 | u,uB,(u)dx
R4 R4
= [ w?V B,(w)dx—2 { w,uB,(u,)dx
R4 R4

< [u)Z 1B, @l + |y lul, 1B, ()l
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with p, g satisfying 1/p+1/q = 3/4. Then the right-hand side of (5.6) is less than

C Il 373 o3~ % lell G5~ 2PV Dl 4 C a2 a5~ |52 + 241000+ D g 1

S ”ut”azt/2+ C |u:|%
for some m, M > 0. This gives us

d
Iut|2+ ”ut”a/z C|u1|2+c

and after the mtegratmn we obtain
U, eL°° (0, T); 2 (RY) n I2((0, T); H*? (RY),

whenever u,e H*(RY) as u,(0) = —(—4)"? ug+V - (uy B, (14y)).

Having established bounds on #* in Proposition 5.2 we can arrive at the
conclusion of the proof of the second part of Theorem 5.1. {u*(t)},~ ¢ is equi-
continuous as a set of H¥?(R%-valued functions on [0, T, since

() —u )z < jwwma mﬂfwmmwmm”

for all 0<t, <t,<T, 0<T< o0. The H*?-bound

sup sup |[u(t)llyz < o0
£>0 te[0,T]

and the compact embedding
H*?(R% < H{(R%) for any ¢ < /2,1 >0

(cf. (5.4)) show that {u®},., is relatively compact in C([0, T]; H§(R%). The
limit of each convergent sequence {u®} satisfies the original equation (1.1).
Therefore {u®™(t)—u(t), ¥> — 0 as &, — 0 for each Yy e HZ§ > C¥ and arbitrary
A >0, which completes the proof. =

Remark 5.4. The case a = 2 is substantially different (and easier to treat)
than that of & < 2. Namely, the global in time solutions to (1.1) are expected
(by, e.g., [8]) to satisfy a Gaussian bound in the space variable. Then the use of .
H® ,-estimates, ¢ <1, u > 0 (like in [13]), would lead to a much stronger
approximation result in Theorem 5.1, in particular, for all ¢ satisfying the
condition

FA+1A91 (A dA < 0.

Indeed, (H2 ,)* = H, ¢ contains those functions ¢. However, we cannot expect
such an exponential decay of solutions to (1.1) if @ < 2. Even for linear equa-
tions, in particular for the Lévy semigroup, the best one can obtain is an
algebraic decay rate |x| ¢~ see [19] and Lemma 5.3 in [8]. This is a heuristic
explanation of seemingly very weak convergence properties obtained in Theo-
rem 5.1.
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Moreover, by the uniqueness of solutions to (1.1) for « = 2 (see [8], Theo-
rem 2.1 (ii) and its proof as in [7], Theorem 1), the whole sequence {u®}
converges to the solution u for any sequence g — 0.
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