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Abstract. The existence of McKean's nonlinear jump Markov 
processes and related Monte Carlo type approximation schemes by 
interacting particle systems (propagation of chaos) are studied for 
a class of multidimensional doubly nonlocal evolution problems with 
a fractional power of the Laplacian and a quadratic nonlinearity involv- 
ing an integral operator. Asymptotically, these equations model the 
evolution of density of mutually interacting particles with anomalous 
{fractal) Levy diflusion. 
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1. Introduction. The present paper can be viewed as a continuation of our 
article [S], where we studied global and exploding solutions for equations of 
the form 

Here u: D x (0, T )  c Rd x R+ -+ R, (- d)OLi2 is a fractional power of the minus 
Laplacian in Rd, 0 < a < 2, and 

is a linear R~-valued integral operator with the kernel b: Rd x Rd + P. The 
dimension is restricted to the physically interesting cases d = 1, 2, or 3. The 
goal here is to establish the existence of McKean's nonlinear diffusions, and 
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related interacting particle approximation schemes (propagation of chaos in 
a wide sense) for the same class of equations. 

Equations (1.1) describe various physical phenomena involving diffusion 
and interaction of pairs of particles when suitable assumptions are made on tbe 
possibly singular integral operator B. Since our main interest is in u as a de- 
scription of the density of particles in P, we will only consider nonnegative 
solutions to (1.1). 

In the case of classical Brownian diffusion, i.e., o! = 2, a deterministic study 
of these models in 171 was initially motivated by the Fokker-Planck type 
parabolic equations with nonlocal nonlinearity'hd-ye studied them mostly in 
bounded domains of Rd, supplemented with suitable (nhdinear) boundary con- 
ditions. For instance, if \ 

-\ 

then the equation (1.1) models the diffusion of charge carriers (c < 0) in elec- 
trolytes, semiconductors or plasmas interacting via Coulomb forces. If c > 0, it 
describes gravitational interaction of particles in a cloud, or galaxies in 
a nebula. 

Related equations and parabolic systems appear in mathematical biology 
where they are used to model chemotaxis phenomena (see [3]). There, we have 
been mainly interested in the possibility of the continuation of local in time 
solutions of (1.1) up to T = + a. The answer to this question depends strongly 
on the type of interaction. For instance, for Newtonian attraction of particles 
or chemotactic attraction of cells, finite time collapse of solutions is possible 
(see [2] and [3]), while for the Coulomb forces global in time existence of 
solutions is guaranteed (cf. [5 ] ) .  

Further, for the Biot-Savart kernel 

in R2, the equation (1.1) with a = 2 is equivalent to the vorticity formulation 
of the Navier-Stokes equations. Its solutions are global in time. Also, formally, 
the singular kernel b (x, y) = c6 (x- y) leads to the classical Burgers equa- 
tion 

A new important ingredient of a more general class of model problems 
(1.1) in [8], studied in the whole space Rd, was the anomaloers LCvy u-stable 
diffusion described by a fractional power of the Laplace operator in Rd. In the 
physical literature such fractal diffusions have been vigorously studied in the 
context of statistical mechanics, hydrodynamics, acoustics, relaxation phenom- 
ena and biology, see e.g. [I] and 1291. They also appear in nonlinear models of 
interfacial growth which invoIve hopping and trapping effects [25]. 
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In probabilistic terms, replacing the Laplacian by its fractional power 
leads to interesting questions of extension of results for Brownian motion 
driven stochastic equations to those driven by LCvy a-stable flights; the latter, 
of course, having discontinuous sample paths. Linear equations with or-stable 
processes have been considered e.g. in LIB], [20], and [31]. 

In fact, the probabilistic theory of interacting particle systems and theory 
of McKean's diffusions have been our immediate theoretical inspiration for [S]. 
McKean's processes and "propagation of chaos" results connect the detailed 
Liouvillean picture of the evolution of diffusing andinteracting particles and 
the reduced hydrodynamic description. We cite only a few of references that 
deal with different aspects of this connection in the case of classical Brownian 
diffusion: [9], [lo], [16], 1211, [26], [28], [32], and-[35]. 

The analogous interacting particle system approximation questions for the 
"fractal" Burgers equation with a-stable processes 

have been dealt with in 1141 for d = 1 and r = 2, see also [ 35 ] .  Based on 
various estimates of solutions to the deterministic Burgers equation with fractal 
difision in [4], theorems in the "propagation of chaos" spirit have been re- 
cently proved in [14]. This paper relates to [8] as [14] to 141. Also, in 161 we 
studied the first and the second order asymptotics of equations similar to (1.5). 

Let us note that a direct numerical approach to equations like (1.1) or (1.5) 
is extremely difficult because of the doubly nonlocal character of these equa- 
tions. First, the linear operator (-A)"/' for 0 < 0: < 2 is no longer a differential 
operator but an integro-differential one. Second, the nonlinearity of uB (u) in- 
volves integrals over the whole space Rd. However, if the "propagation of 
chaos" property is established even in a wide sense considered below, then an 
efficient numerical analysis of these equations via Livy a-stable Monte Carlo 
simulations becomes available; cf. the references [9], [15], [27], [33] for analo- 
gous aspects of the numerical analysis of classical PDE's. 

The original propagation of chaos property does not seem to hold because 
insufficient regularity is gained from the fractional Laplacian (see remarks in 
Section 5). 

The composition of the paper is as follows: Section 2 recalls and extends 
some results from [S] on local and global in time solvability of equations (1.1). 
A construction of McKean's nonlinear diffusion is provided in Section 3. Here 
we also formulate our main results on the stochastic particle approximation 
scheme for a smoothed version of (1.1), including some error estimates; the 
proofs are in Section 4. The notion of propagation of chaos in a wide sense is 
introduced in Section 5 and results pertaining to the equation (1.1) can be 
found there, as well as some comments relating the class of equations (1.1) to 
the fractal Burgers equation (1.5). Our probabilistic constructions rely on pa- 
pers [26], [ll], [12J, [19], 1201 and [32]. The first reference started with 
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a study of (1.1) with u = 2 and B defined by a Lipschitz kernel 6, see also [32]. 
Our kernels motivated by the above-mentioned applications are far more sin- 
gular. As a general reference for PDE theory we cite [23] together with a brief 
note [I71 used for various interpolation inequalities. 

Not  a t  i o n. lulp stands for the Lebesgue @ (Wq-norm of the function u, 
- for the Sobolev Wk*P(P)-norm, and llullk is the Hk = Wkv2-norm. 

InessentiaI constants will be denoted generically by C, even if they vary from 
line to line. 

2. Local m d  global existence mf solutions. In this section we provide exist- 
ence reidts for the l o c d i i ~ l o b a l  in time (weak) solutions of the initial value 
problem for (1.1). We conside? in-the sequel only the simplest case of i2 = I?", 
although most of results in this se&aq extends to u defined on an open subset 
B of Rd and satisfying suitable boundary conditions on 80. 

We restrict ourselves to the case of convolution operators 3 in (1.1), the 
most important in the applications, so that from now on b (x ,  y) = b (x- y). 
Moreover, we assume that b satisfies potential estimates like either 

for some 0 < #I < d, 0 < y < d, which is motivated by the examples (1.2) and 
(1.3). Formally, (1.4) corresponds to the limit case = 0 but, of course, the 
operator B(u) = cu, 0 f c E Rd, is not an integral one. In fact, assumptions (2.1) 
and (2.2) can be weakened as, e.g., in Section 2 of [8], but we prefer to keep the 
potential character and smoothing properties of B clear. This permits us to 
obtain some extensions of results in [8]. 

By the fractional power of the minus Laplacian in Rd we mean the Fourier 
multiplier 

which has also the representation 

for the range of parameter a,  a ~ ( 0 ,  2), we are interested in. Here K = K,,, is 
a constant, 

Now, we recall results from [8] on the local in time existence of solutions 
to (1.1) with the initial condition 

under the assumption (2.1) or (2.2) specified to the case d < 3, in order to use 
the framework of Hilbertian Sobolev spaces Hk(Rd). By a solution we mean 
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a weak one, i.e. a function u E @ ( (0 ,  T ) ;  Hal2 (Rd)) such that the integral identity 

holds for every test function q€H1 (P x ( 0 ,  T) ) ,  cf. [S], Section 2. 

THE~REM 2.1. Suppose that a + > d/2 + 1 in (2.1), OI E (0, 21, BE ( 0 ,  4, 
d = 1 , 2 ,  3 ,  and the initial condition is 0 < u, EL? (P) n L' (Rd) . Then there exist 
T > 0 and a weak solution u 2 0 of the Cauchy problem (1.1), (2.3). Moreouer, 
Iu(t)ll = Iuol; for all t ~ ( 0 ,  T ) .  

The above theorem contains Theorems 2.1 and 2.2 in [8], and improves 
over those results for some 0 < f i  < 1 and for d = 1 not considered there. 

Proof .  We give only a crucial a priori estimate of u( t )  in @ referring to 
[a] for a description of the construction of u .  Observe that 

d 
(2.41 - lull + 2 IDQi2 = - 2 1 UB (u) . Vu dx 

dt R d 

and the right-hand side of (2.4) can be transformed into 

- 1 v ( u 2 ) . B ( u ) d x  = 1 ~ ~ ~ - B ( u t k ) d x .  
R d Rd 

Then we estimate, from the Schwarz inequality and the condition (2.1) which 
assure smoothing properties of By 

Note that the assumptions (2.1) and (2.2) on the potential nature of the kernel 
b are stricter than those imposed in [8], thus permitting stronger estimates 
than Lp-estimates in that paper. 

Next, by interpolation we get 

(2.6) 1 5 u2 p -  B(u)dxl < C I l ~ 1 1 ~ / " , ~ ( ~ - - - 8 ) / '  b l 2  3-d/a-2(1-@)la  < /lull:,z + c luly 
R d 

for some m > 0 if 1 - f l  < 1x12 and d/a+ 2 (1 -B)/a < 2 ,  which is the assumption 
in Theorem 2.1. Now, (2.4) and (2.6) lead to the differential inequality 

which implies a local bound lu < C (T) c ~o for some T = T ( 1 ~ ~ 1 , )  > 0 and 
all t ~ ( 0 ,  T ) .  

Note that for 2 1 the proof of Theorem 2.2 in [8] involved another 
reasoning based on the Hardy-Littlewood-Sobolev inequality. 
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The positivity and total mass preserving properties of (1.1) are the con- 
sequences of those properties of LBvy and Gauss semigroups 

of probability measures corresponding to the cases 0 < cl < 2 and GI. = 2, re- 
spectively. Moreover, weak solutions to (1.1) enjoy some supplementary regu- 
larity properties, due to parabolic smoothing by (-A)"/', see Section 2 in [7], 
Sections 2 and 3 in [ 5 ] ,  and [8]. rn 

Re m a r k  2.1. Although the calculations above are not directly applicable 
to the Burgers equation (1.41, the assumption GI + #? > d/2 + 1 gives a correct 
result. This guarantees even the global existence of solutions if d = 1, /? = 0, 
u 0 ~ H 1 ( R ) ,  SO that ol> 3/2 (see [4], Theorem 2.1). Concerning the higher 
dimensional quadratic Burgers equation (1.5) with r = 2, the condition 
u+p > d/2+ 1 may suggest that no weak solutions exist for d 8 2 and 
a E (0, 21. This can serve as an heuristic motivation for the study of another 
kind of solutions, namely mild ones in [4], Section 6. 

The theorem below recalls sufficient conditions for the global in time 
existence of solutions, see [8], Section 3. 

THEOREM 2.2. Suppose that a + P  > d f l  in (2.11, u ~ ( 0 ,  21, B E ( O ,  d ) ,  
d = 1, 2, 3. Then any local solution to the Cauchy problem (1.1), (2.3) with 
U, EL? (R3  n L1 (Rd) can be continued to the whole hayline (0, co). 

P r o  of. The right-hand side of the energy identity (2.4) can be estimated as 
in (2.5) for 0 < #? Q 1. After interpolation of norms this quantity is bounded by 

with some rn > 0. Our assumption shows that the exponent of IlullGl12 above is 
strictly less than 2. Hence, (2.4) implies that 

so a locally uniform estimate of lu(t)12 follows, and by the results of Theo- 
rem 2.1 u(t )  has a continuation to (0, co). 

For p > 1 we apply to the second factor on the right-hand side of (2.7) the 
Hardy-Littlewood-Sobolev inequality, and then the interpolation to obtain 

IIB(u)IIl Q C IuI, G C IIuII$z IuI:Fk 

with 1/2 = l/q - (8 - l)/d and k = (d + 2P - 2)/(a + d). The conclusion follows 
now as before when 0 < P < 1. H 

For a = 2 we recover Theorem 3.1 in [8] where /? > d- 1. This result is 
sharp as Section 4 in 181 showed. Namely, if f i  < d - 1, there exist equations of 
type (1.1) and their particular solutions er that cannot be continued beyond an 
interval [0, T )  with a finite time 0 < T < oo. 
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Note that under essentially the same growth assumption y > d-a in (2.2) 
(since = y - 1 for smooth kernels b satisfying (2.2)) Theorem 2.2 for 0 < cr < 2 
has been proved in [8], Theorem 3.2. 

3. Nonlinear Markov processes and approximating particle systems for 
regularized equations. We begin this section with the construction of a nonlinear 
Markov process for which the equation (1.1) serves as the Fokker-Planck- 
-Kolmogorov equation. The assumption a E (1, 2) permits us to use freely the 
expectations of the u-stable processes involved in the construction. 

Let u ), 0 be a (local in time) solution of (1.1). Without loss of generality 
we can assume that u is bounded, i.e. 

(3.1) sup ]u(x, t)l < 00. 
x ~ R d , t e [ O ,  TI 

This is a property similar to that in Theorem 2.1 (iii) in [8] where the case a = 2 
was considered. Whenever a local solution u can be defined, the parabolic 
regularization property of (- A)"/2, a E (1, 21, leads to an instantaneous smooth- 
ing of u to a locally bounded function. Indeed, by standard arguments of Moser's 
type ( [ 5 ] ,  Theorem 3) it can be proved that u E LTo, ((0, T); Lm (Rd)). Here, the key 
estimate is an LP-analog of (2.4). The full exposition of this line of reasoning is 
omitted; the details are laborious and essentially repeat step-by-step, with 
appropriate adjustment of exponents, the proofs of Section 2 in [ 5 ] .  

Shrinking, if necessary, the time interval of existence of the solution (or 
assuming from the beginning that u, E Lm (Rd) n fi (Rd) is regular enough), we 
obtain (3.1). Moreover, since we are working with (L? n Lm)-solutions, the estimate 

follows from the potential estimate (2.1), the Sobolev embedding theorem and (3.1). 
Consider a solution X (t) of the stochastic differential equation 

(3.3) dX (t) = dS (t) - 3 (u (t)) (X (t)) d t  , 
where u is a given (bounded) solution of (1.1), X (0) - u (x, 0) dx in law, and S ( t )  
is a standard a-stable spherically symmetric process with its vaiues in Rd. Recall 
that it has the structure 

S (1) - (A1/' GI, . . . , A1j2 Gd), 

where A is an (~12)-stable, totally asymmetric positive random variable, and 
G, , . . . , G, are independent identically distributed Gaussian random variables. 
So, conditionally on A,  S(1) is Gaussian with characteristic function 
exp(-1tI2). 

Since the coefficient B(u)  in (3.3) is bounded, based on the work 1201, we 
infer that the stochastic differential equation (3.3) has a unique solution X. The 
measure-valued function 
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satisfies the weak forward equation 

for all E 9 (Rd), the Schwartz class of functions on Rd, with the initial con- 
dition v (0 )  = u ( x ,  O)dx, and the operator 

PROPOSITION 3.1. Let 1 < a < 2 and u be a solution of (1.1) satisfying (3.1). 
The process X ( t )  in (3.3) is the McKean process (nohiinear Markuv process) 
correspqnding to (1.1), that is, it satisfies the relation 

Proof ,  From the results of [11] (see [12]), the following two statements 
are equivalent: 

r The martingale problem for the operator 8,(,) is well posed. 
ca The existence and uniqueness theorem holds for the corresponding 

linear weak forward equation (3.5). 
Here, the martingale problem associated with (3.3) is well posed. However, 

u(dx, t )  = U(X, t ) d x  is also a solution of (3.5) since 

Since the coefficients of the linear equation (3.5) are regular (B(u)E Lw), the 
problem 

W ~ = - ( - A ) ~ ~ ~ W - B ( U ) - V W ,  w ( o ) = o ,  
has the unique solution w - 0. This can be easily seen from the energy es- 
timates as in the proof of Theorem 2.1. Now, the uniqueness for (3.5) implies 
that v (dx, t) = u (dx ,  t),  which yields Proposition 3.1. 

The classical propagation of chaos result for the partial differential equa- 
tion (1.1) would show that the empirical distribution 

1 
( t )  = - C 6 (Xi." (t)) 

n i=l 

of n interacting particles with positions (Xi,"(t))i=l,...,n, whose dynamics is 
described by the system of stochastic differential equations 

1 

dXi." ( t)  = dSi(t) -5 b (Xi*" (t), Xjsn (t)) dt ,  
n j+i 

is close to the distribution of the McKean process X(t) in the sense that 

(3.8) I?" ( t )  * u (x, t )  dx in probability as n -, co, 
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where * denotes the weak convergence of measures. In our situation 
{S' I , , . .3n are independent copies of symmetric LBvy ol-stable processes with 
the common infinitesimal generator -(-A)"I2. 

Results in this spirit, when S is replaced by a more familiar Wiener pro- 
cess, have been proved in various situations after the pioneering work [26]. We 
have chosen some classical as well as new references containing reformulations, 
extensions and generalizations of the above scheme for various evolution prob- 
lems of physical origin: [16], [lo], [21], [28], [IS], [32], [357, [9], [27], [33]. 
Besides a purely mathematical interest, they give also reasonably well-worlung 
tools for the numerical approximation of solutions, especially when conver- 
gence rates can be found. 

The recent paper [I41 deals with the first, to the best of our knowledge, 
"propagation of chaos" result for Levy a-stable processes driven stochastic 
differential equations associated with the fractal Burgers equation. As we men- 
tioned in the Introduction, because of a rather weak parabolic regularization 
effect of (- A)"I2, a preliminary step involving the replacement of xi." by solu- 
tions of regularized stochastic differentia1 equations ((3.10) below) seems to be 
necessary in order to have an analogue of (3.8). 

Let us consider a standard smoothing kernel 

(3.91 6 ,  b) = (271 & ) - ' I 2  exp (- 1x1~ /(2~)), E > 0, 

and the system of regularized equations (3.7): 

1 
dXi*"gE ( t )  = dSi ( t )  - - C b, (Xi.".& ( t )  - Xj~"9~ (t)) dt , ' j+i 

where b (x, y )  = b (x - y ) ,  b, = b * 8,. Then define random empirical measures 

instead of previously considered in (3.6). 
First, we prove the "propagation of chaos" property for a regularized 

version (3.14) (below) of the equation (1.1), including an error estimate. In 
Section 5 we will prove a weaker property "propagation of chaos in a wide 
sense" for the original equation (1. I), which is, however, a satisfactory basis for 
an approximation scheme for numerical solving of that equation. The exten- 
sion will rely on purely analytic estimates of solutions uc of (3.14). 

THEOREM 3.1. Let the conditions of Theorem 2.1. ensuring the local in time 
existence of solutions to (1.1) on Rd x (0, T )  be satisfied. Moreover, assume that 

(which is, of course, compatible with the potential estimate (2.1)) and that the 

5 - PAMS 192 
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initial conditions {Xi3"7' ((I))+ satisfy 

(3.12) sup sup n1-'jU ( 1  + IRIQ)-l E [ (Fs ' ( (O-uE(x ,  0) ,  x,)] < co 
" A E R ~  

for some a 2 0 and L ~ E E  the characters ~ , ( x )  = eikX. Then: 
(i) For each E > 0 the empirical process is weakly convergent 

(3.13) Ynbe ( t )  u"" ( x ,  t )  dx in probability as n -+ co . 

f i e  limit density ue = uZ(x, t),  x ~dPd, t ~ ( 0 ,  T), solves the regularized equa- 
tion (1.1): 

with Be = 6,  * B deJined by the kernel b, = 6, * b .  
(ii) For each E > 0, there exists n constant C, such that for any # E 9 (R") 

(iii) Under the assumptions of Theorem 2.2 guaranteeing the global in time 
existence of solutions to (1.1), the concIusions (i) and (ii) are valid for all t ~ ( 0 ,  co). 

We will prove Theorem 3.1 in the next section. The case E = 2 is, of course, 
classical (see the approach in [32]), but it can be also handled using the scheme 
of proof in Section 4. 

4. Proof of Theorem 3.1. The proof of Theorem 3.1 needs some represen- 
tation formulas for the a-stable process S(t). Recall a decomposition of the 
process S (t): 

t + t + 
(4.1) s ( t)  = J J yfl(ds dy) + 1 1 Y N  (ds dy), 

0 O < [ y l < l  0 Iy lS l  

where N (dsdy) is a Poisson point process with intensity @ (ds dy) = ds v (dy), 
v(dy) = K I ~ l - ~ - " d y  is the Ltvy measure, and N(dsdy) = N(dsdy)-#(dsdy), 
see, e.g., [ I S ] .  

Proof  of Theorem 3.1. The assertion (3.13) follows essentially from 
(3.15) since a > 1. Hence, it is sufficient to prove the rate of convergence in 
(3,15). The following decomposition lemma prepares the quantities in (3.15) to 
be estimated easily. 

LEMMA 4.1. Let us define 

(4.2) 9" ( t)  -- YnlE ( t )  - u"t) . 
Then for each # E  CF (Rd) the identity 
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holds, with 
1 n t +  

(4.4) rn" (4 ,  t )  = - S 1 ($ (Xi."+"s -) + y)  - # (Xibnle (s - ))) fl (ds dy),  
fl i = 1  o 

and 

(4-5) ~ n ( 4 , t ) = - < 9 " I d x , t ) P ( d y , t ) , b , ( x - y ) ~ V ~ ( x ) )  

- {ue(dx ,  t) 9" (dy ,  t )  +an (dx, t )  ue ( d y ,  t), b,(x-  y ) .  V 4  (x)) 

1 +; bE(0) .{Y"*'( t ) ,  V4}. 
- 

Here I? = N i  - 8, and N' = Ni (ds dy) are independent Poisson point processes 
with identical intensity fl (ds d y )  = K l y ( L d p a  ds dy . 

Proof. First note that 

Then, by the decomposition (4.1) of S( t )  and the It6 formula for ol-stable pro- 
cesses [18], 

(8" 4 )  - <gn (01, 4 )  
1 n i +  

= - j j (# (xi*"*' (s - ) + y) - # (Xi*."*' (S -))) Hi (ds dy) 
n i = l  o ~d 

1 - - c b, (xi9n.e (S) - x j . n , E  (s))  - V# (Xi,",' (s))) ds 
n j+i 

where the last term is defined as 

I" (4, S) = - pa- x C b, (Xi.',' (s) - Xj.'?' (s)) - (Xi,n,E (s)) 
i = l  j#i 

Since 

1 
= (8" (s),  b, (Xi,".' (s) - .)) + u' (s) r be (x',",' (s)) -; bE (0),  
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we obtain 

+ ue (4 * be (3)) - P+ (Xi*"" (8)) + (u' ( s ) ,  B, (uE ( s ) )  - v#) 
n 

= - (Yn,E ( d x ,  s) 9" ( d y ,  s ) ,  b, ( x  - y )  . V# (x)) - (Yn-"s), uE(s )  * 6; V + >  

as claimed. 

P roo f  of (3.15). Now, we shall prove estimates for the quantities a n ( t )  
defined in (4.2). We apply the decomposition Lemma 4.1 with # = X ,  and 
x n ( x )  = eiax to get 

t 1 

(9" ( t ) ,  x A )  + C  IRI" J (8"  IS), X J  ds = ( g n ( 0 ) ,  ~ n )  +mn ( ~ n ,  t )+  J q" s) d s ,  
0 0 

since (- A)"I2 x1 = c IAIu x I ,  where c = c ( d ,  a) is a positive constant. Observe 
that 

so that 

(4.6) (S f l ( t ) ,  XJ = I l + I 2 + I 3 ,  

where I j  = Iys"t) are defined as follows: 
t + 

= exp(-c l l lU t )  <gn(0 ) ,  x , ) ,  I2  = j e x p ( - c  IIIQ(t-s))dmn(x, ,  s), 
0 

t 

I ,  = j e x p ( - ~ l A l " ( t - ~ ) ) q ~ ( ~ ~ ,  s ) ~ s .  
0 

We will show a uniform estimate for the quantity 

(4.7) gn (t) = sup ( 1  + IAI") nl-'/" E 
k K d  

I n  I ~ E C O ,  TI, 

remembering that the assumption on I,, i.e. on the initial positions of Xi,"-YO)), 
was supn gn ( 0 )  < co for some a 2 0 .  In the next two lemmas we will handle the 
integrals I, and I, separately. 
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LEMMA 4.2. 
sup sup sup nl- l/"E 
" AeRd te[O,T] 

ClW "()I1 < 

P r o  of. Since the L'-norm is dominated by the weak E-norm, a 3 1, we 
can write 

~ l ~ l - l l n ~  I < n l - l l a  
2 '  sup z(P(I1,1 > z))lJU 

where - .. . 

The second inequality above is a consequence of the finite-dimensional vector 
version 

S t 

sup za P (sup 1 F (r)  d S  (r )  > z) < c, E [ j [F (s)l" ds] 
zr 0 sdt  0 0 

of Theorem 9.5.3 from [22]. Finally, since IFiI" < n- 1A1", Lemma 4.2 is proved. 

In order to bound I, we begin with 

Proof .  We shall estimate the three terms in the definition (4.5) of q". For 
the first summand we have 

= I &(5). (sn(dx, t)gR(dy, t), eittx-y)iLei") d51 
R d 

G 14 5 1gE(5)1 I(aR(t), ~ - t ) l  I(an(t), x~+r;>l  d5 d 2 14 1 lgE(0l l(gn@), x-<)l d5, 
R d Rd 

because l(9."tt), ~ n + < ) l  d 2. 
For the second term we obtain 

= I gE(t)* ( u y d x ,  t)P(dy, t), e ic (x -~) .  iAeiAX>dcl 
Rd 

d Ill S 16,(5)1 l(gR(t), x-<>l l(uE(t), xl+e)l d t  d Ill 1 lgE(O1 l(gn(t), x - d l  dt ,  
Rd Rd 

and, similarly, 

The third term is easy; remember that VX, = i ; l~, .  ra 
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Thus, we arrive at 

t 

+ j )A1 exp (C IAI" (S - t)) n- l ]be (0)l ds. 
0 

Now we are ready to derive an integral inequality for gn (t)  defined in (4.7). 
Combining Lemmas 4.2, 4.3, and the assumption on the initial data we get 

I 

(4.9) g"(t) G ~(0)+C+Cj(t-s)-llo:#(s)ds+C, 
0 

where the constants C may depend on a, E ,  T. Indeed, 

121 exp ( -c  lAIa t) < Ct-lIa 

holds for all A € R d  and t ~ ( 0 ,  a. Moreover, the integral 

J = J (1 + lJla)-l (1 + ltlU) (3 16, (01 + I& (5 -4) d t  
R d 

is uniformly bounded in A€Rd for each fixed a 2 0. T o  see this, note that 
ge = JE$ has an exponential decay at 151 = Q and (by (3.11)) an inte- 
grable singularity at = 0 .  Its integrand is rnajorized, e.g., by 
c, (16,,, (t)l+ (5  - All), JgIZ tt) = exp (- E ltI2/4) compensates polynomial fac- 
tors in 3,  so J is uniformly bounded; cf. (4.12) in [14]. Using the Gronwall 
lemma, from the integral inequality (4.9) we obtain 

Reconstructing 4 ,  4 (x) = c j 4 ( A )  X, ( x )  d l ,  we see that ( 9 ,  #) = j (9, x,) 
x 6 (A) dA, so finally we obtain 

which completes the proof of the convergence rate (3.15). Note that the regu- 
larization b, of b was useful only in obtaining uniform bounds for J .  

5. Approximations for nonregularized equations. In this section we wil l  
prove the "propagation of chaos in a wide sense" for the equation (1.11, by 
which we mean that given any sequence of regularizations (3.14) with E + 0 ,  the 
family of empirical distributions {Y"~"t)) contains a subsequence weakly con- 
vergent to a solution u( t )  of (1.1). 

THEOREM 5.1. Let the general conditions of Theorem 3.1 be satisfied. As- 
sume that uy t )  are solutions of the regularized equation (3.14) such that their 
initial conditions satisfy lue (0) - u (0)12 -) 0 as E -F 0 for some u (0) E L2 (Rd) . Then 
given any sequence -+ 0 4s k -+ m, there exists a sequence n, + m and a weak 
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solution u (t) of ( 1  .l) such that for each 4 E C$ (Rd) and all t~ (0, T) 

Moreover, under the assumptions of Theorem 3.1 (iii), the convergence (5.1) can be 
strengthened to the global in time convergence for all t E (0, a). 

Proof.  The proof requires only the following purely analytic weak con- 
vergence result to be demonstrated below in Propositions 5.1 and 5.2: 

as ck + 0 for each $ in .a. suitable function class containing Cr (dPd). Indeed, 
(3.15) combined with (5.2) shows that 

for some sequence ek + 0 and suitably large nk -+ co as k 4 oo . w 
Remark  5.1. Under fairly general assumptions of Theorem 3.1 (i)-(ii), 

when only local in time solutions exist (and it may actually happen that they 
blow up in a finite time), (5.2) is a rather weak result. When stronger assump- 
tions in Theorem 3.1 (iii) guarantee the global in time existence of solutions, 
convergence of solutions of regularized equations (3.14) to those of the original 
one (1.1) will be, of course, stronger, To obtain those convergence properties 
(the proofs of Propositions 5.1 and 5.2 below state them), we wil l  show com- 
pactness of the family of approximating solutions using either the Aubin-Lions 
or the Ascoli-Arzela criteria for vector-valued functions. 

Remark  5.2. Note that so far the issue of uniqueness of solutions to (1.1) 
was not addressed in this paper. For a = 2 the uniqueness of weak solutions 
holds true, see [8] and Remark 5.4 below. For 1 < a < 2, we can only prove 
the uniqueness of more regular solutions in Lm ((0, T ) ;  H1 (Rd)). However, we 
do not develop this issue here because, although the convergence in (5.2) would 
then be improved to all E + 0, in (5.1) we still would need to select a subsequence 
n, + co. We suspect that the solutions to (1.1) with s=ciently regular initial 
data are unique, but they are not necessarily unique in general. In such a case 
our interacting jump Markov processes approximation selects a solution of 
(1.1) similarly to the way the viscosity method selects a unique, so-called vis- 
cosity, solution of conservation laws (cf. [30]). 

Remark  5.3. Unlike the case of the one-dimensional fractal Burgers equa- 
tion in 1141, the estimates of u" leading to (5.2) (gaining extra information from 
the degree of approximation of 6,  * uE-uE) will be similar to those of u in the 
existence Theorems 2.1 and 2.2. It seems that in the higher dimensional case, 
d 2 2, we cannot obtain results in the same spirit for the fractal Burgers equa- 
tion (1.5) with r > l ,  because the diffusion operator (-A)"/' ,  oc < 2, is too weak 
compared to the nonlinear term; see also the remark after the formulation of 
Theorem 2.1. 
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PROPOSITION 5.1. Assume all the hypotheses of Theorem 2.1 as well as the 
hypothesis luE (0)- u,12 + 0 as E + 0 are satisfted. For the family (a"),, of solu- 
tions of regularized equations (3.14) approximating (1.1) and any sequence E, + 0,  
there exist a subsequence (still denoted by E~ + O )  and a function 
u E L2 ((0,  T); Hal2 (Rd)) solving (1.1) such that I{um (t)- u f t) ,  + ) I  + 0 for each 
t E (0, T )  and 4 E CF ( R ~ ) .  

P r o  of. Recall the energy relation (2.41, now for u = u" and observe that 
we obtain the inequality (2.6) with a constant C good for all the approximating 
equations (3.14). Indeed, 

Be(u) = 6,*b*u = b*(6,*u), ldEll = 1. 
In such 'a manner (2.7) implies a local bound 

I 

(5.3) Iu(t)l$ + j1DaJ2u(s)I~ds < C(T) 
0 

(since luE(0)I, is bounded in E) for all t E [0, TI,  u = u%ith some Tindependent 
of E .  The inequality (5.3) means that the set (ue),,, is bounded in Lm ((0, T); 
LZ ( ~ ~ 1 )  n J? ((0, T ) ;  Hui2 (Rd)) . 

To get some regularity of u = u' with respect to t ,  take any test function ~ E H1 (Rd), 1 1 $ 1 1 1  6 1, and estimate (u,, $) = (D'I~ U ,  l l a I 2  $) - (u3,  (u), V $ ) .  
We have 

since I?(Rd) c H1 (Rd) for d < 4, and IIB,(u)lll is estimated as in (2.5). This, 
together with (5.3), gives {u : ) , ,~  bounded in L2 ((0, T);  H-I (Rd)). It is almost all 
we need to apply the Aubin-Lions lemma (see 1241, Ch.1, Sec. 5.2), except for the 
lack of compact embedding of Sobolev spaces over the whole space Rd. A stan- 
dard remedy in this issue is to consider like in 1141 weighted Sobolev spaces 

(5 -4) HI - {v: v eKAe~He)  =I C:, 

where 0 < 8 is a Cm-function such that O(x) = 1x1 for 1x1 2 1, e ,  AER, as in- 
troduced in, e.g., El31 (where they have been used, however, for quite different 
purposes). Now, if CT < e and p > A, H f  is compactly embedded in H;. This 
suffices to conclude that each sequence (ui)  contains a subsequence converging 
to a function u E I.? ((0, T) ;  HI: (Rd)) for each A > 0, which is a solution of (1.1) 
with u0 as the initial data. EJ 

PROPOSITION 5.2. Assume all the hypotheses of Theorem 2.2 as well as the 
hypothesis lua(0)-u(0)12 -, 0 as E +O are satis$ed. For the family {u"),,, of 
solutions to regularized equations (3.14) approximating (1.1) and any E ,  + 0 ,  there 
exist a subsequence (still denoted by E ,  +O) and a function es E L' ((0, T);  Hal2 (R~)) 
solving (1.1) such that I(uek(t)- u (t) ,  4)I -+ 0 for each t E (0, m) and all 4 E C$ (Rd).  

Proof.  Using essentially the same argument as in the proof of Theo- 
rem 2.2, modified as in the demonstration of Proposition 5.1 to adopt it to the 
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approximating solutions u = ue, we have a locally uniform bound 'on lu(t)l,, 
t E [0, TI for each T <  co, i.e. 

u E LW ((0, T); I? (P)) n L2 ((0, T); (P)) . 
Next we derive a stronger estimate of I l ~ ( t ) l l , ~ ~ .  Multiply (3.14) with u = u q b y  
2 ( -  A)"lZu to obtain 

The right-hand side of (5.5) can be bounded from above by 
. . 

Pablg + IIUB& (u)ll? = Pa 1113 + IfiB, + I Vu. Be (u)Ii + IuV Be (tl)ti. 
It suffices to consider the last two terms since the first one is absorbed in (5.5), 
and the second one is easier to manipulate with than others. 

Thus we begin with 

where l / p  + l / q  = 1 ,  1/(2q) = l / r -P /d ,  rn, M > 0, are suitably chosen. The last 
inequality follows from (1 + 3d/2 - P)/(cr + 4 2 )  < 1 ,  since the assumption in 
Theorem 2.2 is just a + f l  > d +  1 .  

The last term is bounded by 

where again l / p  + I /q  = 1, l / (24)  = l / s  -(8- 1)/d,  rn, M > 0, but they are not 
necessarily the same as previously. The last inequality is a consequence of 
(3d/2 - B + l ) / (a  + d/2) < 1, which is exactly the assumption a + P > d + 1. 

These computations lead to 

After the integration we get 

U E L * ( ( O , T ) ; H ~ ~ ~ ( I R ~ ) ) ~ ~ ( ( O , T ) ; H ~ ( R ~ ) )  for each T<co. 

Now, our goal is deriving an estimate for the time derivative of u". Dif- 
ferentiating (3.14) with respect to t and multiplying by u, we get 



with p, q satisfying l/p + l/g = 3/4. Then the right-hand side of (5.6) is less than 

c 1lYlld!" lull; -dl" ~ l ~ l ~ $ l d -  ZB)t(a+d)tuly + C llu lldl(2~1 [Utl$-dM2a) lIu1(L$k2 +Zd!q)l(a+dI IuIy 
.ti 2 t a12 

6 llutll:,2 + c I%l; 
for some rn, M > 0. This gives us 

and after the integration we obtain 

Idl E LA ((0, T); I? (Rd)) n L2 ((0, T);  Hal2 (Rd)), 

whenever u, E Ha (Rd) as ul (0) = - (- AT!' u0 + V . (u0 BE (uO)). 
Having established bounds on u q n  Proposition 5.2 we can arrive at the 

conclusion of the proof of the second part of Theorem 5.1. {uE{t)),,, is equi- 
continuous as a set of Hal2 (Rd)-valued functions on [O, T I ,  since 

for all 0 < t ,  < t, 6 T, 0 < T c  co. The Hal2-bound 

SUP SUP I I u  (t)IIa,, < 
E > O  I E [ O , T ~  

and the compact embedding 

Hal2 (P) c H i  (Rd) for any q < a/2, A > 0 

(cf. (5.4)) show that {u'),,~ is relatively compact in C([O,  TI; H$(Rd)). The 
limit of each convergent sequence {u"] satisfies the original equation (1.1). 
Therefore (uQ(t)-u(t), $> + 0 as E, + 0 for each $ E HI2 3 C," and arbitrary 
R > 0, which completes the proof. s 

Remark  5.4. The case a = 2 is substantially different (and easier to treat) 
than that of a < 2. Namely, the global in time solutions to (1.1) are expected 
(by, e.g., [8]) to satisfy a Gaussian bound in the space variable. Then the use of 
He_,-estimates, e < 1, p > 0 (like in [13]), would lead to a much stronger 
approximation result in Theorem 5.1, in particular, for a11 C#I satisfying the 
condition 

Indeed, (He_,)* = H i e  contains those functions 4. However, we cannot expect 
such an exponential decay of solutions to (1.1) if o l <  2. Even for linear equa- 
tions, in particular for the Lkvy semigroup, the best one can obtain is an 
algebraic decay rate Jx[-~-", see [I91 and Lemma 5.3 in [8]. This is a heuristic 
explanation of seemingly very weak convergence properties obtained in Theo- 
rem 5.1. 
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Moreover, by the uniqueness of solutions to (1.1) for or = 2 (see [S], Theo- 
rem 2.1 (ii) and its proof as in [7], Theorem 11, the whole sequence (uw") 
converges to the solution u for any sequence zk + 0. 
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