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Abstract. The large deviation problem for sums of i.i.d. random 
vectors is considered. It is assumed that the underlying distribution is 
absolutely continuous and its density is of regular variation. An asym- 
ptotic expression for the probability of large deviations is established 
in the case of a non-normal stable limit law. The role of the maximal 
summand is also emphasized. 
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1. Introduction. Let 5, <,, 5,, .. . be i.i.d. random vectors assuming values 
in Rd. Denote by F the common distribution and consider the partial sums 
S,, = t1 + . . . + <,,, n = 1, 2.. . Throughout the paper we assume that there 
exist sequences a,,€ Rd, b,€(O, ao) and a non-degenerate distribution G such 
that for any G-continuity set A 

or, in words, F is attracted by G. The set of distributions attracted by G is 
called the domain ofattraction of G. It is known that the domain of attraction of 
G is not empty iff G is stable in the sense that for all positive numbers 
bl ,  b ,  there exist a E Rd and a positive number b such that b1 X1 + b, X 2  and 
b X + a  are identically distributed, where XI, X,, X have distribution G, and 
XI and X, are independent. Up to a shift, each stable distribution is uniquely 
determined by a number ol E (0,2] and a probability measure p defined on the 
D-algebra Y of the Bore1 subsets on the unit sphere Sd-I (see, e.g., Samorodni- 
tsky and Taqqu 1211). 

Domains of attraction for d > 1 were first studied by Rvakva 1201 who 
gave, in particular, necessary and sufficient conditions for F to be attracted 
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by G as follows: F is attracted by G = G,, iff for any c > 0 

lim P(1tI > t)  
= ca, 

t+m P(l{l > ct) 

while for any Q , ,  Q, E Y 

provided p (Q,) # 0 .  
Let us denote by ex the unit vector of the same direction as x, that is 

ex = 1x1;'~.  
Sometimes it is more convenient to use the following form of necessary 

and sufficient conditions (see e.g. Kalinauskaite [7]): F is attracted by G,, iff 
for any c > 0 and any QEY 

(2) P1151 > t ,  e c ~ Q )  = t - = l ( t ) ( p ( ~ ) + m ( ~ ,  t)) ,  

where 1 ( t )  varies slowly at infmity and, given t ,  rn (Q, t )  is u-additive while, given 
Q, .z (Q,  t )  vanishes as t -t co. 

Let (2) be fulfilled. If, furthermore, S,, for some no 2 1 has a uniformly 
bounded density, then the local limit theorem takes place, that is 

where p, ( x )  and g ( x )  are the densities of S, and the stable limit law, respectively 
(see Rvaeeva [20]). 

A value x = x, in the range of S, is called a large deviation if 

b;lIx-a,l+ co, n+ co. 

That is why P (S, E A) with A = A,, b; l id,,, Ix - a,l + a, n + co, is called 
a large deviation probability. In view of (I), a large deviation probability con- 
verges to zero. From (3) it follows that, as n -+ co, - 

bf p, ( x )  = g (b,  ( x  - a,)) + o ( 1 )  if Ix - a,l = 0 (b,), 
while b:p,(x) + 0 if x enjoys a large deviation. The basic problem of large 
deviation theory is to establish a precise asymptotic expression for P (S, E A) (or 
p,(x)) when A (or x) lies in the region of large deviations. 

Let 
d(") = {A E ad: inf 1x1 3 c, b,) , 

x* 
where gd is the a-algebra of the Bore1 subsets of Rd and lim,,, c, = ao. 

We say that the large deviation problem is solved within &',"I c d(") if it is 
established that 

Iim sup 
n+m AEdF1 

P(S,-a ,€  A) 
- 1  

P ( n ,  A) 
= 0 ,  
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where P (n, A) is an asymptotic expression that involves certain characteristics 
of both the underlying distribution and A. 

So, to each c d(") there corresponds a setting of the large deviation 
problem. The classic theory of large deviations deals with the case when d = 1 
and dg) is the class of the half-lines (xn, m) or I- m,  -x3 with b, x, +a. 
An overview of this rather advanced theory can be found e.g. in S. Nagaev 
[14]. Among those who contributed to the theory studying the case of an 
infinite variance limit stable law one should mention Zolotarev 1251, Ales- 
kjavikne [I], Weyde [5],  TkaEuk [22], Kim and A. Nagaev [8], A. Nagaev 
[11], Rozoyskii .[19]. Of -course, this list is far from being complete. 

The first.question which arises when we move to higher dimensions is how 
to choose multidimensional analogues of those half-lines. The simplest way is 
to define dt) as follows: 

where A,, contains the origin, A", Rd\Ao. In words, dg' is the parametric 
family of the sets homothetic to At. 

In TkaEuk [23] it was shown that under such a setting the large deviation 
problem can be solved provided the boundary of the generating set AD satisfies 
minimal regularity conditions. Before we present the mentioned result let us 
assume without loss of generality that El  = 0 when the expectation exists. 

PROPOSITION 1.  Let in ( 5 )  

where Q (e) is a positive continuous function on Sd- I .  If F belongs to the domain of 
attraction of a stable distribution with ol~(0, l)u(l, 2), then 

P (S" A) lim sup 1 -11 = 0. 
n+ A E d ~ )  nP (t E A) 

It  is rather easy to show that dg) in Proposition 1 can be made broader. 
For instance, for d$) we may choose 

where do = ( A € g d :  t -  Sd-I c A c t +  Sd-l) for some fixed t - ,  t+  such that 
0 < t -  < t+  < a. Apparently, this case can be treated as in Pinelis 1161. 

However, for richer families we have to impose more restrictions either on 
the underlying distribution or on the order of the considered deviations. For 
instance, we can deal with 

where c; +a, cz  + oo, c; = o(cz ) .  
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In order to have an impression on the variety of the (so far considered) 
settings see e.g. Borovkov and Rogozin [4], Vilkauskas 1241, A. Nagaev [9], 
von Bahr [3], Anorina and A. Nagaev [Z], A. Nagaev and Sakojan [12], 
Osipov [I 51, Rozovskii 1181. 

The simplest way to extend the statement of Proposition 1 to d(") is to 
assume that the distribution is absolutely continuous and its density is, asymp- 
totically as 1x1 -, oo, sufficiently regular. It is worth recalling an assertion 
proved in TkaEuk [22]. 

PROPOSITION 2. Let d = 1. Suppose that F belongs to the domain of normal 
attraction ofa stable distribution G with or ~ ( 0 ,  l)u(l ,  2) and its density is such 
that 

Then as xn-'I" -+ co, n -, oo, 

Recall dtnl as defined in (4) and let d = 1, b, = nI i ' l .  Then from Proposi- 
tion 2 it follows that 

The conditions of Proposition 2 are rather close to the necessary ones. 
This means that the local limit theorem provides an approach which enables us 
to solve the large deviation problem for extremely rich classes of sets. In par- 
ticular, such an approach was adopted in Borovkov and Rogozin [4] while 
studying the case of light-tailed distributions. 

The basic goal of the paper is to carry over the statement of Proposi- 
tion 2 to the multidimensional case. The multidimensional analogue of con- 
dition (6) may be chosen as follows. Let non-negative functions r ,  and h be 
defined on LO, co) and Sd-l, respectively. We say that a density p belongs to 
9,,, if it is uniformly bounded and admits the representation 

where r,(t) varies regularly at infinity with exponent - y ,  y > d, h(e) 2 0 
is continuous, w(x) -+ 0 as 1x1 -+ 03 uniformly in ex (cf. Resnick [17], 
Section 5.4.2). 

In  particular, if p EP,,,, then for any Q E 9 

p (Q) = (jsd-g h (e) i (de))-I JQ h (e) A(de), where i is the surface measure on 
Y and 

supIwe(t)l+O, t + m .  
Q E ~  
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One of the simplest examples of ~ E B , , ~  is given by the function 

0 if 1x1 < to, 
P(')= {cal(lr,la+ . .. +/xd13-' otherwise. 

It is easily seen that r,(t) = t-Y, y = o18, h(e) = cafl(Ie,IU+ . . . + le,lu)-8 and 
W(X) = 0, 1x1 2 to. 

It is worth noting that within 9y,h the variables t-' 151 and el: are asymp- 
totically independent as t 4 m, given 151 > t. More precisely, from (7) it follows 
that - - 

- ~ ( t - ~ 1 5 1 > ~ , e ~ ~ Q I I < l > t ) + ~ ~ - ~ p ( Q ) ,  t + ~ , ~ > l .  

Obviously, (7) implies (2). Therefore, for y G (d, d + 2) the underlying dis- 
tribution belongs to the domain of attraction of a stable law with exponent 
a = y - d  and measure p of the mentioned form. If a = 2, it belongs to the 
domain of attraction of a normal law (see Rvakva [20]). Here we confine 
ourselves to the case a E (0, 1)u(1, 2). The threshold cases a = 1 and a = 2 with 
y = d + 2  require additional arguments. They will be studied elsewhere. It 
should be noted that the present paper complements that of A. Nagaev and 
Zaigraev [13] devoted to the case y > d+2  when the limit law is normal. 

The paper is organized as follows, The main results are formulated in 
Section 2 while Section 3 contains their proofs. 

2. Main results. It is worth recalling that we confine ourselves to ~ E P , , ~  
and a E (0, 1)u(1, 2). Furthermore, when a E (1, 2), we assume that E l  = 0. This 
means that in (1) we may choose a, = 0 while b, = inf (t: nP (151 2 t )  < 1 )  (see 
e.g. RvaEeva [20]). If (7) holds, then 6,  is determined by the equation 
P(it /  2 b.) = n-I provided n is sufficiently large. 

Let c, be any sequence such that limn,, c, = CQ. 

THEOREM 1. For any E > 0 

Pn lhn sup sup--l=O, where & = i e ~ P - ' :  h ( e ) > ~ )  
~+UJ 1x1 Bcnbn e,e~E np (x) 

while 

P n  (4 lim sup sup ----- = 0, where E = {e E Sd- : h (e) > 01. 
n + m  1x1 BC,L, nr, (1x1) 

As in the case d = 1 mentioned in Section 1 we easily come to the fol- 
lowing statement: 

COROLLARY 1. Under the conditions of Theorem 1, 
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The assertion of Theorem 1 can be rewritten in the following form: 

lim sup sup I=- h (ex)l = 0 ,  
n+m 1x1 3c.b. nry (1x1) 

Simple examples show that the continuity of h(e) is essential. Let, 
for instance, d = 2 and h(e)  be continuous except for e = e(O1. Taking into 
account the representation e = e+ = (cos #, sind), 0 < q!~ c 2n, assume that 
ides+ h (e) > 0, i.e. E, = sd- l, and there exist 

h- = lim h (e4) and h+ = lim h (e4) 
$TQo &1&0 

such tliat 0 < h- < h+ r co. It can be shown that for ex = .do) 

P, (x) = ho nr, (1x1) (1 +o (1)) with ho = (h -  + h f ) / 2  

while for any fixed ex # do) 
Pn Ix) = h (ex) nr, (1x1) (1 + (1)). 

It is of interest to highlight the role played by the maximal summand when 
a large deviation of the sum takes place. Let j, be the extreme left point of the 
set argmax, Itj] and M, = tjn. 

It is worth noting that, for any o: > 0, (2) also presents a necessary and 
suficient condition for the asymptotic relation 

P(IM,I < tb,) = expt-t-?+o(l) 
as well as for 

P(IMnl G tbn, ~ M ~ E Q )  = e x ~ l - t - " ) ~ ( Q ) + o ( l ) ,  

where Q E ~  (see Resnick [17], Section 5.4.1). 
Moreover, for ct ~ ( 0 ,  l )u( l ,  2) there exists a limit distribution for IM,(- l S, 

(see e.g. Kalinauskaite [6]) .  This means that IM,I and IS,I are of the same order. 
Note that in the case of a normal limit distribution IM,I/(S,I -, 0 in probabiIity. 

The next statement shows that the role of M, even increases when 
S, abnormally deviates from the origin. 

THEOREM 2. Let G be the stable limit law in (1). Then for any E > 0 and any 
G-continuitv set A 

lim sup sup 
n-+ m 1x1 3 ~ n b n  ex&, 

As a corollary we obtain the limit law for the conditional distribution of 
the projection of M ,  onto a deviation direction given the large deviation of the 
sum. From now on, (., -) denotes the ordinary inner product. 

COROLLARY 2. Let g(x) be the density of the stable limit law. Then for any 
E > 0 and any t€R1 

lim sup sup 
n+m 1x1 3cnbn  ex&c J g(u)du 

P (ISnl- (Mn, ex> < tb. I Sn = -1 = o .  
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It is useful to compare Theorem 2 and Corollary 2 with the corresponding 
assertions in A. Nagaev and Zaigraev [I31 (see their Theorem 2 and Corol- 
lary 4). 

3. Prods. In what follows it is supposed that n + m, 1x1 2 c, b,, c, -+ m. In 
particular, saying "uniformly in x, ex E A we also mean that 1x1 2 c, b,, n a. 

Proof of Theorem 1. It should be noted that the proof follows the 
general scheme given in A. Nagaev and Zaigraev [I31 (see also A. Nagaev 
C 1011. 

It is worth beginning with two relations playing a crucial role in the proof. 
Let p E Pi,k, and lul = o (1x1) as 1x1 + cn. Then 

uniformly in x, ex E E,, while 

uniformly in x, ex 4 E. Here f (x) g (x) and f (x) = g (x) mean, respectively, 
that 

f (x)/g (x) -, 1 as 1x1 + o~ and 0 < lim inf f (#g (x) < lirn sup f (x)/g (x) < co . 
Ixl-+m Ix1-m 

Let yn + a as n 4 a. Consider the events 

A0 = {(ti, ex) < yn, j = 1, .. ., n), 

We choose y,, so that b, = o(y,) while y, = ~(1x1). It is easily seen that y, = 
Ixl(b J l ~ l ) ~  with q ~ ( 0 ,  1) satisfies these requirements. In contrast to the men- 
tioned papers, here we have to be more careful when choosing the truncation 
level. 

Obviously, p, (x) can be represented in the form 

(10) Pn = Pno + nPn 1 (XI + Pnz (x) 1 

where 

pnj(x)= lim IAl- lP(x<S,<x+~,Aj) ,  j = 0 , 1 , 2 ,  
IAl+'J 

and < (<) means the componentwise ordering. It should be noted that p,, (x) 
and pa, (x) are estimated, in essence, as in A. Nagaev and Zaigraev [13] while 
all the alterations concern the estimation of p,,(x). 

Let f be a random vector having density 
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Note that' due to (7) and the choice of y, we have 

(12) nP((<, ex) 2 yn) = O(nr,(y,)) = o(l).  

LEMMA 1. Under the conditions of Theorem 1, for any k 2 1 

uniformly in e E Sdpl, where l(t) varies slowly at [nJinity. 

Proof .  First, consider the case k = 1. For orc(1, 2) 

- ~ ~ ~ ( ~ , i ) ~ ( u ) d u = -  f (u,e)p(u)du 
<w> <Y. <u.e>  BY^ 

yields 

l ~ ( r , e > l = O (  5 <~,e)p(u)du) .  
(u,e) 

After performing a change of variables u = Tv, where Tis an orthogonal 
transformation such that u ,  = (u, e), we get 

The next change of variables v2 = v ,  yl, . . . , vd = vl  yd-,, fixed a,, implies 

where 9 = (1, y)', y E R~- ' ,  and the function I(t) varies slowly at infinity. The- 
refore, 

m 

J < ~ , e ) ~ ( u ) d u = O ( J r a t t ) d t )  
<w) Byn Y n 

and 

Yn 

uniformly in e E Sd - l . 
The same relation holds in the case U E  (0, 1). Indeed, in a similar manner 

we obtain 

For k > 1 in both cases we get 

The lemma is proved. 
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Keeping in mind representation ( lo ) ,  we divide the proof of Theo- 
rem 1 into three parts. 

LEMMA 2. Under the conditions of Theorem 1, for any E > 0 

and 
P n l b )  lim sup sup- = 0. 

n-+ m 1x1 3c.b, e,#E 'Y ( I x I )  

proof .  Let rl, f2 ,  ... be i.i.d. random vectors having density (11) and let 
us put S", = & + . . . + f,. Let pn(x) be the density of S",. By definition, 

where B = { U E  Rd: ( u ,  e x )  < 1x1- y,). In view of (12), we obtain 

If n is sufficiently large, then we can partition 3 into 

For e , ~  E,, due to (B), 

(15) P n - I  ~ ~ ) P ( x - ~ ) ~ ~ = P ( I ~ - I I  < ~ n ) ~ ( x ) ( l + o ( l ) ) ,  
Br 

while for ex$ E in view of (9) we get 

On the other hand, 

It remains to establish the relation 

which follows from 

due to (12), (14) and the fact that P(IS,I 2 y,) + 0 since b, = o(y,). 
Then the assertion of the lemma follows from (13H18).  

LEMMA 3. Under the conditions of Theorem 1 ,  

pnz (x) = o (nr (1x1)) uniformly in x. 



332 A. Zaigraev 

Proof, By definition, 

Pnz (XI n j p(u)du j P ~ - ~ ( ~ - u - v ) P ~ v ) ~ v .  
<u,e,> 2 yn ( v , ~ x >  3Yn 

Clearly, 

j P . - ~ ( X - ~ - V ) P ( V ) ~ ~  = O(ry(~n)). 
(v.ex) ayn 

Therefore, in view of (7), 

~ , z  (4 = 0 (n2 rr, (Y,) P ((t, ex) 2 Y,)) = 0 (n2 ry (Y,) r, (Y,)) = o (nr, (1x1)) 

if we choose q ~ ( 0 ,  (7 +a)-' a). The lemma is proved. 

LEMMA 4. Under the conditions of Theorem 1, 

Proof. Consider the moment generating function 

f (3) = 1 exp (s <u, ex)) P (4 du. 
<usex)  <Y, 

Let 5 (s), (s), t2 (s), . . , be i.i.d. random vectors having density 

pslu) = otherwise. 

Denote by ppl(x) the density of t, (s)+ . .. +&,(s). It is easily seen that 

and, in particular, 

Let us set s = y; '. Obviously, sb, -, 0 and s 1x1 + oo. 
We will prove that 

119) 
and 

(20) sup pt) (u) = 0 (b, "). 
U 

If (19) and (20) hold, then the lemma follows since 

pno (x) = 0 (b; exp ( y; ' I XI)) = o (nr (1x1)) uniformly in x . 

Let us write 
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By (71, f, (s) = 1 + o (n-l). Furthermore, in view of Lemma 1 we obtain 

(21) If, (s)l G I lexpb (u ,  ex)) - l l  P (4 du 
<u,ex) <yn 

and (19) follows. 
It remains to prove (20). Let 4,(t) and #( t )  be the characteristic functions 

of t(s) and t, respectively. From (12) and (21) it follows that 

# (t) 4 ( I  = ( f  ( )  ei<uv'' exp (s (u ,  ex)) p (u) du - J ei{'gr> p (u) dul 
<u,e=) <Y, R d 

= 0 (1 J ei<'J' (exp (s {u, ex)) - 1) p (u) du - e'{"*'' p (u) dul) 
{u.e,) < Y, (u,e,>>y. 

uniformly in t E Rd. Therefore, 

uniformly in t E R ~ ,  where sup, lw,(t)l+ 0, n -t a. 
By definition, supup(u) < oo. Hence JRdlc$(t)rdt < coy n 3 2 Moreover, 

under the above choice of s we have supup,(u) < oo, that is jRdl#,(t)lndt < oo, 
n 2 2. Due to (22) and the inversion formula, we obtain 

sup p?' (u) = O( j I#s(t)lndt) = O( j 14 (t)ln dt) = O(bid  i I #  (bh t)lndt). 
u Rd Rd Rd 

Let g*(u) be the symmetrization of g(u) (see (3)), that is 

By Plancherel's equality and the classical local limit theorem, 

Since b;' b2, + 211", the lemma follows. 
The assertions of Theorem 1 follow immediately from (10) and Lemmas 2-4. 

Proof  of Theorem 2. Let A,, A, and A, be as above. In view of Lem- 
mas 3 and 4, for any event A' we obtain 

P(x<Sn<x+A;Aj;Af)  pnj(x) 
lim <- j = 0,2. 

IAI -o  P ( x < S , < x + d )  pn ( 4  ? 
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On the other hand, from the proof of Lemma 2 it follows that 

uniformly in x, ex€&. The last relation uses arguments similar to those ap- 
plied for establishing (18). Theorem 2 follows easily from (23) and (24). 

. Addd in proof. In this paper we dealt with so-called precise asymptotic of 
PIS, E A). Another class of problems within the large deviations theory unites 
those related to the asymptotic expression of In P ( S , E  A) which is called 
a rough asymptotic expression. It is worth noting that such expressions can be 
established under rather general conditions, e.g, for random variables taking 
values in various idmite-dimensional spaces, for dependent random variables, 
etc. The present state of the work in this direction can be found in Deuschel 
and Stroock [28], Dembo and Zeitouni [27]. Characterization of stable laws 
and their domains of attraction in Banach spaces are given e.g. in Jurek and 
Urbanik [29], Araujo and Gine [26j. 

Acknowledgements. The author would like to thank A. V. Nagaev, who 
initiated the research, as well as T. Mikosch and the referee for a careful reading 
of the paper and valuable comments. 

REFERENCES 

[I] A. Ales kjavi  Eene, Limit theorems for large deviations (in Russian), Litovsk. Mat. Sb. 2 (2) 
(1962), pp. 5-13. 

[2] L. A. Anor ina  and A. V. Nagaev, An integral limit theorem for sums of independent two- 
dimensional random vectors with allowance for large deuiations in the case when Cramer's 
condition is not sati.$ed (in Russian), in: Stochastic Processes and Related Problems 2, "Fan", 
Tashkent 1971, pp. 3-11. 

[3] B. von Bahr, Multi-dimensional integral limit theorems for large deviations, Ark. Mat. 7 (1967), 
pp. 89-99. 

[43 A. A. Borovkov and B. A. Rogozin, On the central limit theorem in the higher-dimensional 
case (in Russian), Teor. Veroyatnost i Primenen. 10 (1) (1965), pp. 61-69. 

[5] C. C. He yde, On large deviation problems for sums ofrandom variables which are not attracted 
to the normal law, Ann. Math. Statist. 38 (1968), pp. 1575-1578. 

[6] N- 3. Kalinauskaite,  The influence of the maximum modulus of a summand on a sum of 
independent random vectors. I (in Russian), Litovsk. Mat. Sb. 13 (4) (1973), pp. 117-123. 

[7] - Attraction to stable laws of LdvyFeldheim type (in Russian), ibidem 14 (3) (19741, 
pp. 93-105. 

181 L. V. Kim and A. V. Nagaev, The nonsymmetric problem of large deviations (in Russian), 
Teor. Veroyatnost. i Primenen. 20 (1) (1975), pp. 58-68. 

[9] A. V. Nagaev, Limit theorems for sums of independent two-dimensional rondom vectors (in 
Russian), in: Limit Theorems and Statistical inference, "Fan", Tashkent 1966, pp. 67-82. 

[lo] - Limit theorems inrrolving large deviations when Cramer's condition is violated (in Russian), 
Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 6 (1969), pp. 17-22. 



Multivariate large deviations with stable limit laws 335 

[ll] - Some limit theorems of renewal theory (in Russian), Teor. Veroyatnost. i Primenen. 20 (2) 
(1975), pp. 332-344. 

[I21 - and S. K. Sakojan ,  Limit theorems in Rk that take into account large deviations (in 
Russian), Dokl. Akad. Nauk SSSR 204 (1972), pp. 554-556. 

[I31 A. V. Nagaev and A. Yu. Zaigraev, Multidimensional limit theorems allowing large devia- 
tions for densities of regular variation, 3. Multivariate Anal. 67 (19981, pp. 385-397, 

[14] S. V. Nagaev, Large deviations cfsrsms of independent random uariables, Ann. Probab. 7 (5) 
(19791, pp. 745-789. 

[I51 L. V. Osipov, On large deviations for sums ojrandom vectors in Rk, J. Multivariate Anal. 11 
(2) (1981), pp. 115-126. 

El61 I. F. Pinelis, A problern of large deviations in a space of trajectories (in Russian), Teor. 
Veroya_tnost. i Primenen. 26 (1) (1981), pp. 73-87. 

f 171 S. Respick, Extreme Values, Regular Variation, and Point Processes, Springer, New York 
1987. 

[la] L. V. Rozo vs k i t  On probabilities of large deviations in some classes of k-dimensional Bore1 
sets, J. Multivariate Anal. 17 (1) (1985), pp. 1-26. 

[19] - Large deviation probabilities for sums of independent random variables with common 
distributionjkom the domain of attraction of nonsymmetrie stable law (in Russian), Teor. Vero- 
yatnost. i Primenen. 42 (3) (1997), pp. 496-530. 

[20] E. L. RvaEeva, On domuins ofattraction of mu~tidinaensio~l distributions (in Russian), L'vov. 
Gos. Univ., UE. Zap. Ser. Meh.-Mat. 29 (6) (1954), pp. 5-44, English translation: Select. 
Transl. Math. Statist. and Probability 2 (1962), pp. 183-205. 

[21 J G. Sam o rodn i t s  k y and M. S. Taqqu, Stable Non-Gaussian Random Process. Stochastic 
Models with Infinite Variance, Chapman and Hall, London 1994. 

1221 S. G. Tkaeuk,  Local limit theorems, allowing for large deviations, in the case of stable limit 
laws (in Russian), Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 27 (2) (19731, pp. 30-33. 

[23] - A theorem on large deviations in RS in case of a stable limit law (in Russian), in: Random 
Processes and Statistical Inference 5, "Fan", Tashkent 1974, pp. 164-174. 

[24] L. Vil kaus  kas, Large deviations of Linnik type in the multi-dimensional case on certain 
regions (in Russian), Litovsk. Mat. Sb. 5 (1) (1965), pp. 2543. 

[25] V. M. Zolotarev,  On a new viewpoint oflimit theorems taking into account large deviations 
(in Russian), Proc. Sixth AU-Union Conf. Theory Probab. and Math. Statist., Vilnius 1960, 
pp. 43-47. 

[26] A. Arau jo  and E. Gine, The Central Limit Theorem for Real and Banach Valued Random 
Variables, Wiley, New York 1980. 

[27l A. Dem b o  and 0. Zei t ouni, Large Deviations Techniques and Applications, Springer, New 
York 1998. 

[28] J. D. Deuschel  and D. W. Stroock,  Large Deviations, Academic Press, Boston 1989. 
[29] Z. J u r e k and K. U r b a n  i k, Remarks on stable measures on Banach spaces, Colloq. Math. 38 

(2) (1978), pp. 269-276. 

Faculty of Mathematics and Informatics 
Nicholas Copernicus University 
ul. Chopina 12/18, 87-100 T o m i  Poland 
E-mail: alzaig@mat.uni.torun.pl 

Received on 26.1 0.1998 




