ON BOUNDEDNESS AND CONVERGENCE OF SOME BANACH SPACE VALUED RANDOM SERIES

BY

RAFAL SZTENCEL (WARSZAWA)

Abstract. Let $\left(f_{i}\right)$ and $\left(g_{i}\right)$ be sequences of independent symmetric random variables and $\left(x_{i}\right)$ a sequence of elements from a Banach space. We prove that under certain assumptions the a.s. boundedness of the series $\sum x_{i} f_{i}$ inplies the a.s. convergence of $\sum x_{i} g_{i}$ in every Banach space.

If f_{i} are identically distributed, $\mathrm{E}\left|f_{i}\right|$ is finite, g_{i} are identically distributed and non-degenerate, then the above implication fails in c_{0}.

If f_{i} are equidistributed and there is a sequence $\left(a_{n}\right)$ such that

$$
a_{n}^{-1} \sum_{i=1}^{n}\left|f_{i}\right| \rightarrow 1 \text { in probability }
$$

then there is a sequence $\left(x_{i}\right)$ in c_{0} such that $\sum x_{i} f_{i}$ is a.s. bounded, but does not converge a.s.

In particular, if f_{i} are p-stable with $E e^{i u f_{n}}=e^{-| |^{p}}$, then for $p<1$ the a.s. boundedness of the series implies its a.s. convergence, but for $p \geqslant 1$ it fails.

The origin of this paper is the following Garling's question:
Let $\left(\eta_{i}\right)_{i \in N}$ be a sequence of p-stable random variables (r.v.) with characteristic function $e^{-|t|^{p}}, p \in(0,2)$, and $\left(x_{i}\right)$ a sequence in a Banach space E. If the series $\sum_{i \in N} \eta_{i} x_{i}$ is a.s. bounded, then is it a.s. convergent?

Some general results are obtained; it turns out that the answer is positive for $p \in(0,1)$ and negative for $p \in[1,2)$.

1. Prelininaries. We begin with some known facts.
1.1. Definition. Let $\left(\varrho_{i}\right)$ and $\left(\xi_{i}\right)$ be two sequences of independent symmetric real-valued r.v. The sequence $\left(\varrho_{i}\right)$ is dominated by $\left(\xi_{i}\right)$ if there exist constants K and L such that for every t and i.

$$
P\left(\left|\varrho_{i}\right|>t\right) \leqslant K P\left(L\left|\xi_{i}\right|>t\right)
$$

The forthcoming theorem is an easy corollary to a result stated in [3]. The proof in the sequel with a better constant than in [3] is due to S. Kwapień and seems to be new.
1.2. Theorem. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent symmetric E-valued r.v. Then for every $t \in R$

$$
P\left(\left\|\sum_{i=1}^{n} a_{i} X_{i}\right\|>t\right) \leqslant 2 P\left(\max _{i}\left|a_{i}\right|\left\|\sum_{i=1}^{n} X_{i}\right\|>t\right)
$$

Proof. We can assume that $0 \leqslant a_{1} \leqslant \ldots \leqslant a_{n}=1$. Put $a_{0}=0$, $b_{k}=a_{k}-a_{k-1}$ for $k=1,2, \ldots, n, S_{k}=\sum_{i=k}^{n} X_{i}$. Then

$$
\sum_{i=1}^{n} a_{i} X_{i}=\sum_{k=1}^{n} b_{k} S_{k}, \quad \sum_{k=1}^{n} b_{k}=1
$$

Consequently, if $\left\|\sum_{i=1}^{n} a_{i} X_{i}\right\|>t$, then $\max _{k}\left\|S_{k}\right\|>t$. Therefore we have

$$
P\left(\left\|\sum_{i=1}^{n} a_{i} X_{i}\right\|>t\right) \leqslant P\left(\max _{k}\left\|S_{k}\right\|>t\right) \leqslant 2 P\left(\left\|S_{1}\right\|>t\right)
$$

which completes the proof.
1.3. Theorem (E. Rychlik, oral communication). If $\left(\varrho_{i}\right)$ is dominated by $\left(\xi_{i}\right)$ with constants K and L, where $K \in N$, then for every $x_{1}, x_{2}, \ldots, x_{n} \in E$ and $t \in R$

$$
P\left(\left\|\sum_{i \leqslant n} \varrho_{i} x_{i}\right\|>t\right) \leqslant 2 K P\left(K L\left\|\sum_{i \leqslant n} \xi_{i} x_{i}\right\|>t\right)
$$

Proof. We may assume without loss of generality that $L=1$. Let $\psi_{i}^{k}(i=1,2, \ldots, n ; k=1,2, \ldots, K)$ be r.v. such that
(i) $P\left(\dot{\psi}_{i}^{k}=1\right)=1-P\left(\psi_{i}^{k}=0\right)=1 / K$,
(ii) $\psi_{i}^{1}+\ldots+\psi_{i}^{K}=1$ for $i=1,2, \ldots, n$,
(iii) $\psi_{1}^{k}, \ldots, \psi_{n}^{k}, \varrho_{1}, \ldots, \varrho_{n}$ are independent for fixed k.

We prove that
$P\left(\left\|\sum_{i}^{\prime} \varrho_{i} x_{i}\right\|>t\right) \leqslant K P\left(K\left\|\sum_{i} \varrho_{i} \psi_{i}^{1} x_{i}\right\|>t\right) \leqslant 2 K P\left(K\left\|\sum_{i} \xi_{i} x_{i}\right\|>t\right)$.
The first inequality can be rewritten in the form
(*) $\quad P\left(\left\|\sum_{i} \varrho_{i} \psi_{i}^{1} x_{i}+\ldots+\sum_{i} \varrho_{i} \psi_{i}^{K} x_{i}\right\|>t\right) \leqslant \sum_{j=1}^{K} P\left(\left\|\sum_{i} \varrho_{i} \psi_{i}^{j} x_{i}\right\|>\frac{t}{K}\right)$.
Now it is obvious that if the event on the left-hand side takes place, then some of K events on the right-hand side must take place. Therefore (*) holds.

The second inequality is a consequence of 1.1. We prove that

$$
P\left(\left\|\sum_{i} \varrho_{i} \psi_{i}^{1} x_{i}\right\|>t\right) \leqslant 2 P\left(\left\|\sum_{i} \xi_{i} x_{i}\right\|>t\right) .
$$

We have

$$
P\left(\left|\varrho_{i} \psi_{i}^{1}\right|>t\right)=\frac{1}{K} P\left(\left|\varrho_{i}\right|>t\right) \leqslant P\left(\left|\xi_{i}\right|>t\right) .
$$

Then it is not hard to see that there are r.v. φ_{i}^{\prime} and ξ_{i}^{\prime} on a probability space ($\Omega^{\prime}, \mathscr{F}^{\prime}, P^{\prime}$) such that
(i) $\left|\varphi_{i}^{\prime}\right| \leqslant 1$,
(ii) the sequences $\left(\xi_{i}\right)_{i \leqslant n}$ and $\left(\xi_{i}^{\prime}\right)_{i \leqslant n}$ are identically distributed,
(iii) the sequences $\left(\varphi_{i}^{\prime} \xi_{i}^{n}\right)_{\leqslant n}$ and $\left(e_{i} \psi_{i}^{1}\right)_{i \leqslant n}$ are identically distributed.

Let $\left.\left(\varepsilon_{i}\right)\right)_{\leqslant n}$ be a Bernoulli sequence on a probability space ($\left.\Omega^{\prime \prime}, \mathscr{F}^{\prime \prime}, P^{\prime \prime}\right)$. Then

$$
\begin{aligned}
P\left(\left\|\sum_{i} \varrho_{i} \psi_{i}^{1} x_{i}\right\|>t\right) & =P\left(\left\|\sum_{i} \varphi_{i}^{\prime} \varepsilon_{i} \xi_{i}^{\prime} x_{i}\right\|>t\right)=P^{\prime} \times P^{\prime \prime}\left(\left\|\sum_{i} \varphi_{i}^{\prime} \varepsilon_{i} \xi_{i}^{\prime} x_{i}\right\|>t\right) \\
& \leqslant 2 P^{\prime} \times P^{\prime \prime}\left(\max _{i} \mid \varphi_{i}^{\prime}\left\|\sum_{i} \varepsilon_{i} \xi_{i} x_{i}\right\|>t\right) \leqslant 2 P\left(\left\|\sum_{i} \xi_{i} x_{i}\right\|>t\right) .
\end{aligned}
$$

The proof is completed.
As a simple consequence we obtain
1.4. Theorem (Jain and Marcus [2]). If $\left(\varphi_{i}\right)$ is dominated by $\left(\xi_{i}\right),\left(x_{i}\right) \subset E$, then the convergence of $\sum \xi_{i} x_{i}$ in L^{p} for some $p \in[0, \infty)$ implies the convergence of $\sum \varrho_{i} x_{i}$ in L^{p}.
1.5. Remark. If $\left(\varrho_{i}\right)$ and $\left(\xi_{i}\right)$ are sequences of i.i.d. r.v. and the assertion of Theorem 1.4 holds for $p=0$ and every Banach space E, then $\left(e_{i}\right)$ is dominated by $\left(\xi_{i}\right)$.

2. The main result.

2.1. Theorem. Assume that $\left(\varrho_{i}\right)$ and $\left(\xi_{i}\right)$ satisfy the following assumptions:
(i) ϱ_{i}) is dominated by $\left(\xi_{i}\right)$,
(ii) for every $\alpha>0$ there exist constants, K and L such that (i) holds and $K L<\alpha$.

Then for every Banach space E and $\left(x_{i}\right) \subset E$ the a.s. boundedness of $\sum \xi_{i} x_{i}$ implies the a.s. convergence of $\sum g_{i} x_{i}$.

Proof. Suppose that $\sum \varrho_{i} x_{i}$ does not converge a.s.; then it does not converge in probability. So we can find $\alpha>0$ and $n_{1}<m_{1}<n_{2}<m_{2}<\ldots$ such that $P\left(\left\|\sum_{n_{k} \leqslant i \leqslant m_{k}} \varrho_{i} x_{i}\right\|>\alpha\right)>\alpha$. Put

$$
\begin{gathered}
U_{k}^{o}=\left\|\sum_{n_{k} \leq i \leqslant m_{k}} \varrho_{i} x_{i}\right\|, \quad U_{k}^{\xi}=\left\|\sum_{n_{k} \leqslant i \leqslant m_{k}} \xi_{i} x_{i}\right\|, \\
S_{n}=\sum_{i \leqslant n} \xi_{i} x_{i}, \quad M=\sup _{n}\left\|S_{n}\right\| .
\end{gathered}
$$

Note that $\sup _{k} U_{k}^{t} \leqslant 2 M$. Since $M<\infty$ a.s., there is λ such that $P(2 M \leqslant \lambda)>0$. Hence

$$
0<P(2 M \leqslant \lambda) \leqslant P\left(\sup _{k} U_{k}^{\xi} \leqslant \lambda\right)=\prod_{k=1}^{\infty}\left(1-P\left(U_{k}^{\xi}>\lambda\right)\right)
$$

Therefore $\sum_{k} P\left(U_{k}^{\xi}>\lambda\right)<\infty$. By assumptions, (i) holds with K and L such that $\alpha / K L>\lambda$. It is easy to see that K can be chosen to be natural. Then 1.3 yields

$$
\alpha<P\left(U_{k}^{\varrho}>\alpha\right) \leqslant 2 K P\left(K L U_{k}^{\xi}>\alpha\right) \leqslant 2 K P\left(U_{k}^{\xi}>\lambda\right) .
$$

But $P\left(U_{k}^{\xi}>\lambda\right) \rightarrow 0$ as $k \rightarrow \infty$, a contradiction. This completes the proof.
2.2. Remark. One can prove the following converse:

If $\left(\varrho_{i}\right)$ and $\left(\xi_{i}\right)$ are sequences of i.i.d. r.v. and the assertion of Theorem 2.1 holds, then for every $L>0$ there exists a constant K such that for every t and i

$$
P\left(\left|\varrho_{i}\right|>t\right) \leqslant K P\left(L\left|\xi_{i}\right|>t\right) .
$$

2.3. Corollary. Let $\eta, \eta_{1}, \eta_{2}, \ldots$ be i.i.d. symmetric r.v. such that $P(|\eta|>t) \sim t^{-p}$ for $t \rightarrow \infty, p \in(0,1)$, e.g. p-stable r.v. Let $\left(x_{i}\right) \subset E$. Then the a.s. boundedness of the series $\sum \eta_{i} x_{i}$ implies its a.s. convergence.

Proof. Fix t_{0} such that for $t>t_{0}$ and for some C

$$
\frac{1}{C} t^{-p} \leqslant P(|\eta|>t) \leqslant C t^{-p}
$$

If $0<L \leqslant 1$, then for $t>t_{0}$ we have $C^{-1} L^{p} t^{-p} \leqslant P(L|\eta|>t)$, whence

$$
C^{2} L^{-p} P(L|\eta|>t) \geqslant C t^{-p} \geqslant P(|\eta|>t) .
$$

So it suffices to take K such that $K \geqslant C^{2} L^{-p}$ and $K P\left(L|\eta|>t_{0}\right) \geqslant 1$, e.g.

$$
K=\left[\max \left(C^{2}, C^{-1} \dot{t}_{0}^{p}\right) L^{-p}\right]+1
$$

Then $K L \sim L^{1-p}$, whence $K L$ can be made arbitrarily small, which completes the proof.

The following theorem answers Garling's problem in the negative for $p \in(1,2)$.
2.4. Theorem. Let $\xi, \xi_{1}, \xi_{2}, \ldots$ be i.i.d. symmetric r.v. and let $\varrho, \varrho_{1}, \varrho_{2}, \ldots$ be i.i.d. symmetric with $P(\varrho=0)<1$. If $\mathrm{E}|\xi|<\infty$, then there are a Banach space E and a sequence $\left(x_{i}\right) \subset E$ such that $\sum \xi_{i} x_{i}$ is a.s. bounded but $\sum \varrho_{i} x_{i}$ is not a.s. convergent.

Proof. Assume $\mathrm{E}|\xi|=1$ and put

$$
q_{n}=P\left(\frac{1}{n} \sum_{i=1}^{n}\left|\xi_{i}\right|>2\right)
$$

By the weak law of large numbers we have $q_{n} \rightarrow 0$, so we can choose $n_{1}<n_{2}<\ldots$ such that

$$
\sum_{i} q_{n_{i}} \leqslant \frac{1}{4} .
$$

Put $m_{i}=n_{1}+\ldots+n_{i}$ and let $E=\left(l_{n_{1}}^{1} \times l_{n_{2}}^{1} \times \ldots\right)_{c_{0}}$ be the set of all sequences $\left(a_{i}\right)$ such that

$$
\sum_{m_{k-1}<i \leqslant m_{k}}\left|a_{i}\right| \rightarrow 0 \quad \text { and } \quad\left\|\left(a_{i}\right)\right\|=\sup _{k} \sum_{m_{k}-1<i \leqslant m_{k}}\left|a_{i}\right| .
$$

Note that E is isometric to a subspace of $c_{0}{ }^{\circ}$. Put $x_{k}=\left(1 / n_{i}\right) e_{k}$ for $m_{i-1}<k \leqslant m_{i}$, where $\cdot e_{k}$ is the k-th unit vector. If (ε_{i}) is a Bernoulli sequence, then $\sum \varepsilon_{i} x_{i}$ does not converge a.s. because

$$
\left\|\sum_{m_{i-1}<k \leqslant m_{i}} \varepsilon_{k} x_{k}\right\|=1 .
$$

Hence, by Theorem 1.4, $\sum \varrho_{i} x_{i}$ does not converge a.s. It remains to show that $\sum \xi_{i} x_{i}$ is a.s. bounded. Let S_{n} be the n-th partial sum, $M=\sup \left\|S_{n}\right\|$. Then we have

$$
\begin{aligned}
P\left(\sup _{i \leqslant k}\left\|S_{i}\right\|>2\right) & \leqslant P\left(\sup _{i \leqslant m_{k}}\left\|S_{i}\right\|>2\right) \leqslant 2 P\left(\left\|S_{m_{k}}\right\|>2\right) \\
& =2 P\left(\left(\frac{1}{n_{1}} \sum_{i \leqslant n_{1}}\left|\xi_{i}\right|>2\right) \cup \ldots \cup\left(\frac{1}{n_{k}} \sum_{m_{k-1}<i \leqslant m_{k}}\left|\xi_{i}\right|>2\right)\right) \\
& \leqslant 2 \sum_{i} q_{n_{i}} \leqslant \frac{1}{2} .
\end{aligned}
$$

Hence $P(M>2) \leqslant \frac{1}{2}$, and then $P(M<\infty)=1$. This completes the proof.

The following theorem gives a negative answer to Garling's question for $p=1$.
2.5. Theorem. Let $\xi, \xi_{1}, \xi_{2}, \ldots$ be i.i.d. symmetric r.v. such that

$$
\begin{equation*}
\frac{\mathrm{E}|\xi| \cdot I_{[|\xi| \leq t)}}{t P(|\xi|>t)} \rightarrow \infty \quad \text { as } t \rightarrow \infty \tag{**}
\end{equation*}
$$

Then there are a Banach space E and a sequence $\left(x_{i}\right) \subset E$ such that $\sum \xi_{i} x_{i}$ is a.s. bounded but does not converge a.s.

Proof. If $(* *)$ holds, then there is $\left(a_{n}\right)_{n \in N}$ such that

$$
\frac{1}{a_{n}} \sum_{i \leqslant n}\left|\xi_{i}\right| \rightarrow 1 \text { in probability }
$$

(cf. [1]). Let E be as in the proof of Theorem 2.4. Further reasoning is quite similar: put

$$
q_{n}=P\left(\frac{1}{a_{n}} \sum_{i \leqslant n}\left|\xi_{i}\right|>2\right),
$$

choose $n_{1}<n_{2}<\cdots$ such that $\sum_{i} q_{n_{i}} \leqslant \frac{1}{4}$, and put $x_{k}=\left(1 / a_{n_{i}}\right) e_{k}$ for $m_{i-1}<k \leqslant m_{i}$. It is clear that $\sum \xi_{i} x_{i}$ is a.s. bounded, but does not converge a.s. since

$$
P\left(\left\|\sum_{m_{i-1}<k \leqslant m_{i}} \xi_{k} x_{k}\right\|>\frac{1}{2}\right) \rightarrow 1 \quad \text { as } i \rightarrow \infty .
$$

This completes the proof.
2.6. Remark. The a.s. boundedness of $\sum \xi_{i} x_{i}$, where ξ_{i} are 1 -stable r.v., implies the convergence of $\sum \varepsilon_{i} x_{i}$, which is in contrast with the case of $p>1$.

The author wishes to thank S. Kwapien for stimulating discussions.
Added in proof. Let $\left(X_{i}\right)$ be a sequence of independent E-valued r.v. and $\left(\theta_{i}\right)$ i.i.d. real r.v. Assume that for every i and $\varepsilon>0$ there are $y_{1}, \ldots, y_{k} \in E$ such that

$$
d\left(\mathscr{L}\left(X_{i}\right), \mathscr{L}\left(\sum_{j \leqslant k} \theta_{j} y_{j}\right)\right)<\varepsilon
$$

where d is the Prokhorov distance. If the a.s. boundedness of $\sum x_{i} \theta_{i}$ implies its a.s. convergence, the same holds for $\sum X_{i}$. Typical examples are p-stable or semistable symmetric r.v. if $p<1$.

REFERENCES

[1] W. Feller, An introduction to probability theory and its applications, Vol. II, New York 1966.
[2] N. C. Jain and M. B. Marcus, Integrability of infinite sums of independent vector-valued random variables, Trans. Amer. Math. Soc. 212 (1975), p. 1:36.
[3] C. Ryll-Nardzewski and W. A. Woyczyn̆ski, Bounded multiplier convergence in measure of random vector series. Proc. Amer. Math. Soc. 53 (1975), p. 96-98.

Department of Mathematics
University of Warsaw
00-901 Warszawa, PKiN, Poland

