ON BOUNDEDNESS AND CONVERGENCE OF SOME BANACH SPACE VALUED RANDOM SERIES

RAFAL SZTENCEL (WARSZAWA)

Abstract. Let (fi) and (gi) be sequences of independent symmetric random variables and (x_i) a sequence of elements from a Banach space. We prove that under certain assumptions the a.s. boundedness of the series $\sum x_i f_i$ implies the a.s. convergence of $\sum x_i g_i$ in every Banach space.

If f_i are identically distributed, $E|f_i|$ is finite, g_i are identically distributed and non-degenerate, then the above implication fails in c_0 .

If f_i are equidistributed and there is a sequence (a_n) such that

$$a_n^{-1} \sum_{i=1}^n |f_i| \to 1$$
 in probability,

then there is a sequence (x_i) in c_0 such that $\sum x_i f_i$ is a.s. bounded, but does not converge a.s.

In particular, if f_i are p-stable with $E e^{itf_n} = e^{-|t|^p}$, then for p < 1 the a.s. boundedness of the series implies its a.s. convergence, but for $p \ge 1$ it fails.

The origin of this paper is the following Garling's question:

Let $(\eta_i)_{i\in\mathbb{N}}$ be a sequence of p-stable random variables (r.v.) with characteristic function $e^{-|t|^p}$, $p \in (0, 2)$, and (x_i) a sequence in a Banach space E. If the series $\sum_{i=N} \eta_i x_i$ is a.s. bounded, then is it a.s. convergent?

Some general results are obtained; it turns out that the answer is positive for $p \in (0, 1)$ and negative for $p \in [1, 2)$.

- 1. Preliminaries. We begin with some known facts.
- 1.1. Definition. Let (ϱ_i) and (ξ_i) be two sequences of independent symmetric real-valued r.v. The sequence (ϱ_i) is dominated by (ξ_i) if there exist constants K and L such that for every t and i

$$P(|\varrho_i| > t) \leqslant KP(L|\xi_i| > t).$$

The forthcoming theorem is an easy corollary to a result stated in [3]. The proof in the sequel with a better constant than in [3] is due to S. Kwapień and seems to be new.

1.2. THEOREM. Let $X_1, X_2, ..., X_n$ be independent symmetric E-valued r.v. Then for every $t \in R$

$$P(\|\sum_{i=1}^{n} a_i X_i\| > t) \leq 2P(\max_{i} |a_i| \|\sum_{i=1}^{n} X_i\| > t).$$

Proof. We can assume that $0 \le a_1 \le ... \le a_n = 1$. Put $a_0 = 0$, $b_k = a_k - a_{k-1}$ for k = 1, 2, ..., n, $S_k = \sum_{i=k}^n X_i$. Then

$$\sum_{i=1}^{n} a_i X_i = \sum_{k=1}^{n} b_k S_k, \quad \sum_{k=1}^{n} b_k = 1.$$

Consequently, if $\left\|\sum_{i=1}^{n} a_i X_i\right\| > t$, then $\max_{k} \|S_k\| > t$. Therefore we have

$$P(\|\sum_{i=1}^{n} a_i X_i\| > t) \le P(\max_{k} \|S_k\| > t) \le 2P(\|S_1\| > t),$$

which completes the proof.

1.3. THEOREM (E. Rychlik, oral communication). If (ϱ_i) is dominated by (ξ_i) with constants K and L, where $K \in N$, then for every $x_1, x_2, ..., x_n \in E$ and $t \in R$

$$P(\|\sum_{i\leq n}\varrho_i x_i\| > t) \leq 2K P(KL \|\sum_{i\leq n}\xi_i x_i\| > t).$$

Proof. We may assume without loss of generality that L = 1. Let ψ_i^k (i = 1, 2, ..., n; k = 1, 2, ..., K) be r.v. such that

(i)
$$P(\psi_i^k = 1) = 1 - P(\psi_i^k = 0) = 1/K$$
,

(ii)
$$\psi_i^1 + ... + \psi_i^K = 1$$
 for $i = 1, 2, ..., n$,

(iii) $\psi_1^k, ..., \psi_n^k, \varrho_1, ..., \varrho_n$ are independent for fixed k.

We prove that

$$P(\|\sum_{i}'\varrho_{i}x_{i}\|>t)\leqslant KP(K\|\sum_{i}\varrho_{i}\psi_{i}^{1}x_{i}\|>t)\leqslant 2KP(K\|\sum_{i}\xi_{i}x_{i}\|>t).$$

The first inequality can be rewritten in the form

$$(*) \qquad P\left(\left\|\sum_{i}\varrho_{i}\psi_{i}^{1}x_{i}+\ldots+\sum_{i}\varrho_{i}\psi_{i}^{K}x_{i}\right\|>t\right)\leqslant \sum_{j=1}^{K}P\left(\left\|\sum_{i}\varrho_{i}\psi_{i}^{j}x_{i}\right\|>\frac{t}{K}\right).$$

Now it is obvious that if the event on the left-hand side takes place, then some of K events on the right-hand side must take place. Therefore (*) holds.

The second inequality is a consequence of 1.1. We prove that

$$P(\|\sum_{i}\varrho_{i}\psi_{i}^{1}x_{i}\|>t)\leqslant 2P(\|\sum_{i}\xi_{i}x_{i}\|>t).$$

We have

$$P(|\varrho_i\psi_i^1|>t)=\frac{1}{K}P(|\varrho_i|>t)\leqslant P(|\xi_i|>t).$$

Then it is not hard to see that there are r.v. φ'_i and ξ'_i on a probability space $(\Omega', \mathcal{F}', P')$ such that

- (i) $|\varphi_i'| \leq 1$,
- (ii) the sequences $(\xi_i)_{i \leq n}$ and $(\xi'_i)_{i \leq n}$ are identically distributed,
- (iii) the sequences $(\varphi_i'\xi_i')_{i\leq n}$ and $(\varrho_i\psi_i^1)_{i\leq n}$ are identically distributed.

Let $(\overline{\epsilon_i})_{i \leq n}$ be a Bernoulli sequence on a probability space $(\Omega'', \mathcal{F}'', P'')$. Then

$$P(\|\sum_{i} \varrho_{i} \psi_{i}^{1} x_{i}\| > t) = P(\|\sum_{i} \varphi_{i}' \varepsilon_{i} \xi_{i}' x_{i}\| > t) = P' \times P''(\|\sum_{i} \varphi_{i}' \varepsilon_{i} \xi_{i}' x_{i}\| > t)$$

$$\leq 2P' \times P''(\max_{i} ||\varphi_{i}'|\| \sum_{i} \varepsilon_{i} \xi_{i}' x_{i}\| > t) \leq 2P(\|\sum_{i} \xi_{i} x_{i}\| > t).$$

The proof is completed.

As a simple consequence we obtain

- **1.4.** THEOREM (Jain and Marcus [2]). If (ϱ_i) is dominated by (ξ_i) , $(x_i) \subset E$, then the convergence of $\sum \xi_i x_i$ in L^p for some $p \in [0, \infty)$ implies the convergence of $\sum \varrho_i x_i$ in L^p .
- 1.5. Remark. If (ϱ_i) and (ξ_i) are sequences of i.i.d. r.v. and the assertion of Theorem 1.4 holds for p=0 and every Banach space E, then (ϱ_i) is dominated by (ξ_i) .

2. The main result.

- **2.1.** THEOREM. Assume that (ϱ_i) and (ξ_i) satisfy the following assumptions:
- (i) (ϱ_i) is dominated by (ξ_i) ,
- (ii) for every $\alpha > 0$ there exist constants K and L such that (i) holds and $KL < \alpha$.

Then for every Banach space E and $(x_i) \subset E$ the a.s. boundedness of $\sum \xi_i x_i$ implies the a.s. convergence of $\sum \varrho_i x_i$.

Proof. Suppose that $\sum \varrho_i x_i$ does not converge a.s.; then it does not converge in probability. So we can find $\alpha > 0$ and $n_1 < m_1 < n_2 < m_2 < \dots$ such that $P(\|\sum_{n_k \leqslant i \leqslant m_k} \varrho_i x_i\| > \alpha) > \alpha$. Put

$$\begin{aligned} U_k^\varrho &= \big\| \sum_{n_k \leqslant i \leqslant m_k} \varrho_i \, x_i \big\|, & U_k^\xi &= \big\| \sum_{n_k \leqslant i \leqslant m_k} \xi_i \, x_i \big\|, \\ S_n &= \sum_{i \leqslant n} \xi_i \, x_i, & M &= \sup_n \|S_n\|. \end{aligned}$$

Note that $\sup_{k} U_{k}^{\xi} \leq 2M$. Since $M < \infty$ a.s., there is λ such that $P(2M \leq \lambda) > 0$. Hence

$$0 < P(2M \leq \lambda) \leq P(\sup_{k} U_{k}^{\varepsilon} \leq \lambda) = \prod_{k=1}^{\infty} (1 - P(U_{k}^{\varepsilon} > \lambda)).$$

Therefore $\sum_{k} P(U_{k}^{\xi} > \lambda) < \infty$. By assumptions, (i) holds with K and L such that $\alpha/KL > \lambda$. It is easy to see that K can be chosen to be natural. Then 1.3 yields

$$\alpha < P(U_k^o > \alpha) \leqslant 2KP(KLU_k^{\varepsilon} > \alpha) \leqslant 2KP(U_k^{\varepsilon} > \lambda).$$

But $P(U_k^{\xi} > \lambda) \to 0$ as $k \to \infty$, a contradiction. This completes the proof.

2.2. Remark. One can prove the following converse:

If (ϱ_i) and (ξ_i) are sequences of i.i.d. r.v. and the assertion of Theorem 2.1 holds, then for every L>0 there exists a constant K such that for every t and t

$$P(|\varrho_i| > t) \leq KP(L|\xi_i| > t).$$

2.3. COROLLARY. Let $\eta, \eta_1, \eta_2, \ldots$ be i.i.d. symmetric r.v. such that $P(|\eta| > t) \sim t^{-p}$ for $t \to \infty$, $p \in (0, 1)$, e.g. p-stable r.v. Let $(x_i) \subset E$. Then the a.s. boundedness of the series $\sum \eta_i x_i$ implies its a.s. convergence.

Proof. Fix t_0 such that for $t > t_0$ and for some C

$$\frac{1}{C}t^{-p}\leqslant P(|\eta|>t)\leqslant Ct^{-p}.$$

If $0 < L \le 1$, then for $t > t_0$ we have $C^{-1}L^pt^{-p} \le P(L|\eta| > t)$, whence

$$C^2 L^{-p} P(L |\eta| > t) \geqslant C t^{-p} \geqslant P(|\eta| > t).$$

So it suffices to take K such that $K \ge C^2 L^{-p}$ and $KP(L|\eta| > t_0) \ge 1$, e.g.

$$K = [\max(C^2, C^{-1}t_0^p)L^{-p}] + 1.$$

Then $KL \sim L^{1-p}$, whence KL can be made arbitrarily small, which completes the proof.

The following theorem answers Garling's problem in the negative for $p \in (1, 2)$.

2.4. THEOREM. Let $\xi, \xi_1, \xi_2, \ldots$ be i.i.d. symmetric r.v. and let $\varrho, \varrho_1, \varrho_2, \ldots$ be i.i.d. symmetric with $P(\varrho = 0) < 1$. If $E |\xi| < \infty$, then there are a Banach space E and a sequence $(x_i) \subset E$ such that $\sum \xi_i x_i$ is a.s. bounded but $\sum \varrho_i x_i$ is not a.s. convergent.

Proof. Assume $E|\xi| = 1$ and put

$$q_n = P\left(\frac{1}{n}\sum_{i=1}^n |\xi_i| > 2\right).$$

By the weak law of large numbers we have $q_n \to 0$, so we can choose $n_1 < n_2 < \dots$ such that

$$\sum_i q_{n_i} \leqslant \frac{1}{4}.$$

Put $m_i = n_1 + ... + n_i$ and let $E = (l_{n_1}^1 \times l_{n_2}^1 \times ...)_{c_0}$ be the set of all sequences (a_i) such that

$$\sum_{m_{k-1} < i \le m_k} |a_i| \to 0 \quad \text{and} \quad \|(a_i)\| = \sup_{k} \sum_{m_{k-1} < i \le m_k} |a_i|.$$

Note that E is isometric to a subspace of c_0 . Put $x_k = (1/n_i)e_k$ for $m_{i-1} < k \le m_i$, where e_k is the k-th unit vector. If (ε_i) is a Bernoulli sequence, then $\sum \varepsilon_i x_i$ does not converge a.s. because

$$\left\| \sum_{m_{i-1} < k \leq m_i} \varepsilon_k x_k \right\| = 1.$$

Hence, by Theorem 1.4, $\sum \varrho_i x_i$ does not converge a.s. It remains to show that $\sum \xi_i x_i$ is a.s. bounded. Let S_n be the *n*-th partial sum, $M = \sup_n \|S_n\|$. Then we have

$$P(\sup_{i \leq k} ||S_i|| > 2) \leq P(\sup_{i \leq m_k} ||S_i|| > 2) \leq 2P(||S_{m_k}|| > 2)$$

$$= 2P\left(\left(\frac{1}{n_1} \sum_{i \leq n_1} |\xi_i| > 2\right) \cup ... \cup \left(\frac{1}{n_k} \sum_{m_{k-1} < i \leq m_k} |\xi_i| > 2\right)\right)$$

$$\leq 2 \sum_{i} q_{n_i} \leq \frac{1}{2}.$$

Hence $P(M > 2) \le \frac{1}{2}$, and then $P(M < \infty) = 1$. This completes the proof.

The following theorem gives a negative answer to Garling's question for p = 1.

2.5. Theorem. Let $\xi, \xi_1, \xi_2, \ldots$ be i.i.d. symmetric r.v. such that

$$\frac{\mathrm{E}\,|\xi|\cdot I_{\{|\xi|\leqslant t\}}}{t\,P(|\xi|>t)}\to\infty\qquad\text{as }t\to\infty.$$

Then there are a Banach space E and a sequence $(x_i) \subset E$ such that $\sum \xi_i x_i$ is a.s. bounded but does not converge a.s.

Proof. If (**) holds, then there is $(a_n)_{n\in\mathbb{N}}$ such that

$$\frac{1}{a_n} \sum_{i \le n} |\xi_i| \to 1 \text{ in probability}$$

(cf. [1]). Let E be as in the proof of Theorem 2.4. Further reasoning is quite similar: put

$$q_n = P\left(\frac{1}{a_n} \sum_{i \leq n} |\xi_i| > 2\right),\,$$

choose $n_1 < n_2 < \dots$ such that $\sum_i q_{n_i} \leqslant \frac{1}{4}$, and put $x_k = (1/a_{n_i})e_k$ for $m_{i-1} < k \leqslant m_i$. It is clear that $\sum_i \xi_i x_i$ is a.s. bounded, but does not converge a.s. since

$$P(\|\sum_{m_{i-1} < k \le m_i} \xi_k x_k \| > \frac{1}{2}) \to 1 \quad \text{as } i \to \infty.$$

This completes the proof.

2.6. Remark. The a.s. boundedness of $\sum \xi_i x_i$, where ξ_i are 1-stable r.v., implies the convergence of $\sum \varepsilon_i x_i$, which is in contrast with the case of p > 1.

The author wishes to thank S. Kwapień for stimulating discussions.

Added in proof. Let (X_i) be a sequence of independent E-valued r.v. and (θ_i) i.i.d. real r.v. Assume that for every i and $\varepsilon > 0$ there are $y_1, \ldots, y_k \in E$ such that

$$d\left(\mathcal{L}(X_i), \mathcal{L}\left(\sum_{j \leq k} \theta_j y_j\right)\right) < \varepsilon,$$

where d is the Prokhorov distance. If the a.s. boundedness of $\sum x_i \theta_i$ implies its a.s. convergence, the same holds for $\sum X_i$. Typical examples are p-stable or semistable symmetric r.v. if p < 1.

REFERENCES

- [1] W. Feller, An introduction to probability theory and its applications, Vol. II, New York 1966.
- [2] N. C. Jain and M. B. Marcus, Integrability of infinite sums of independent vector-valued random variables, Trans. Amer. Math. Soc. 212 (1975), p. 1-36.
- [3] C. Ryll-Nardzewski and W. A. Woyczyński, Bounded multiplier convergence in measure of random vector series, Proc. Amer. Math. Soc. 53 (1975), p. 96-98.

Department of Mathematics University of Warsaw 00-901 Warszawa, PKiN, Poland

Received on 5. 7. 1979