ON GL(n, \boldsymbol{R})-STABLE MEASURES

By
BOHDAN MINCER (Wroclaw)

Abstract

We give a new proof of Parthasarathy's theorem on $\operatorname{GL}(\boldsymbol{n}, \boldsymbol{R})$-stable measures.

Let \mathscr{P} be the set of all probability measures defined on Borel subsets of the n-dimensional Euclidean space \boldsymbol{R}^{n}. We denote by * the convolution operation in \mathscr{P}. Given a linear operator A and $\mu \in \mathscr{P}$, we denote by $A \mu$ the measure defined by the formula $A \mu(S)=\mu\left(A^{-1}(S)\right)$ for all Borel subsets S of R^{n}.

Let $\mathscr{G}=\operatorname{GL}(n, \mathbb{R})$ be the group of all nonsingular linear operators on \boldsymbol{R}^{n}. A probability measure μ is said to be \mathscr{G}-stable if for any $A, B \in \mathscr{G}$ there exist $C \in \mathscr{G}$ and $x \in R^{n}$ such that

$$
\begin{equation*}
A \mu * B \mu=C \mu * \delta_{x} \tag{1}
\end{equation*}
$$

where δ_{x} is the probability measure concentrated at the point x.
A measure $\dot{\mu} \in \mathscr{P}$ is said to be full if its support is not contained in any ($n-1$)-dimensional hyperplane.

The purpose of this note is to give a simple proof of the following theorem of Parthasarathy ([1] and [2], Theorem 5.6):

Theorem. The probability measures on $\mathbb{R}^{n}(n>1)$ which are \mathscr{G}-stable are precisely the full Gaussian and degenerate probability measures.

Proof. Let μ be a nondegenerate \mathscr{G}-stable measure on $\boldsymbol{R}^{n}(n>1)$. Passing if necessary to symmetrization of μ, by Cramer's theorem and by elementary properties of full measures it will be sufficient to prove that μ is full Gaussian under the additional assumption that μ is a symmetric distribution. In this case, from \mathscr{G}-stability of μ it follows that for each integer N and $A_{1}, \ldots, A_{N} \in \mathscr{G}$ there exists a $C \in \mathscr{G}$ such that

$$
\begin{equation*}
A_{1} \mu * \ldots * A_{N} \mu=C \mu \tag{2}
\end{equation*}
$$

Let M be a subspace of the smallest dimension in R^{n} for which $\mu(M)=1$. If $A \in \mathscr{G}$, then from (2) we get $A(M)+M=C(M)$ for some $C \in \mathscr{G}$. Thus $M=R^{n}$ and, consequently, μ is full.

Choose one-dimensional projectors P_{1}, \ldots, P_{n} in R^{n} such that $P_{i} P_{j}=0$ for $i \neq j(i, j=1, \ldots, n)$. For every $i(1 \leqslant i \leqslant n)$ we can find a sequence $\left\{A_{i, j}\right\}$ of operators from \mathscr{G} such that

$$
P_{i}=\lim _{j} A_{i, j}
$$

Consequently, as μ is full, applying standard arguments (see [4], p. 120-121) we obtain, by (2), the equality

$$
P_{1} \mu * \ldots * P_{n} \mu=T \mu \quad \text { for some } T \in \mathscr{G} .
$$

Hence we get

$$
\begin{equation*}
Q_{1} \mu * \ldots * Q_{n} \mu=\mu \tag{3}
\end{equation*}
$$

where $Q_{i}=T^{-1} P_{i} T(i=1, \ldots, n)$. By (2), μ is infinitely divisible and admits the Tortrat representation $\mu=\varrho * \tilde{e}(F)$, where ϱ is a symmetric Gaussian measure and $\tilde{e}(F)$ is a generalized Poisson measure with $F(\{0\})=0$ (see [3]). The uniqueness of the Tortrat representation and \mathscr{G}-stability of μ imply \mathscr{G}-stability of $\widetilde{e}(F)$. Consequently, by (3) we have $Q_{1} F(S)+\ldots+Q_{n} F(S)=F(S)$ for all Borel subsets S of $\mathbb{R}^{n} \backslash\{0\}$, which shows that

$$
\begin{equation*}
F\left(R^{n} \backslash \bigcup_{i=1}^{n} \operatorname{Im} Q_{i}\right)=0 \tag{4}
\end{equation*}
$$

where $\operatorname{Im} Q_{i}$ denotes the image of $Q_{i}(i=1, \ldots, n)$. Choose an operator A_{0} from \mathscr{G} such that

$$
\left(\bigcup_{i=1}^{n} A_{0}\left(\operatorname{Im} Q_{i}\right)\right) \cap\left(\bigcup_{i=1}^{n} \operatorname{Im} Q_{i}\right)=\{0\}
$$

Equation (2) implies that

$$
\begin{equation*}
A_{0} F+F=B_{0} F \tag{5}
\end{equation*}
$$

for some $B_{0} \in \mathscr{G}$. Put $I=\left\{i: F\left(\operatorname{Im} Q_{i}\right)>0\right\}$. From (5) we infer that, for each $i \in I, B_{0} F\left(A_{0}\left(\operatorname{Im} Q_{i}\right)\right)>0$ and $B_{0}\left(\operatorname{Im} Q_{i}\right)>0$. But, by (4), the support of $B_{0} F$ is equal to the set $\bigcup_{i \in I} B_{0}\left(\operatorname{Im} Q_{i}\right)$. Hence and from the assumption on A_{0} it follows that $I=\emptyset$ and, consequently, F is zero. Thus μ must be Gaussian and the Theorem is proved, since the converse is obvious.

REFERENCES

[1] K. R. Parthasarathy, Every completely stable distribution is normal, Sankhyā, Series A, 35 (1973), p. $35-38$.
[2] - and K. Schmidt, Stable positive functions, Trans. Amer. Math. Soc. 203 (1975), p. 161-174.
[3] A. Tortrat, Structure des lois indéfiniment divisibles dans un espace vectoriel topologique (séparé) X, Symposium on Probability Methods in Analysis; p. 299-328 in: Lecture Notes in Math. 31, Berlin - Heidelberg - New York 1967.
[4] K. Urbanik, Lévy's probability measures on Euclidean spaces, Studia Math. 44 (1972), p. 119-148.

Institute of Mathematics, Wrocław University pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Received on 23. 5. 1980

