PROBABILITY

AND
MATHEMATICAL STATISTICS
Vol. 2, Fasc. 2 (1982), p. 197-205

ON THE NUMBER OF k-TREES IN A RANDOM GRAPH

BY

MICHAL KAROŃSKI (Poznañ)

Abstract

Let $K_{n, p}$ denote a random graph obtained from a complete labelled graph K_{n} on n vertices by independent deletion of its edges with the prescribed probability $q=1-p, 0<p<1$. Moreover, let $p=p(n)$ and let $X_{n, r}^{(k)}$ denote the number of r-vertex subgraphs $(r \geqslant k+1)$ of a random graph $K_{n, p}$ being k-trees. In this paper we prove that, under some conditions imposed on probability $p(n)$ as $n \rightarrow \infty$, the random variable $X_{n, r}^{(k)}$ has asymptotically the Poisson or normal distribution. We generalize earlier results of Erdös and Renyi [2] dealing with the distribution of the number of trees (i.e. random variable $X_{n, r}^{(1,)}$) as well as the results of Schürger [7] on the number of cliques in $K_{n, p}$ (i.e. random variable $X_{n, k+1}^{(k)}$).

1. Introduction. Let us consider a random graph (r.g.) $K_{n, p}$ obtained from a labelled complete graph K_{n} by means of the following procedure:

Each of $\binom{n}{2}$ edges of K_{n} is independently deleted with the prescribed probability $q, 0<q<1$, i.e. each edge remains in K_{n} with probability $p=1-q$ and the expected number of edges of an r.g. $K_{n, p}$ equals $\binom{n}{2} p$.

Here we shall consider the asymptotic distribution of the number of subgraphs being k-trees of size r in an r.g. $K_{n, p(n)}$, where the edge probability p depends on the size n of an r.g. and $n \rightarrow \infty$.

The notion of k-tree ($k=1,2, \ldots$) was introduced in [3] and can be defined either as a k-dimensional simplicial complex with certain properties or as a graph. We shall use here an inductive definition of k-tree (see [5] or [6]). A k-tree of size $k+1$ is a complete graph on $k+1$ vertices. A k-tree $T_{r+1}^{(k)}$ of size $r+1(r \geqslant k+1)$ is obtained from an arbitrary k-tree $T_{r}^{(k)}$ of size r by adding a new vertex and joining it to those k points of $T_{r}^{(k)}$
which form a complete graph. A k-tree of size r consists of $r-k$ complete subgraphs of size $k+1, k(r-k)+1$ complete subgraphs of size k and has $k r-\binom{k+1}{2}$ edges. It has been shown (see [1] and [4]) that the total number of k-trees which can be formed on r labelled vertices equals

$$
\binom{r}{k}[k(r-k)+1]^{r-k-2}
$$

In this paper we generalize the results of Erdös and Rényi [2] on the number of trees and the results of Schürger [7] on cliques. The methods of proofs are mainly those of [7].
2. The Lemma. Suppose that $G_{i}=\left(V\left(G_{i}\right), E\left(G_{i}\right)\right), i=1,2, \ldots, t$, are graphs whose vertex sets $V\left(G_{i}\right)$ as well as edge families $E\left(G_{i}\right) \subset V\left(G_{i}\right) \times V\left(G_{i}\right)$ are not necessarily disjoint. Then by their union $\bigcup^{i} G_{i}$ we mean a graph $G=(V(G), E(G))$, where

$$
V(G)=\bigcup_{i=1}^{t} V\left(G_{i}\right) \quad \text { and } \quad E(G)=\bigcup_{i=1}^{i} E\left(G_{i}\right)
$$

Denote by $|X|$ the cardinality of a set X and by a,

$$
a=a(r, \bar{k})=k r-\binom{k+1}{2}
$$

the number of edges of a k-tree of size r. In this section we state the following purely graph-theoretic result:

Lemma. Suppose that $T_{r, 1}^{(k)}, T_{r, 2}^{(k)}, \ldots, T_{r, t}^{(k)}$ are pairwise different k-trees of size $r, r \geqslant k+1$, not all of which are pairwise vertex disjoint, $G_{t}=\bigcup_{i=1}^{t} T_{r, i}^{(k)}$ is their union, $\left|V\left(G_{t}\right)\right|=v_{t}$, and $\left|E\left(G_{t}\right)\right|=e_{i}$. Then $v_{t} / e_{t} \leqslant \max \left\{b_{0}, b_{1}, b_{2}\right\}^{\prime}$, where

$$
\begin{gather*}
b_{0}=b_{0}(t)=\frac{(t-1) r}{(t-1) a+1}, \quad b_{1}=b_{1}(t)=\frac{t r-1}{t a} \tag{1}\\
b_{2}=b_{2}(t)=\frac{(t-1) r+1}{(t-1) a+k}
\end{gather*}
$$

Proof (by induction on t). Put

$$
h_{t}=\mid V\left(T_{r, t}^{(k)}-\bigcup_{i=1}^{t-1} T_{r, i}^{(k)} \mid, \quad t \geqslant 2\right.
$$

It is easy to check that if $1 \leqslant h_{t} \leqslant r-k$, then $e_{t} \geqslant e_{t-1}+k h_{t}$, whereas

$$
e_{t} \geqslant e_{t-1}+a-\binom{r-h_{t}}{2} \quad \text { if } r-k+1 \leqslant h_{i} \leqslant r-1
$$

One can also check that the inequality

$$
\begin{equation*}
\frac{v_{t-1}+r-i}{e_{t-1}+a-\binom{i}{2}} \leqslant \frac{v_{t-1}+r-1}{e_{t-1}+a} \tag{2}
\end{equation*}
$$

holds for $i=1,2, \ldots, k-1$. Moreover, it should be noticed that $b_{0}(t), b_{1}(t)$, and $b_{2}(t)$ are increasing functions of t. Having these facts in mind we begin our proof by considering $t=2$.

Case 1. Let $h_{2}=0(r \geqslant k+2)$. Then $v_{2}=v_{1}=r, e_{2} \geqslant e_{1}+1$ and, consequently,

$$
\frac{v_{2}}{e_{2}} \leqslant \frac{r}{a+1}=b_{0}(2)
$$

Case 2. If $1 \leqslant h_{2} \leqslant r-k$, then

$$
\frac{v_{2}}{e_{2}}=\frac{r+h_{2}}{e_{2}} \leqslant \frac{r+h_{2}}{a+k h_{2}} \leqslant \frac{r+1}{a+k}=b_{2}(2) .
$$

Case 3. Let $r-k+1 \leqslant h_{2} \leqslant r-1$. Now, by (2) we have

$$
\frac{v_{2}}{e_{2}} \leqslant \frac{r+h_{2}}{e_{1}+a-\binom{r-h_{2}}{2}} \leqslant \frac{2 r-1}{2 a}=b_{1}(2)
$$

and we arrive at the thesis for $t=2$.
Let us assume that our thesis is true for some $t \geqslant 3$. Suppose that G_{t-1} is the union of $t-1 k$-trees of size r not all of which are pairwise vertex disjoint and

$$
\frac{v_{t-1}}{e_{t-1}} \leqslant \max \left\{b_{0}(t-1), b_{1}(t-1), b_{2}(t-1)\right\}
$$

holds. Let us take now the union of G_{t-1} with a k-tree also of size r.
Case 1. If $h_{t}=0$, then $v_{t} / e_{t} \leqslant v_{t-1} / e_{t-1}$ and the thesis follows immediately.
Case 2. Let $1 \leqslant h_{t} \leqslant r-k$. Assume first that, for $G_{t-1}, b_{0}(t-1)$ exceeds $b_{1}(t-1)$ and $b_{2}(t-1)$. Then

$$
\begin{aligned}
\frac{v_{t}}{e_{t}} & \leqslant \frac{v_{t-1}+h_{t}}{e_{t-1}+k h_{t}} \leqslant \frac{(t-2) r\left\{v_{t-1}+h_{t}\right\}}{v_{t-1}\{(t-2) a+1\}+k h_{2}(t-2) r} \\
& =\frac{(t-2) r\left\{v_{t-1}+h_{t}\right\}}{\{(t-2) a+1\}\left\{v_{t-1}+h_{t} \frac{k r(t-2)}{a(t-2)+1}\right\}} \leqslant \frac{(t-2) r}{(t-2) a+1}=b_{0}(t-1) \leqslant b_{0}(t)
\end{aligned}
$$

Similarly, if $b_{1}(t-1)$ is maximal, then

$$
\frac{v_{t}}{e_{t}} \leqslant \frac{\{(t-1) r-1\}\left\{v_{t-1}+h_{t}\right\}}{a(t-1)\left\{v_{t-1}+h_{t} \frac{k[(t-1) r-1]}{a(t-1)}\right\}} \leqslant b_{1}(t-1) \leqslant b_{1}(t)
$$

and if, for $G_{t-1}, b_{2}(t-1)$ is greater than $b_{0}(t-1)$ and $b_{1}(t-1)$, then

$$
\frac{v_{t}}{e_{t}} \leqslant b_{2}(t)
$$

Case 3. Let $r-k+1 \leqslant h_{t} \leqslant r-1$. As before we assume first that, for $G_{t-1}, b_{0}(t-1)$ exceeds $b_{1}(t-1)$ and $b_{2}(t-1)$. Then by formula (2) and the induction assumption we obtain

$$
\begin{aligned}
\frac{v_{t}}{e_{t}} & \leqslant \frac{v_{t-1}+h_{t}}{e_{t-1}+a-\binom{r-h_{t}}{2}} \leqslant \frac{v_{t-1}+r-1}{e_{t-1}+a} \\
& \leqslant \frac{r(t-2)\left\{v_{t-1}+r-1\right\}}{\{a(i-2)+1\}\left\{v_{t-1}+\frac{a r(t-2)}{a(t-2)+1}\right\}} \leqslant b_{0}(t-1)
\end{aligned}
$$

if $r \leqslant a(t-2)+1$, which is true for all $t \geqslant 3$ and $k \geqslant 1$. Therefore $v_{t} / e_{t} \leqslant b_{0}(t)$.

If $b_{1}(t-1)$ is maximal, then

$$
\frac{v_{t}}{e_{t}} \leqslant \frac{\{r(t-1)+1\}\left\{v_{t-1}+r-1\right\}}{a(t-1)\left\{v_{t-1}+r-1 /(t-1)\right\}} \leqslant b_{1}(t-1) \leqslant b_{1}(t)
$$

Finally, if, for $G_{t-1}, b_{2}(t-1)$ is greater than $b_{0}(t-1)$ and $b_{1}(t-1)$, then

$$
\frac{v_{t}}{e_{t}} \leqslant \frac{\{r(t-2)+1\}\left\{v_{t-1}+r-1\right\}}{\{a(t-2)+k\}\left\{v_{t-1}+\frac{a[r(t-2)+1]}{a(t-2)+k}\right\}} \leqslant b_{2}(t-1)
$$

whenever $a(t-1) \geqslant k(r-1)$, which holds for all $t \geqslant 3$. Consequently, $v_{t} / e_{t} \leqslant b_{2}(t)$.

To complete the proof of our lemma we consider also the situation when G_{t-1} consists of $t-1$ pairwise vertex disjoint k-trees of size r and next we form the union of G_{t-1} with some k-tree of size r.

Case 1. If $h_{t}=0(r \geqslant k+2)$, then

$$
\frac{v_{t}}{. e_{t}} \leqslant \frac{v_{t-1}}{e_{t-1}+1}=\frac{r(t-1)}{a(t-1)+1}=b_{0}(t)
$$

Case 2. If $1 \leqslant h_{t} \leqslant r-k$, then

$$
\frac{v_{t}}{e_{t}} \leqslant \frac{r(t-1)+h_{t}}{a(t-1)+k h_{t}} \leqslant b_{2}(t) .
$$

Case 3. If $r-k+1 \leqslant h_{t} \leqslant r-1$, then

$$
\frac{v_{t}}{e_{t}} \leqslant \frac{r(t-1)+h_{t}}{a(t-1)+a-\binom{r-h_{t}}{2}} \leqslant b_{1}(t)
$$

Thus the proof is complete.
3. Asymptotic distribution of the number of k-trees. Let us denote by $X_{n, r}^{(k)}$ the number of k-trees of size r in an r.g. $K_{n, p(n)}$. We shall prove the following theorem:

Theorem 1. Suppose that $r \geqslant k+1, k=1,2, \ldots$, and that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p(n) n^{r / a}=\varrho \in(0, \infty) \text { exists. } \tag{3}
\end{equation*}
$$

Then

$$
\lim _{n \rightarrow \infty} P\left(X_{n, r}^{(k)}=i\right)=\frac{\lambda^{i}}{i!} e^{-\lambda}, \quad i=0,1,2, \ldots
$$

where

$$
\begin{equation*}
\lambda=\frac{1}{r!} \varrho^{a}\binom{r}{k}[k(r-k)+1]^{r-k-2} \tag{4}
\end{equation*}
$$

and

$$
a=a(r, k)=k r-\binom{k+1}{2}
$$

Proof. Let $\mathscr{T}_{r}^{(k)}$ denote the family of all k-trees of size r which can be formed on the set of n labelled vertices $\{1,2, \ldots, n\}$. Suppose that $T_{r, 0}^{(k)} \in \mathscr{T}_{r}^{(k)}$ and

$$
I_{1}\left(T_{r, 0}^{(k)}\right)= \begin{cases}1 & \text { if } T_{r, 0}^{(k)} \subset K_{n, p(n)} \\ 0 & \text { otherwise }\end{cases}
$$

whereas

$$
I_{2}\left(T_{r, 0}^{(k)}\right)= \begin{cases}1 & \text { if } T_{r, 0}^{(k)} \subset K_{n, p(n)} \text { and } T_{r, 0}^{(k)} \text { is vertex disjoint with } \\ \text { all other } k \text {-trees of size } r \text { contained in } K_{n, p(n)} \\ 0 & \text { otherwise }\end{cases}
$$

Moreover, let

$$
S_{i}^{(i, j)}=\sum^{(i)} \mathrm{E}\left(I_{j}\left(T_{r, 1}^{(k)}\right) I_{j}\left(T_{r, 2}^{(k)}\right) \ldots I_{j}\left(T_{r, t}^{(k)}\right)\right), \quad i, j=1,2
$$

where $\mathrm{E}(\cdot)$ denotes the expected value, and the summation is over all combinations of $t(t \geqslant 1)$ different k-trees from the family $\mathscr{T}_{r}^{(k)}$ which for $i=1$ are pairwise vertex disjoint and for $i=2$ are not pairwise vertex disjoint. First, we show that if (3) holds, then $S_{t}^{(2,1)} \rightarrow 0$ as $n \rightarrow \infty$.

Assume that $t \geqslant 2, n \geqslant \operatorname{tr}, T_{r, 1}^{(k)}, T_{r, 2}^{(k)}, \ldots, T_{r, t}^{(k)}$ are different k-trees from $\mathscr{T}_{r}^{(k)}$ which are not pairwise vertex disjoint, and put

$$
w_{j}=\left|\bigcup_{i=1}^{j-1}\left(V\left(T_{r, i}^{(k)}\right) \cap V\left(T_{r, j}^{(k)}\right)\right)\right|
$$

Therefore

$$
v_{j}=\left|V\left(\bigcup_{i=1}^{j} T_{r, i}^{(k)}\right)\right|=j r-w_{2}-\ldots-w_{j}, \quad j=2,3, \ldots, t
$$

Thus, for every $r \geqslant k+1$ and given t we get

$$
\begin{aligned}
S_{t}^{(2,1)} \leqslant & \frac{1}{t!} \sum_{\substack{0 \leqslant w_{2} \ldots, w_{t} \leqslant r \\
1 \leqslant w_{2}+\ldots+w_{t} \leqslant(t-1) r}}^{\prime \prime}\binom{n}{r}\binom{r}{w_{2}}\binom{n-r}{r-w_{2}} \times \ldots \times \\
& \times\binom{(t-1) r-w_{2}-\ldots-w_{t-1}}{w_{t}}\binom{n-(t-1) r+w_{2}+\ldots+w_{t-1}}{r-w_{t}} \times \\
& \times\left\{\binom{r}{k}[k(r-k)+1]^{r-k-2}\right\}^{t} p^{e_{t}},
\end{aligned}
$$

where e_{t} is the number of edges of the graph $\bigcup_{i=1}^{t} T_{r, i}^{(k)}$. Consequently, we
obtain

$$
\begin{aligned}
S_{t}^{(2,1)} \leqslant & \frac{1}{t!r!}\left\{\binom{r}{k}[k(r-k)+1]^{r-k-2}\right\}^{t} \times \\
& \times \sum^{t} n^{t r-w_{2}-\ldots-w_{t}} p^{e_{t}}\left\{\prod_{j=1}^{t-1}\binom{j r-w_{2}-\ldots-w_{j}}{w_{j+1}}\left[\left(r-w_{j+1}\right)!\right]^{-1}\right\}
\end{aligned}
$$

By the Lemma we have

$$
\begin{equation*}
e_{t} \geqslant \frac{t r-w_{2}-\ldots-w_{t}}{\max \left\{b_{0}, b_{1}, b_{2}\right\}} \tag{5}
\end{equation*}
$$

where b_{0}, b_{1}, and b_{2} are determined by formula (1). It follows from (5) and (3) that for every $t \geqslant 2$

$$
\begin{equation*}
S_{t}^{(2,1)}=o(1) \tag{6}
\end{equation*}
$$

On the other hand, for $t \geqslant 1$ we get

$$
0 \leqslant S_{t}^{(1,1)}-S_{t}^{(1,2)} \leqslant(t+1) S_{t+1}^{(2,1)}
$$

Consequently, for $t \geqslant 2$ we have

$$
S_{t}^{(1,2)}=S_{t}^{(1,1)}+o(1)
$$

But

$$
\begin{aligned}
S_{t}^{(1,1)} & =\frac{1}{t!}\binom{n}{r}\binom{n-r}{r} \ldots\binom{n-(t-1) r}{r}\left\{\binom{r}{k}[k(r-k)+1]^{r-k-2} p^{a}\right\}^{t} \\
& \sim \frac{1}{t!}\left\{\frac{1}{r!}\left(p n^{r / a}\right)^{a}\binom{r}{k}[k(r-k)+1]^{r-k-2}\right\}^{t} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{t}^{(1,2)}=\frac{\lambda^{t}}{t!}, \quad t \geqslant 1 \tag{7}
\end{equation*}
$$

where λ is given by (4).
If we denote by $Y_{n, r}^{(k)}$ the number of all k-trees of size r being vertex disjoint with all other k-trees of size r in $K_{n, p(n)}$, then using (7) and Bonferroni's inequalities

$$
\sum_{j=i}^{i+2 s-1}(-1)^{j-i}\binom{j}{i} S_{j}^{(1,2)} \leqslant P\left(Y_{n, r}^{(k)}=i\right) \leqslant \sum_{j=i}^{i+2 s}(-1)^{j-i}\binom{j}{i} S_{j}^{(1,2)}, \quad s \geqslant 1,
$$

we obtain

$$
\lim _{n \rightarrow \infty} P\left(Y_{n, r}^{(k)}=i\right)=\frac{\lambda^{i}}{i!} e^{-\lambda}
$$

i.e. $Y_{n, r}^{(k)}$ has the Poisson distribution with the expectation λ. The thesis of our theorem follows immediately from the fact that, by (6),

$$
P\left(X_{n, r}^{(k)} \neq Y_{n, r}^{(k)}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Consider now two specific k-trees, namely a 1 -tree and a k-tree of size $k+1$.

In the first case $(k=1)$ the 1 -tree is simply a tree in the usual sense and $X_{n, r}^{(1)}$ denotes the number of trees of size r in $K_{n, p(n)}$. Thus, from Theorem 1 we obtain the following result which was proved earlier by Erdös and Rényi [2]:

Corollary 1. Suppose that $r \geqslant 2$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p(n) n^{r /(r-1)}=\varrho \in(0, \infty) \text { exists. } \tag{8}
\end{equation*}
$$

Then the r.v. $X_{n, r}^{(1)}$ has asymptotically the Poisson distribution with the expectation

$$
\lambda=\frac{1}{r!} \varrho^{r-1} r^{r-2}
$$

In fact, if condition (8) holds, then in an r.g. $K_{n . p(n)}$ all subgraphs of size r being trees are almost surely isolated (see [2], p. 27). Therefore, the r.v. $X_{n, r}^{(1)}$ is the number of isolated trees of size r.

In the second case, where $r=k+1$, the k-tree is the smallest one and is simply a complete graph on $k+1$ vertices. The random variable $X_{n, k+1}^{(k)}$ is now the number of complete subgraphs of size $k+1(k+1-$ cliques $)$ in an r.g. $K_{n, p(n)}$.

Thus, also from Theorem 1, we obtain the following result which was proved earlier by Schürger in [7]:

Corollary 2. Suppose that $k \geqslant 1$ and

$$
\lim _{n \rightarrow \infty} p(n) n^{2 / k}=\varrho \in(0, \infty) \text { exists. }
$$

Then the random variable $X_{n, k+1}^{(k)}$ has asymptotically the Poisson distribution with the expectation

$$
\lambda=\frac{1}{r!} \varrho^{k(k+1) / 2}
$$

Finally, basing on Theorem 1 and using the fact that if a random variable X_{λ} has the Poisson distribution with the expectation λ, then $(X-\lambda) / \lambda^{1 / 2}$ has the standardized normal distribution as $\lambda \rightarrow \infty$, one can deduce the following

Theorem 2. Let $r \geqslant k+1$ be fixed and suppose that

$$
\lim _{n \rightarrow \infty} p(n) n^{r / a}=\infty,
$$

whereas

$$
\lim _{n \rightarrow \infty} p(n) n^{r / a-\delta}=0 \quad \text { for all } \delta>0
$$

Then
$\lim _{n \rightarrow \infty} P\left\{\left(X_{n, r}^{(k)}-d\right) d^{-1 / 2}<x\right\}=(2 \pi)^{-1 / 2} \int_{-x}^{x} \exp \left(-u^{2} / 2\right) d u, \quad-\infty<x<\infty$, where

$$
d=d(n, r, k, p)=\frac{n^{r}}{r!}\binom{r}{k}[k(r-k)+1]^{r-k-2} p^{a}
$$

We omit a proof of this theorem because it follows similar lines as proofs of the respective theorems from [7] and [2].

REFERENCES

[1] L. W. Beineke and R. E. Pippert, The number of labeled k-dimensional trees, J. Combinatorial Theory 6 (1969), p. 200-205.
[2] P. Erdös and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960), p. 17-61.
[3] F. Harary and E. M. Palmer, On acyclic simplicial complexes, Mathematica 15 (1968), p. 115-122.
[4] J. W. Moon, The number of labeled k-trees, J. Combinatorial Theory 4 (1969), p. 206-207.
[5] A. Rényi, On the number of endpoints of a k-tree, Studia Sci. Math. Hungar. 5 (1970), p. 5-10.
[6] C. Rényi and A. Rényi, The Prïfer code for k-trees, p. 945-971 in: Comb. Theory and its Appl. III, Bolyai János Matem. Tár., Budapest, North Holland Publ. Co., Amsterdam - London 1970.
[7] K. Schürger, Limit theorems for complete subgraphs of random graphs, Period. Math. Hungar. 10 (1979), p. 47-53.

Institute of Mathematics
Adam Mickiewicz University
Matejki 48/49, 60-769 Poznań, Poland

