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This paper is a continuation of part I (see En). It presumes 
that the reader is familiar with the concepts and notation introduced 
there. Part I1 contains lemmas and proofs orthe results given in part I. 

9. Some auxiliary results. First we derive some asymptotic expansions 
which are needed in the proofs. 

Let P ,  E '$3 and A > 0. Let P, E '$3, n E N , be a sequence fuIfiIIing 

(9.1 xo (P,) = xo (P*)-  n-lI2 A 

and admitting a P,-density 

such that 

(9.3) P* (F:) = 0 (n) . 
Assume that the following regularity conditions are fulfilled: 

(9.44) & ( p * * f z ( - , x ( P * ) ) )  for 14 = 1 , 2 ,  

M , ( p * * X z ( - , x ( P , ) ) )  for 11. = 3;  

(9.5) ( ( P ) ,  P )  for f": X x T +  R if loll = 2, 

& ( x ( P , ) , P , )  for fa: X x T - R  if l a l=3 .  

If a fixed p-measure P, is given, we omit the argument P ,  in expressions 
depending on P,, if this is convenient. 

We first derive an asymptotic expansion for x ( P J ,   EN. By a Taylor 
expansion of t + f ( ' ) ( x ,  t )  about t = x(P, ) ,  we infer from (9.2)-(9.5) that 
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I 

I 
for 

Let g, , n E N , be defined by 

By condition (9.5), g, is differentiable in some neighborhood V(x(P , ) )  
of x(P,) ,  and the order of differentiation and integration may be inter- 
changed. As P, -+ P, ,  n € N ,  in the' strong topology, (8.4) implies the 
existence of a constant A ,  > 0 and of an &-neighborhood V,(X(P,))  
c -V ( x  (P,)) of x (P*) such that for all sufficiently large n E N 

(9.8) Ils, (t)-gn (tf)ll 2 Ilt - tfll for t t' K 'E(x (P*)).  

By (#.5), x(P")E T/EI2(x(p*)) for a11 sufficiently large  EN. Since 
(x (P,)) c (x (P,)) and g,(x (P,)) = 0 ,  (9.8) implies the existence of 

a 6-neighborhood Vb(0) such that g;' exists on K(0) for all sufficiently 
Iarge n E lV, and 

1 
(9.9) g i l ( ) - ; ( v f  I - v  for v , v f ~ ~ / d ( 0 ) .  

A0 

As 8, (x (P*) + n -I/' da) is in b(0) for 5uffiCientIy large n s N by (9.6), 
it follows from (9.6) and (9.9) that 

where, by (9. I), 

(9.1 1 )  RnSl = o(nO) for 1 = 1 ,..., p, R,,, = 0. 

(Notice that a, = - 1 .) 
By a Taylor expansion and (9.10), 

8 .  

Fij (P,) = Fij  + n-  a,-,' (Aok Fij,k - Akl AOp Fi,p Fijk) + o (n- 'I2), 

and therefore 

(9.12) Aoi (P,) = Aoi + n- l i z  Aei + o (n- 1/2), 

where 

Furthermore, 

(9-14) Fi,j(Pn) = F i j  + n-'l2 Aok(ALp Fk,p (Fi , jr  + Fj, ir)  + Fimj,k)+ o (n-'/'). 
By (9.12) and (9.14), 

(9.15) 600(Pn) = ~ ~ ~ + n - ~ ~ ~ d c + o ( n - ~ / ~ ) ,  
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where 

(9.16) := A O i  IAkq Fv,q (4Fik , j -  Fi,Z F s j k ) - 2 F i , j . u ) .  

From (9.151, by a Taylor expansion of x -+ x1I2 about x = a,,, we get 

(9.1 7) o,(P,) = ~ , + 3 n - ' ~ ~ A o ; ' c + o ( n - ~ ~ ~ ) .  

If in (9.2) we take F,, = A 2  h+n-lt2r, with 

(9.1 8 )  M2 (Pa * h) 

and 

(9.19) P*(r$) = o m ,  

similarly as in (9.6)-(9.11) we obtain 

where a, ( 1  = 0, . .. , p) are given by (9.7), and 

Moreover, bo = 0 by (9.1). 
The essential point of the following lemma is that the power function 

of the sequence of c.r. IF, ,( . ,  x, (P,)-n- l i 2  A) > 0) does not depend on 
the polynomial M occurring in the stochastic expansion of F n ( . ,  to). 

(9.22) LEMMA. Let P,, E !#, n E N ,  be a sequence fulfilling (9.1)-(9.3). Let F,, 
n E N ,  be a sequence of test functions for x, of type S which is asymptotically 
similar of level or+ o(n-'I2) for U,,6 (P,) for every S E ( 0 , l ) .  

Then 
P: {F, , ( . ,  x , ( P , ) - ~ - ' / ~  A) > 0 )  = x,(A, a)+o(n-'I2), 

where X ,  ( A ,  a) is given by (5.7). 
This holds true under conditions (9.4) and (9.5). 
Proof.  We first note that, by Lemma (9.35), P,E UnSa(P*) for all 

sufficiently large n E N if 
6 > 2 ( 1 - @ ( + ~ ; ~ A ) ) .  

Furthermore, we may assume without loss of generality that U,,s(P,) 
c U, for a11 n E N .  

By a Taylor expansion of t + f" ( .  , t )  about t = x (P,) for = 1, we 
infer from (9.3) and (9.4) that M3 ( (P ,  * f,( -, P,): n EN)) is fulfilIed. 

Let 

f ~ . ~ : = f o ( ~ ~ ~ n ~ - ~ * ( f o ( ~ , p n ) ) *  g , : = g ( - , P J - P * ( g ( . , P n ) ) .  

Since fo ( - , P,) and g, ( . , P,) are P,-uncorrelated, by (4.1 I), (9.3) and 
(4.14) we have 
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(9.23) Pn (gi ( * 3 Pn)) 
I 
, = P,(~i(.,P,))-n-1/2~ai~~*(fO(.,~*)gt(., P , J ) i - ~ ( n - l / ~ )  

= P,(gi(- ,  P , ) ) + ~ ( n - l / ~ ) .  

Hence P,, (gi ( . , P,)) = O implies 

(9.24) P,(gi(., P,)) = ~ ( n - ~ / ~ ) +  

n 
Therefore, for &,, (x) : = n - l i 2  1 g , ,  (x,,) we have 

. . 
v r l  

Moreover, by a Taylor expansion of t + f { ' ' ( . ,  t )  about x,  (P,), (9.10) 
and (9.1 2), 

Thus, for fo,n(r) : = n- '" f: f,,n(x,) we get 
v = 1  

* 

(9.27) T o ,  = yo ( . , PJ -A + n- ' I 2  A2 ff aj a, A,, FiJx +ei aj Fij)+ o (n- ll'). 

Using (9.17), (9.25) and (9.27) and the fact that F,(., ~ , (P , ) -n - l /~  A) is  
asymptotically similar of level a+o (n- l f2)  for P,,, from (4.8) we obtain 

(9.28) F, ( ., xo (P,) - n- '1' A) 
Z 

= fo,,+N,a0+A -n-'I2 ( ~ ~ ( + a ~ a ~ A ~ ~ ~ ~ ~ ~ + e ~ a ~ ~ ~ ~ ) +  

+ : A N , ~ ; ~ c + M ( ~ , , ~ + A , z , , ,  P.))+ 

+ n - 1 ~ 2  on(+) with respect to P,. 

Let a, := ~ , f f $ J ' / ~ .  By a Taylor expansion, from (9.10) and (9.12) 
we obtain 

(9.29) a: = coo + n-'I2 A (Aoi Aoj a, FikJ + Aojei Fi,j)+ o (n-If2). 

Thus, by a Taylor expansion of x -, x1I2 about x = a,,, 

(9.30) 0, = oo++n-112 a,' d(Ao iAo jakFik j+Ao je iF i , j )+~(n-112) .  

In virtue of conditions (4.10)-(4.15), Lemma (9.63), Lemma 5.25 in [8], 
p. 20, and (9.28) we get 

(9.31) PZ {F,(., xo (P,)- A) > O j  

= @((N,co+A)o;')-n-112u;1 q(N.+Au;') ( k ( - ~ . a ~ - d ) -  

- S d v r p r , ( v ) ~ ( - ~ a a o ,  u,P,)+ 
+ d ( ~ ( f a ~ a ~ ~ ~ ~ ~ ~ ~ ~ + e ~ ~ ~ ~ ~ - ~ c c , ~  ~ , ) ) + o ( n - l / ~ ) ,  
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where k ( t )  := $02 P ,  (h3) (1 -a;: t Z )  and Z, is the covariance matrix of 
p* * B( . I  P*). 

Using a Taylor expansion, from (9.30) we obtain 
' 

For A = 0 and P, = P,, making use of (9,311 and the fact that 
e { F , ( - ,  x(P,)) > 0 )  = a ~ o ( n - l / ~ )  we get 

(9.33) 5 d v ~ r J v ) ~ ( - ~ X a , ,  v,P,) = k( -Nago) .  

.The assertion of the lemma now follows easily from (9.31)-(9.33). 

(9.34) Remark. A result corresponding to (9.22) can be obtained for A < 0. 

(9.35) LEMMA. Let Pn E g, n E N ,  be a sequence admitting a P,-density 

Assum that F, = d Z  h + n- ' I 2  r,, with 

(9.37) M; (P* * h) , 
(9.38) Mglz({P, *r,: ~ E I V ) ) .  

I f  cp,, n E N, is asymptotically of level a + ~ ( n - ~ / ~ )  for P,, then 

P"* ( ~ n )  @ (Nz + do) + 
~ n - ~ ~ ~ c p ( N , + d a ) c - '  A(A(P,(~~)-~P,(~~))+~P,(~~)N.~-')+ 

+ ~ ( n - ' / ~ ) ,  

where a : = P ,  (g2)1/2. 
This holds true under the following regularity conditions: 

(9.39) w , 2  (P* * 9) 5 

(9.40) C(P* * 8) .  I 

If (9.38), P, (r:) = o(n), g = -a; fo, and (9.1) are fulfilled, we obtain 

(9.41) < xn(A, u ) + ~ ( n - ~ ~ ~ ) ,  

where % ( A ,  a) is given by  (5.7). 

Proof. For r E R let 
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Let now q,, n c N ,  be asymptotically of level a+~(n-'~~] for P,.  Let 
a, : = max (a ,  P: (rp,)) . We have 

Since a a i l  q, is of level a, by the Neyman-Pearson lemma we obtain 

PZ (4 (r,,,J) . 
Therefore 

Let 

(9.43) A, := ( A  Igl < t nl'%nd IFn/ < $ n) , 

B, := A;. 

By the definition of Pn, Markov's inequality and Holder's inequality, 
we obtain for Q, = P, and Q, = P, 

(9.44) QZ(B:) < n (Q, {A Ig( > a n1I2) + Q, (IFJ > $ n) )  = o (n- 'I2). 

Hence for Q,, = P ,  and Q, = P, we have 
'tl 

(9.45) Q; (D (r,,,)) = Q," (x E B, : log p,  (x,,) < r:,,) + o (n - li2) 
\? = 1 

I 

for some suitably chosen ri,, E R.  
For notational convenience let 

(9.46) k, := A g + n - 1 / 2 r ; , .  

From a Taylor expansion of log we obtain 

(9.47) l ~ g p , = n - ~ ~ ~ k , - + n - ~ k ~ + ~ n - ~ ' ~ k ~ + n - ~ / ~ k ~ ~ ( n - ~ ~ ~ k )  rn 3 

where 
1 

. I vty) := j(f - ~ ) ~ ( ( l - u y ) - ~ - l ) d u .  
0 

t 

For ]yl < 4 we have 

(9.48) Iv (Y)( 2 1 ~ 1 .  
From (9.46) and (9.47) for X E  B, we obtain 
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where 

R, = r R + $ k ~ - ~ n - 3 1 2 r ~ + + ~ ~ ( n - 1 / 2 k R ) -  

-n-'I2 Agrn-n-' A2 h r , - ~ ~ ( ~ h - ~ , @ h ) + ~ , ( ~ ~ ) ) - +  A ~ ~ - ~ / ~  h2. 

From Lemmas (9.57) and (9.58) we obtain 

with respect to P, and--with respect to P,,, since by (9.48) we have ' 

n 

n-"' 1 u = l  k: (xv) v (n-'I2 kn (xJ)( lB,, (x) s 2n-2 kt (x,,). 
t' = 1 

As n-312 P ,  (grJ = 0 (n - 3 1 2 ) ,  we infer from (9.37)-(9.40) and Lemma (9.65) 
that 

(9.51) P: (a- d ~ , ( ~ ' ) - n - ' / ~  A' P ,  (gh)+ 

+ n - 1 1 2 ~ ( h - ~ ~ , d q h ) - + ( g 2 ) - + +  AP,(&) < s) 

uniformly for s E R ,  and 

(9.52) P",{g'+n-1/2d(h-$(g2)~<s) 

= @ ( ~ a - ~ ) + n - ~ / ' ~ ( s a - ' ) ~ ( s ) + o ( n - ' ~ ~ )  

uniformly for s E R ,  where a: := P,(g2)+n-112 AP,(g3), and 

Therefore, from (9.45) and (9.50) by Lemma (9.63) it follows that for 
Qn = P ,  and Q, = P, 

(9.54) Qi (on (rn.,)) = Qi (CM,m) + 0 (n-'I2), 

where 

with 
c , ,  := r ~ , d - ' + ~ ~ P , ( g ~ ) + n - ~ / ~ A ~ ( ~ , ( g h ) - ~ ~ , ( ~ ~ ) ) .  

As P,"(Cn,,) = a+ o (n-'I2), from a uniform version of Lemma 7 in [ 5 ] ,  
p. 1016, we obtain 

(9.55) G,, = A ( ~ , a - ~ n - ~ / ~ a - ~  p,(g3)(1 -N,2))+ 

+A2(P*(g2)+n-'I2 o-' N ,  P,(gh))+n-'I2 A3(2P*(gh)+3~*(g3) ) .  
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The assertion of the lemma now follows from (9.42), (9.52), (9.54) and (9.55). 
Relation (9.41) follows immediately from (9.21). 

(9.56) Remark. In the case A < 0 and g = -crG f,, in the same way as 
in Lemma (9.35) one can derive 

The following lemma is an immediate consequence of Lemma 6.3 in 
[4] ,  p. 152. 

(9.57) LEMMA. Let -a;, n E N ,  be  families of pmasures. Let s E [O, co) and 
a > i. Let ha( ., Q): X -r R, QE Q,  EN, be measurable functions fiirrfilling 

MG+l),a({P* h n ( . r  Q): ~ E N , P ~  Q~nrn}). 
Assume that one of the following conditions is satisfied: 

a S 1  and sup I P ( ~ , ( - , ~ ) ) ( = o ( n ' - I ) .  
P.QE% 

Then there exist S > 0 and, for every c > 0 ,  a constant B depending on 

sup sup P(lh, ( ., Q)/("+ ' and sup I P  (h, ( . , Q))( 
P.eEO,, P>&% 

such that 

sup P " { X G X " :  n-"1 h,( . ,  Q ) I  > c )  < ~ n - ( ' + * )  
P,QEQ, r = l  

(9.58) LEMMA. Let the assumptwns of Lemma (9.57) be satisfied for s = f ,  
On = ( P , )  and h, ( -, Q) = h,. Let Pn, n E N, be a sequence of pmeasures 
admitting a P,-density (9.36) such that 

(9.60) MZl2 ( ( P ,  * F,: n E N}) . 
Then 

R 

n-" C h,(xv) = on(+) 
r = l  

with respect to P,. 

Proof. Let An be determined by (9.43). Let a pmeasure on d be 
defined by 
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I 
Since Qn (hn) = P, (Jan) + b (n-'I2) if a < 1 ,  and the P,-density of is 

bounded by 3/2, from Lemma (9.57) we obtain 
II 

(9.62) ~ : { n - ' (  hn(&)] > c ]  = o(n-'I2). 
v = l  

The assertion now follows from (9.44) and (9.62). 

(9.63) LEMMA. Let Q,, n E N ,  be families of pmeasures over d. Let hn ( ., Q): 
X n + R  and gn ( - ,Q) :  X" + R ,   EN, Q E Q ,  be measurable functions 
fulfi Lling .. - 

I 
h , ( - ,  Q )  = g,(., Q ) + n - ' 1 2 ~ n ( i )  

with respect t o  Dn. 
Let H ,  ( -, Q) and Gn( . ,  Q)  be the dhtribution functions of @ Q"* /I,(., Q) 

and Q" * g, ( ., Q), respectively. 
rS 

19-64) ]H, ( s ,  Q) -H, ( s l ,  Q)] 4 ~ f s - s ' l + o ( n - ~ ~ ~ )  

unqorrnly for s, S 'E  R and Q E Qn, then 

uniformly for s E R and Q E Q . 
(9.64) is in particular fuSfilled if H , ( - ,  Q) admits an Edgeworth expansion 

of order n - ' I 2 ,  unifomzly for Q E a,. 
Proof. Choose c,,  EN, such that cn 10 and 

uniformly for Q E Q . 
Then from (9.64) we obtain 

G,,(s, Q)  Q n { h n ( - ,  Q) < s + n - 1 i Z ~ , j + ~ ( n ' 1 2 i h , ( . ,  Q)-g,(., Q)l > cnj 

= Hn(s ,  Q)+o(n-'I2) 

unifordy for s E R and Q E Qn. 

In the same way one can show that G, ( s ,  Q) 2 H,  ( s ,  Q) + o (n-'I2). 

(9.65) LEMMA. Let Pn,  EN, be a sequence of pmeamres Jirlfilling (9.36), 
(9.59), and (9.60). Let h ,  :. X -, R and h, : X -P R be measurable functions 
for which the following regularity conditions are fu@lIed: 

3 - Prob. Math. Statist. q2) 
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Then 

~ ~ ( ~ ; , - n ~ ~ ' ~ , , ( h ~ ) + n - ~ ~ ( h ~ - d ~ , ( ~ h , ) )  c r) 

= @(sa;1)+nd112cp(so-1)~(s)+o(n-'/2) 

uniformly for S E  R,  where 

H(s )  := ~ - ~ ( i P * ( h ; ) ( l  - ~ ~ a - ~ ) - ~ ~ ( h ~  hZ)s)  
with a2 := P,(h:). . . . 

'Proof. Let A, and Q, be defined by (9.43) and (9.61), respectively. 
By (9.36), (9.59), (9.601, (9.66) and (9.67) we have 

Thus, from (9.671, (9.68) and from Theorem 1 in [2], p. 650, applied for 
& - n 1 1 2 ~ , ( h , ) + n - 1 ~ 2 ( ~ - n ' 1 2 ~ n ( h , ) ) ,  we obtain 

= @ ( S ~ ~ - ~ ) + ~ - ~ ~ ' ~ ( S O ~ - ~ ) H ~ ( S ) + O ( ~ - ' ~ ~ )  

uniformly for S E  R, where uA2 is the variance of Q, ah, ,  and 

H,  (s) : = DL- (i Q, (h:) (I - s2 DL- ') - Q, (hl ha) s) . 
11 12 * I  h12 Since a;- a, = o(n-'I2) and Q,, (h, h2 ) -+ P, (h, , ), n E N ,  for all 

(a,, a,) such that ixl+2az < 3, the assertion of the lemma follows from 
(9.69) and (9.44). 

(9.70) LEMMA. Assume that for some strong neighborhood U, of P,  in 
the following regularity conditions are .fulfilled: 

(9.7 1) K,,(x(P*),U*) for f: X x T - , R ,  

(9.72) D I : ( [ P * ~ ' ( , x ( Q ) ) : ~ , Q E U . } )  f m I a I = 1 , 2 , 3 ,  

Then, for i = 0, ..., p ,  

with respect to UnP6 (P,) for euery 6 E (0, I), where 

(9.74) ~ , ( 7 ' ,  P", P) = 4 A i j F j k l  J(., P) &(.,P)+S;-( , P )  J ( j ) ( . ,  P ) .  

Proof. The proof follows the pattern of the proof of Theorem 5 in [I], 
p. 298ff. The crucial point is to show that 

with respect to U,,, (P,) for every S E (0, 1). 
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If we copy ;he proof in [3], p. 79, for the case K ' =  { x ( P * ) ) ,  we 
obtain immediately 

with respect to Un,S (P*)  for every S E ( 0 ,  1). 
Since P + x(P) is continuous by General Assumption (8.51, relation (9.76) 

implies (9.75). 

10. Proofs. In order not to overload the paper with technicalities, the 
proofs are given for fixed A .  Uniformity in A can be obtained by exactly 
the same reasoning if uniform versions of the lemmas are used. 

P roo f  of Theorem (4.16). (i) By Genera1 Assumption (8.5), P + x (P )  
is continuous. Hence condition (4.21) implies the existence of g with 
Mg,, ( (P  * g: P E U*) )  such that, for some strong neighborhood U', r U ,  
of P*, 
(10.1) (f(i"'(n,x(~))-ftu)(,x(~+))J 

((Xk (PI - %I: (p*)) . f ( IJk'  ( , X (p*))I + 11 (PI- X (pc)Il Y , 

Hence it follows easily that P + Fijk (P ) ,  P + F i j  (P) and P 4 Aij ( P )  are 
continuous at P ,  in the strong topology. 

Thus the coefficients of the polynomials Mi(., , P) defined in (9.74) are 
continuous at P, .  

(ii) By condition (4.23), for every P E  U i  there exists a P-linearly inde- 
pendent subsystem { f,( ., P), g ,  ( . , P ) ,  . . . , g, ( ., P))  of ( , P) , i = 0 ,  . . . , p ,  
fd ' ) ( . ,  P) -JOj ,  j = 0, . . . , p ,  k ( . ,  P ) - ~ ( k ( . ,  2'))) generating the same space 
and fulfilling 
(10.3) ~ ( : p , * ( f o ( , p ) , g ( , ~ ) ) :  P E U ; ) ) .  

Without Ioss of generality we may assume that fo ( ., P,)  and gi ( , P,) 
are P,-uncorrelated. Otherwise, we replace g i ( . ,  P) by 

g f ( . t P )  := gi(.,P)-P,(fo(.,P*)gi(., P,))a,-, lf ,(  ,PI-  
Notice that (10.3) and the following statements remain valid for gi( , P). 
Moreover, there exists a polynomial M (  , , P)  the coefficients of which 

are continuous at P ,  such that 

(10.4) ~u~ (., P), g (., P), P) = ~ ~ ( 7 ,  y", P) + E ( . ,  P) Pn-a.e. 

From Lemma (9.70), (4.3), (4.6X and (10.4) we get 

with respect to U,,,(P,). 
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By Lemma 3 in 163, p. 245, we see from the choice of c, (cf, (4.5)) that 
F,, n EN,  is asymptotically similar of level a+ o (n- i12). 

Proof of Proposi t ion (4.25) (i). 
(a) Let V(X (P,)) be given by condition (4.30). Then we infer from (9.76) 

that for every 6 ~ ( 0 , l )  

uniformly for P E  Unag(P*). 
Furthermore, it follows from General Assumption (8.5) that there exists 

a .strong neighborhood U i  c U, such that x(P) E ~ ( x  (P,)) far P E Uk. 
Thus for xCn)(x) E V(x (P,)) and P E  U;, by a Taylor expansion of 

n 

t n-I fciJ1(x,,, t) about x(P), we obtain 
v = l  

(10.6) ~ 1 5 ' -  F~~ (P) = n- l l 2  Ytij)( -, x (P)) + F~~ (P) (@)- x, (P)) + R: ( -, P) , 
where 

g being the function which occurs in L, (x (P,), u,) for f" if la1 = 3. 
By Lemma (9.57), (9.75) and General Assumption (8.5) we have 

with respect to Uric (PI) for every 6 E (0, 1) and some sufficiently small 
E > 0, and 

(10.9) -112 (ijk) II(n 7 ( . , W ) ) )  ,=,,..., I /=n- l1* - '  on 

with respect to UnPB(P,) for every 6 ~ ( 0 ,  1). 
Thus, by Lemma (9.$7), (10.5), (10.6), (10.8), and (10.9), we get 

with respect to UnS8 (P*) for every S E (0, I). 
. Let 

rpij(., P) := f('j)(., x ( P ) ) - F ~ ~ ( P ) - F ~ ~ ~ ( P ) ~ ~ ( . , P ) .  

Using Lemma (9.53, we obtain 

with respect to Unga (P,) for every 6 E (0, 1). 
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In a similar way as above one can show that 

with respect to Un,, (P,) for every 6 E ( 0 , l ) .  

(PI Let 
C,, : = (x E Xn : F ( x )  is invertible) . % .  

As- P 4 Fij (P)  is continuous because of condition (4.29) and the 
continuity of P 4 x (PIl-we have 

G { \ l ( ~ $ ) - ~ i j ( ~ * ) ) i , j = ~  ,....A 2 d) 

for some d > 0 and for all P in some neighborhood U'i c U,. 
Thus 

(10.13) P" (C3 = o (n-'I2) 

uniformly for all P E (P*) for every S E (0 ,  1). 

. I Putting 

ail C ,  P)  := - 4 1  (J')Aj, (PI 4 ~ u  ( ., P) 
we obtain from (10.11) 

(10.14) F!y1(Ajl (P) +n-ll2 EjZ ( ., P)) = dil + n-lizo,, (3) 
with respect to U,,,(P,) for every 6 ~ ( 0 , l )  and, therefore, by (10.13), 

with respect to Un,* (P*) for every 6 ~ ( 0 ,  1). 
From (10.12), (10.15), and a Taylor expansion of x -r xi/' about x = a,, 

we obtain . 

with respect to (P,) for every S E (0, I), where k ( ., P) is given by (4.27). 

proof of Proposition (4.25) (ii). The proof is a simple application of 
Lemma (9.57) and will be omitted. 

P r o  of of The orem (5.1). The theorem follows immediately from 
Lemmas (9.22) and (9.35) applied for Pn,A, n E N ,  0 < A < A,.  

Proof of Corollary (5.11). The corollary follows- immediately from 
Theorems (4.16) and (5.1) if we establish that for every A (0 c A d A,) 
there exists a sequence PnpA E (-P , n E N ,  fulfilling (5.2)-(5.5). We restrict 
ourselves to prove the assertion for fixed A > 0. 



By (5.12), there exists E E (0, 1 )  such that M ( ~  ,,, ( P ,  * f' ( -, x (P,)))  is 
fulfilled for la1 = 1.  Let 

3 + &/4 P := E (0 ,  i) and k1,i := f ( i ' l l l f ( i ) l sg l . '  
6 + 3&/4 

Since P , (f (''1 = 0, we obtain 

Let, furthermore, k,,i := k;,i-P,(Ick,i) and let u be defined by (9.7). 
.From (10.17) aid a Taylor expansion of t -+ f ("( ., t) about x (P*) we 

obtain 

Let F, be a matrix defined by 

F n , i , j  : = P* ( k , ,  f (I' ( ' 7  x (P*) + n -'"An)), i , j = O  ,..., p .  

By a Taylor expansion and (10.18) we have 

Fnai,j = Fi , j f  ?l-1/2 dakFi, jk+O(n-') .  

Thus, F, is invertible if n is sufficiently large, and the inverse, say En, 
admits the expansion 

(10.19) Bn,ij = ~ , ~ + n - ' / '  e i j+O(n-I) ,  ' 

where ( B  1 j  .)., t J = O ,  . ...,p is the inverse of (Fi,j)i,j= ,..., p ,  and 

(10.20) eij : = -Bjk Bit FI,kp ap  . 
Let now % , j ,  n E N ,  j = 0 ,  . . ., p, be defined by 

%,j := n1j2 B n , j i P , ( f ( i ) ( - ,  x ( ~ , ) + n - ' " d o ) ) .  

From (10.19) we obtain 

(10.21) an,j = Arrz Aoj+ n-ll' A2 (ej i  Fik ak + Bji Fiki ak al) + n- R,,j,  

where R,, = 0 (no). 
As %,j is bounded, the signed measure P,,, defined by the P,density 

p, : = I + n - l i 2  a,,j k,,j, belongs to !@ if n is sufficiently large. 
Furthermore, by a simple calculation we obtain 

provided n is sufficiently large. 
I Thus 

, x(P,) = X ( P , ) + ~ - ' / ~  Aa. 
I 
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It follows from (10.21) and the dehition of k , j  that p, can be written 
in the form (5,3) with 

h : = eji (Fik a, +Bji F,, a, a,) f bl, 

rnc : = n1I2 d (nli2 cii A,]+ d q  (Fik a k + ~ , ,  Fill q a,)) fb' Irlfml + 
+ n R m , j K : , j - ~ n , j P * ~ K ~ . j ) .  

Condition (5.4) holds trivially. 
By the choice of P, 

Hence condition (5.5) is fulfilled. 
Proof  of Corol lary (5.15). Let A > 0 and ai := - A $  A,,, i = 0 ,..., p. 

Then for sufficiently large n E N  we have 8, +n-I/2 Aa E 0 ,  and the sequence 
pn : = pgl +,,- 1 1 2 ~ ~  fulfills (5.2). 

We have 

I Hence (5.3)-(5.5) follow easily by conditions (5.12) and (5.16). 
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