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Abstract. Stable random variables with values in C(K) which
can be represented by stochastic integrals with respect to indepen-
dently scattered random stable measures are studied. A related class
of stochastic integrals which are not stable but which also take
values in C(K) and which are in the domain of normal attraction
of the stable random variables is introduced. Particular attention is
paid to the Fourier transform of random measures on R". These
results extend recent work of Araujo and Marcus, and Giné.

1. Introduction. By C(K) we mean, as usual, the Banach space of

_continuous complex-valued functions on a compact metric space with the

sup norm. In the case where K. = [—1/2,1/2]" a sufficient condition for
continuity and a central limit theorem were obtained in [8] for random
Fourier series in which the random variables have finite second moments.
This was generalized by Fernique [3] to a class of second order stochastic
integrals. In [10] the continuity conditions were extended to random Fourier
series in which the random variables did not have finite second moments.
Moreover, particular attention was paid to the case in which the random
variables -were real symmetric stable of index p (1 < p < 2). These latter

series induce stable measures on C([—1/2, 1/2]"), and hence were referred

to as stable processes with continuous sample paths. In [1], following
Fernique’s [3] extension of [8], a continuity result was given for stable
processes represented by stochastic integrals which included the random
Fourier series as a special case. In this paper* we generalize this class of

* The research of the first-named author was carried out at the Instituto Venezolano
de Investigaciones Cientificas and at the Universitat' Autonoma de Barcelona. The second-

named author was supported in part by a grant from the National Science Foundation, U.S.A..
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stochastic integrals to include continuous processes in the domain of
attraction of stable processes. Our main result is given in Theorem 4.1.
The statement of the theorem appears cumbersome but we give some
interesting examples in Sections 3 and 4 to which these conditions readily
apply. We also consider a more general class of stochastic integrals that
give rise to continuous processes on C(K) and obtain a central limit
theorem for them. This generalizes results of [1] and [6] and is presented
in Theorem 4.2.

In Section 2 we include some known results on sums of random variables
which have distribution functions dominated by those of stable random
variables and a modification of a result of Pisier [14]. In Section 3 we
give examples of measures and, consequently, of stochastic integrals which
satisfy the conditions of our main results. These are given in Section 4.

‘2. Preliminaries. We will need two lemmas. The first is generally known
but for lack of a suitable reference we will prove it here. We denote by
{&,} a Rademacher sequence, that is a sequence of independent identically
distributed symmetric random variables taking on the values +1.

LemMa 2.1. Let {a,} be a sequence of complex numbers, let {g} be
a Rademacher sequence, and let {n,} be a sequence of complex-valued random
variables not necessarily independent but independent of {¢}. Assume that
Jor some pe(0,2) and a > 0 :

@.1)  suptPlml >t} <a, t>0.
k
Then
4—
(2.2) P{IZa,‘akm,l >t} < u(z 2)(2 lal?)t™?, t=0.
k k - [

. Furthermore, there exist finite constants C and C' depending on o, p, and
q such that for 0 < g<p

(2.3) = (E];aksknkl")”q < c@m,‘gv)""*'
and
24) ELT 1Al ] < (3 la)”.

Proof. Let {n,} be defined on the probability space (2,,%,, P,), let
{e.} be defined on the probability space (2,, #,, P,), and let E1 and E,
be the correspondmg expectation operators. The series Z ay &1, is defined

on the product probability space, which we denote by (Q,#, P), with
expectation operator E. Let I denote the indicator function of the set A.
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We have.

(2.5) P{| ; ayem| >t} = E P, | ; aeem (@) > 1},

where w,; € 2,. Clearly, .

(26) P, {[;qksknk(wi), >t} =P, {’Zaksknk(wl)f > t,sup |ay 1z ()] > £} +
. +P, {lZakank(wl)[ > 1, sup Ia,,n,,(wl)[ t}
< .5’; I[laknk(wl)l>:]+

+t7? ; la? I (@) Tagnyopyi<a -
Applying E to both sides of (2.6) and using (2.5) we get
27 P{IZak Ek’hcl >t < Z P{laym| > t}+1t~ 22 |agl E il Igmi<n
By (2.1) we have |
;P{lakr’kl >t} < oc(zk: |af?)t=?

and
t/l akl . t/\ ak|

E n? Inggny < = !, udP(Iml < u) <2 g uP {ln| > u}du

tfayl

< 2 I u'"Pdu = 202—p)”  (t/lal)*"*.

Substltutmg these last two inequalities into (2.7) we get (2.2).
We now obtain (2.3). Without loss of generahty we may assume that

Z |ak|” =1; let
().
=P
Then

Elzk:“kskﬂk’qF q guq"IP{lzk:akeknkl > u}du

1 00
S qutT dutyg [uT P du = 1499 (-9 7",
1

which implies (2.3).
For (24) we use Khintchine’s inequality (see, e.g., [7], p. 66). This gives us

E, , Z aksk ﬂk(wl)l C" Z |l |'hc(w1)| )q/2
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where C” is a constant depending on q. Therefore
(B( Y lamd)*)" < (€)1 (E| L apeen)"
k- k

and (2.4) follows from (2.3).

Next we give a simple but useful criterion for weak convergence which
elaborates on a result of Pisier ([14], Theorem 1.3). Let S be a separable
metric space. It is well known that the metric

(2.8) d(X,Y)=inf{e > 0: P{IX-Y| > ¢} <e}

(X.and Y are S-valued random variables) metrizes the topology of convergence
in probability. Note also that d(X,Y) < (E|X~—Y|[)2 as can readily be
shown using Chebyshev’s inequality. As usual, the law of X is denoted
by Z(X). _

LemMMA 2.2. Let B be a separable Banach space and {X,} a sequence of
B-valued random variables such that for each ¢ > 0 there exists a sequence
{Y,:} of B-valued random variables satisfying

(2.9) {ZL(Y,.)} converges weakly,
(2.10)  there exists n(e) < o such that, for n > n(e), d(X,, Y,.) < e.
Then {Z (X,)} converges weakly and the limit is
211) w-lim £ (X,) = whj% [w-lim & (%,)].
Proof. Let 2 (B) denote the set of Borel measures on B. The Prokhorov
metric on 2 (B) is given by
¢(u,v) = inf {e > 0: p(F) < v(F)+e, F < B, F closed},

where u,ve#(B) and F, = {x: |[x—y| < ¢ for some yeF}. The weak
topology of 2 (B) is metrizable by ¢ and (#(B),g) is a complete metric
“space ([15], Theorem 1.11). Note also that for X, YeB

(2.12) (L (X), Z (V) < d(X, Y).

By (29), {Z(¥,,)} converges weakly for each & > 0. Let ¥, denote the
B-valued  random variable associated with w-lim Z(Y,,). Then, by (2.9),

(2.10), (2.12), and the triangle inequality, it is easy to show that .
o(Z(X), Z2(%) <e+e and (L (X)), ZL(Y) < e for n> n(e).

This, together with the completeness of (#(B), g), shows that {&£ (X,)}
and {&Z (Y,)} both converge and that their limits coincide.

3. A class of random measures and random integrals. Let (2, #, P) be
a probability space and (S, X) a measurable space. Let M = M (-, w), we 2,
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be a random measure on (S,Z). That is, if A4,,...,4,€S are disjoint
measurable sets, then

M(" , @) = i M(4;, ) as.,

i=1 i=

and if furthermore U A;TA, then Z M (4;, w) converges to M(4,w) in
probability. We w111 requlre M to have the following properties:
(3.1) Let A,eX (k = 1,2,..) be disjoint and let {&} be a.Rademacher

sequence independent of M. Then {M(A4,)} and {e, M (4)} have the

same probability law.

(3.2) There exists a real positive finite measure m on (S, ZX) such that, for
each finite collection of disjoint sets Ay, ..., A,€ X, the random vector
(M(4,),...,M(A4,) is in the domain of normal attraction of
((m(A.)776,, ..., (m(4,))"*6,), where the random variables 6,,...,6,
are independent identically distributed and E exp [it0,] = exp [ —|t|],

—00 < < 0.
M(A) }
3.3 lim sup ¢* P{ ——— 1 >ty < c for some constant c.
( ) = AEE (m(A))l/p f

The first of these properties is that M has sign-invariant increments.
The next two imply, in an appropriate sense, that M is in the domain
of normal attraction of some independently scattered random stable measure
with control measure m. (This is defined in Example 1 which follows.)
Note that “(M(4,), ... . M (4,) is in the domain of normal attraction of
((m (Al))”"ﬂl,...,( (A,,) pB)’ means that

& [k Z(M (A1) oo Mi(A))] = £ [(m(40) 71, ... (m (A7) 7*0,)].

where M; are mdependent copies of M. We remark that if M has 1ndependent
increments, then the condition

(3.2 For each AeX, M(A) is in the domam of normal attractlon of

(m(A))''*0, where Eexp [itd] = exp [—[t]], —o0 <t < .

implies condition (3.2), but we do not know if the implication is true in
the more general situation of sign-invariant increments (it is true in the
case p = 2). »
We give' some examples of random measures M satisfying (3.1)-(3.3).
Example 1. Independently scattered random stable measures. Let m be

a positive finite measure on (S,Z2). For each measurable set AeZ‘ we
define M (A4) by

E exp [itM(A)] = exp [=m(A)|iF], —o <t < 00, pe(0,2).
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For A, nA, = Q) we take M(4,) and M(A,) to be independent. This
random set function can be extended to all of (S, X) by the Kolmogorov
extension theorem. The result is a random measure on (S,2) with
LM@A) =2 ((m(A))”" 6’). This shows that (3.2) (hence (3.2)) and (3.3) are
satisfied; (3.1) is clearly satisfied since M(A;), M(4,),... are independent
and symmetric for disjoint A4,, A,,...€X. The measure m is called the
control measure of M: '

Example 2. Generalized empirical measures. Let {X,} be a sequence of
random variables with values in (S, Z). Let {g} be a Rademacher sequence
and let {&} be a sequence of real-valued independent random variables
such that

(34) _each &, is in ‘the domain of attraction of 0 and
sup *P{|&| > t} < ¢ for some constant ¢ and ¢ > 0.
k
Assume that the sequences {g}, {¢,}, and {X,} are independent of each
other. Let E,, E., and Ey denote expectations with respect to these
sequences in the product space on which they are defined, as in the proof

of Lemma 2.1.
For {a;} e’ and AeXZ we define

(3.5 M(4) = ; & & S dixpen

and refer to it as a generalized empirical measure. We willl show that it is
a random measure and satisfies (3.1)-(3.3). By (2.3) we have

BB M () < C'(3 @l Tix o)™ -

Therefore, applying Ey we get

" (3.6) E M (A)9 s'cq(; PP {X, € A})*".

For M as given in (3.5) we define the real positive finite medsure m
on (S,2) by

(3.7 | m(A4) = ;lakl”‘P {X,eA}.
1Thus
G8) (EIM (A < C(m(A)Vr.

This inequality gives us the desired convergence properties and shows
that M is a random measure on (S, X). It is easy to see that M satisfies
(31) since, for Al ﬂAz = (D, I[‘YkEAI] =1 lmplles I[XkEAZ] = 0.
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Let P,. denote conditional probability with respect to {X,}. By (2.2) w
obtain

4—
(39 P {‘ ; a ﬁkfkllxkeA]l > t} < C( P —F )( Z |akl I[XkeA])

Applying Ey to both sides, we get

P{M(A) > 1} < c(::z)(m(A))t"’,

and since this is true for -all ¢t > 0, we have -

P{ _MA | t} < c(4_p)t“*’,
which gives us (3.3).

(m( A))llp
Finally, notc that for {X,} fixed, 4,,..., A,€2 disjoint, and «,...,a,

arbitrary, Z Z a8 & ix eay is in the domain of normal attraction of
Q=1 k=

(Z,‘: |ak1p| Z o flxksA,-le)”pg = (Z ; lout” lagl” I[XkEAi])llpH'

This follows from several references (see, e.g., [13], Lemma 5.3 along
with the bottom of p. 89, or [6] Proposition 2.4 together with inequality
(2.2) here). Therefore

n © ' n  © E
(3.10) }irg PP {| Y o kzl @& & Dixeng] > 1) = C 21 kzl locil® laul? Iix e
- i=1 = i=1 k=

for the constant
C = lim*P{|0] > t},
=@ .

whére @ is as in (3.2). By (2.2) and the dominated converg'ence theorem
we can apply Eyx to both sides of (3.10) to get

(3.11) lim t”P{l _Z uM(4) >t =C _Z P m(4),

satisfies condition (3.2) (as Y. o;(m (Ai))” ? 6, has the law of ( Z loc,-l”m(A,-))”" 0).
i=1 i=1
Example 3. Normed sums of random measures M satisfying (3.1)-(3.3).
Let M be a random measure satisfying (3.1)43.3) and let M; be independent
copies of M. Then

n
N,=n"'" Y M,
i=1
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is also a random measure satisfying these conditions. Moreover, (3.3) holds
uniformly in n, that is
>tr s C
1= ®© 4aF g m(A))“"’ }
for some C' < 0.

It is very easy to show this. Indeed, it is immediately seen that N,
satisfies '(3.1) and (3.2). Furthermore, 1nequa11ty (3.12), which implies (3.3),

(3.12) lim sui) t“'P{‘(—N"LA)_

. follows from (2.2). Therefore

N, (4)
P{ (m ()

for some constant C' > 0.

We will now define the stochastic processes that w111 be the object of
our study. Let M be a random measure satisfying (3.1)-(3.3) and let m be
the real positive finite measure associated with M. Let T be some set and
for each re T let f;: (S, Z) » C be a complex-valued function in I ((S, X), m),
0 < p < 2. We define the stochastic integral

(3.13) Xt ={f(x)M(dx), teT.

>'"r} = P{ .;1 n~ 1 M, (A) (m(4)"'7| > :} <C (—::—;’) P

The argument is standard. Let f be a simple function, that is f (x) = y
for xe A;, where {4;} is a disjoint X-measurable cover of S. For such
M(4) )

a function and for 0 < g < p, by (2.3) we have
q\1/q
(E| [ f )M (@9])" = (E | S sy (W )

< C[; il m(4)]'? = C(£ |f (OIP m(dx))'?

for some constant C. Since the simple functions are dense in IZ((S, Z), m),
we can extend the map f— [ fM(dx) to all feI?((S,ZX),m). Thus for
each te T and for X (f) given by (3.13) we see that

(3.14) (EIX Q)" < C([IfIPm@0)?, 0<q<p.

We will particularly be concerned with the case where S = RV, N < oo,
T=1[-1/2,1/2]" and f,(x) = €¥*®,te T,xeR". (The measurable sets are
the Borel sets.) In this case we put

(315 Y() = [ €40 M@x), te[—1/2,1/21%,

and we choose {Y(2): te[—1/2, 1/21"} to be separable. By (3.14) we have
<hyxp P
2

(3.16) (E|Y(t+h)—Y ()9 < c'( sin (dx))”p, 0<gq<p,

for some constant C’' depending on g.
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For a given positive finite measure m we define

Note that d(t, t+h) = o,(h) is a translation invariant pseudometric on T.
One can show this by using the standard sum formula for sin (Chy+ by, x5/2)
and the fact that I7 (R, m) is a metric space.

Our goal is to obtain conditions under which the processes in (3.13) and
(3.15) have continuous versions and satisfy a central limit theorem. To this
end we will associate with each process X as given in (3.13) a stable process
such that if X satisfies a central limit theorem, then its normed sums will
converge to this stable process. We have seen that to each random measure
M satisfying (3.1){3.3) there is associated by (3.2) a -real positive finite
measure m. For this m we define M as the independently scattered random
stable measure given in Example 1 and the processes X and Y, respectively, as

(3.17) o, (h) = ( )

RN

(3.18) @)= g f(x) M@dx), teT,
and ‘
(3.19) _ Y@ = | " Mdx), te[-1/2,1/2]".

It is easy to see that

© (3.20) E exp [u% (9] = exp [ ~( ] ;o m(a) "],

so that {X (t),te T} is a symmetric stable process of order p.

LemMA 3.1. The finite-dimensional distributions of the process {X (t), te T}
given in (3.13) belong to the domain of normal attraction of the corresponding
[finite-dimensional distributions of {X (t),te T} given in (3.18). In particular,
this holds for the special cases Y and Y given in (3.15) and (3.19).

Proof. It is enough to show that, for all finite sets {t;} and {o;},
Z o; X (¢) is in the domain of normal attraction of Z o; X (). This amounts

to proving that for every fel?((S,Z),m) the random variable X
= | f(x)M(dx) is in the domain of normal attraction of X = | f(x) M (dx).
% "8

We observe first that there exists a K > 0 such that

4, — Prob. Math, Statist. 2(2)
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Indeed, if f is a simple function, then smce M satisfies (3.3), we infer

from (2.2) that
I{am 4—p
t P{W(ilflpdm)llp > t} < C<2-—p>

for the same ¢ .as in (3.3). Now, if felI?((S,ZX), m), then there exists
a sequence of simple functions f, such that

{ f,dM { fam
- | £, 1P dm)' " - ({ /1P dm)'”?

in probability, and consequently (3.21) follows.
Now let {X,} be independent copies of X. Then, by (2. 2) and (3.21),

for all n we obtam

(3.22) P{|n1 g X > t} < K( ;:I;>t_"(£ | f1? dm).

This inequality holds for all f e I?((S, 2), m). Consequently, given ¢ > 0,
there exists a simple function felI?((S,ZX), m) such that if X, = g fodM

and if {X,,} are independent copies of {X,}, then for all n

(3.23). din™'? Y X;,n7MP Y X)) < e
i=1 i=1

where d is as given in (2.8). Now, it follows from (3.2) that
Zm Y X, )5 2 (X))
i=1

F ﬁrtherm'ore by the definition of the stochastic integral, & (X,) converges

- weakly to #(X). In view of these remarks and (3.23), Lemma 3.1 follows

now from Lemma 2.2.
Remark 3.1. We may consider stochastic integrals of the form (3.13) in
which the function f; is randomA and independent of M. Let

(Q,%,P) = (Q;xQ2,,F  xF,,P; xPy)

and assume that f, = j;(x,col) depends only on 2, and M on Q,. The

same argument as above, with an additional integration with respect to
P,, gives: »
(i) The random integral

(3.29) ' X(t Wy, ®,) = _ff,(x ) M(dx, w,)

can bé_ deﬁnedforf,eLp(Sle,Zx./'l,mel).
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(ii) The finite-dimensional distributions of X (t,w,,®,) belong to the
domain of normal attraction of
(3.25) Xt,0)= | f@Mdu, o),
SXQy
where (P, %1, §2}) is an independent copy of (Py,%,,£,), M is an indepen-

dently scattered random measure of index p with control measure mx P} on
(Sx ), and we Q.

We will sketch a proof of (ii). Let us consider the random variable
[ f(x, w;)M(dx, w,) with [ E|f|Pdm < c. By Lemma 3.1 we see that for
S - ) :

almost all fixed w, €, this random variable is in the domain of normal
attraction of | f(x, w;)M(dx, ,). This latter random variable is stable

(for w, fixed) and has the same law as ( j |f (x, )P dm(x))'/76;, where

6, is given in (3.2). Therefore, for each culeQ QL PE)=1, we
have

(326)  lim ¢ P, {lsff'(x, ) M(dx, 0,)| >t} = ¢ g |f (¢, w,)|P dm(x).

Also, as in (3.21) but with an additional integration, we can show thaf

’!f(x, col)M(dx,wz)l
tP.P{ (J‘El |f‘pdm)1!p - t} g K
s

for some constant K. Thus we can take expectations in (3 26) to obtain

(3.27) lim t*P{| j fix, col)M(dx o) >t} = ¢ j E|f|Pdm.

The reader can now check, using (3.20), that X (¢, w) in (3. 25) is stable
- with the same law as

( | (e, oy)PdPy (o) dm(x)"70, = (JE LG dm(x)'"6;.

Sx

| Now, using (3.27), the above comment, and repeating the proof of
Lemma 3.1, we obtain (ii).

4. Domains of attraction of stable measures. We first consider

4.1) Y(@) = je"“j’”M(dx), te[—1/2,1/21",
~and the associated stable process
4.2) Y(@) = [ Mdx), te[—-1/2,1/2]",

as defined in (3.15) and (3.19). In this case the integral is taken over RY ,
M is a random measure satisfying (3.1)-(3.3) for a real finite positive measure
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m on R, and M is an independently scattered random stable measure of
index p(1 < p < 2) with control measure m as given in Example 1. We
emphasize that in what follows we take 1 < p < 2. We also have, by (3.16),

@43) (EIY+h)—Y @) < Co,(h), hel[-1, 17%,

forl1 <q< p, where o, (h) is given in (3. 17) and C' is a constant determined
by (3.3). Inequality - (4. 3) also holds with ¥ replacing Y since Y is only

. a special case of the class of processes denoted by Y.

Let y;,(e) = A{he[—1, 17": a,(h) < &}, where 4 is Lebesgue measure.
Put. '

G, ) = sup {y: 4z, () < u}
and let. .- T :
G,= sup o,(u).
uel - 1,1¥
We see that o, is a non-decreasing function on [0, 2"} and 0< G, < G,
Following [11] and [12] we call &, the non-decreasing rearrangement of c,.
We define the integral ‘ -

G, 1)
(4.4) Io)= | I o Bray™ ™ |
where a = ay = 2" and b = by = 4°*!, The following theorem comple-
ments Fernique’s theorem in [3]:
THEOREM 4.1. Let the processes

Y= (Y): te[-1/2,121} and ¥ ={F@): te[~1/2,1/21%

be given as in (4.1) and (4.2). Let {0} be a sequence of positive real numbers
increasing to infinity. If 1(o,) < 0, then the processes

.(4.5) YO = [ &Y M@x, tel[-1/2,1/2],
x| Sap

have continuous sample paths a.s. and converge _ uniformly to Y a.s. Hence Y
has continuous sample paths a.s., and so does Y (as a special case). F urther-
more, Y is in the domain of normal attraction of Y.

~ Note. The continuity of Y is shown by Theorem 3.1 in [1]. There
are some errors in defining ¥ in [1]; also the assertion that Y is a stationary
process is incorrect. We thank Marek Kanter for pointing this out to us.

Proof As a first step in the proof we obtain the inequality

4.6) (E sup |Y (0)|9)'/? < D[m'?+1(q,)],
. teT

-~

where T= [-1/2, 1/2]¥, m = m(R"), and D is a constant. The dependence
of D on M will be discussed in the sequel.
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Now we shall prove (4.6). By the definition of Y ‘there exist Y~
= {Y"(t): te T} of the form

«Q

Yr(t) = Zl exp [i<j’r,j: t>]M(Ar,j)s
j=
where 4,;e4,;€X and {A4,;}>, are disjoint for each r and such that
Y"(t) » Y (t) in probability for each te T. We use the separability of Y to
express the left-hand side of (4.6) as a limit of the same express1on for
the process Y. We have :

@n - E sup |Y(t)|‘1 =q j x?71 P{sup Y (@) > x}dx

=gq j' x?~1 lim P {sup |Y (t)] > x}dx

{11 telt)

where {t;} is a finite set increasing to a dense set of §. By the monotone
convergence theorem, this is equal to ‘

(4.8) hm q j x?- 1P{sup |Y (&)} > x}dx

refle;)
< limg f x?71 hm P{sup Y7 ()| > —} dx
Wt o e leld 1+0

for 6 > 0, since Y"(t) - Y(f) in probability for each teS. The expression
in (4.8) is clearly less than or equal to

fx“ ! lim P{S:elil")lyr(t)l > 1+6}dx

which, by Fatou’s lemma and a change of variables, is nbt greater than
Ilm q(1+6)8 j' x2” 1P{sup Y™ ()] > x}dx = 11m (1+8)E [sup |Y"(1)}1].
teT

Since this is true for all & > 0, we get

@9 - ~ E[sup [Y()IF)"" < lim E[SllPlY'(t)l"]”q

teT

By condition (3.1) we have

(4.10) V0= % o [iChy 05 M(4,),

where {¢;} is a Rademacher sequence independent of M Let (24, ¥4, Py)
be the probablhty space of M and (Q,, #., P,) the probability space of
 {&}, and let E, and E, denote the corresponding expectation operators.
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The process in (4.10) is defined on the product of these two spaces. As
uvsual we denote by E the expéctation with respect to the product space.
F or a fixed w; €2, we consider

e}

Yr(tz (01) = Z exp [i<’1r,js t>J EjM(Ar,jn wl)'
i=1
This is a random Fourier series of the type considered in [11]. It
follows from Theorem 1 in [11] and Holder’s inequality that

4.11) E, [SUPIY’(t @)1
- 1/2
(Ar,i’ wl)} )j| s

o0

o sin s £

i=1

Cyis
2

sin

where C is an absolute constant independent of M. Apply (E,| -9 to

each side of (4.11) to get
(E sup 1Y (2, @)% < c[(E1 I-Zl M?(4,;, 0,)|")"+
te 1=

(= )

By (24) with 5, = M ‘(A,,,-)/(m(A,,i)) we obtain
Bl 3 M2 (4 0] < C7( 3, ma, )

i=1

ru

]

for some absolute constant C”. It follows from Lemma 5 in [11], a slight
generalization -of Lemma 6 in [11], and (2.4) that

. o 1/2\]Ja\1/q
(E1 I({ ;1 S . (4, 0—’1)} ) ) '
m(4,, )}’)]

@ -3} i A ,h
<C” [cl( S m(4, )" +2I ({ Y |sin —%3—
i=1 i=1
where C; is a finite constant. (These arguments can be found in greater
detail in [12].) Putting all this together we have
@4.12) (Esup|Y ()"
teT

in </1r,i ? h 2
2

sin <’1r.i » h)
2 .

P 1/p
m (Ar,i)} )] s

where the only dependence of D upon M comes through the constants
in (24) and (3.3).

< D[( > m4, )+ 1 ({ i

i=1
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Taking the intervals A4, ; sufficiently small we can get

am=(§

from which it follows that the non-increasing rearrangements satisfy |
G,(h) < o, (W+IH, hel[—-1,1]".
We will show in the Appendix that
(4.13) I(o, (k) < o0 <> I(o,(R)+h]) < co.

Given this we can use (4. 9) and the dominated convergence theorem
in (4.12) to obtaln (4.6). To see that

lim G,(#) = o,(%)

(]

2

r 1/p . .
m(fh,;-)) <o+, he[-1,11%,

one can use either Lemma 2.1 in [4] or Lemma 2.1 in [8]. (Note that

these results are given for functions on a compact subset of R. It is

easy to see that they also hold for functions defined on compact subsets of RY)
Now consider ' '

Y- =Y@O-%LO= [ &“M(dx).

By (4.6) we have x|
@14 (Bsup [YO- K@) < D[Im(x > @) "+1(,0],
where |
ap'k(h) E <|x|£ak n <xéh> pm(dx)>1/p_

Note also that the constant D is independent of k since Y- Y, is defined
for the same M. Since the increments {Y;,,— ¥} are sign-invariant, we can
use Lévy’s inequality and (4.14) to obtain

(4.15) E[gulz sup 1Y ()= Y01 < 2D[(m(x| = a))"P+1(5,,)].
jZk te
It is clear from the arguments above relating to dominated convergence
that the limit as k - oo of the right-hand side of (4.15) is zero.
Finally, we observe that

(4.16) - EIR(@+h-Y 0" < Gl

for some constant C,. Therefore, by Kolmogorov’s theorem ([5], p. 170;
note that it also holds for te[—1/2, 1/2]"), Y, has continuous sample paths
a.s. Using this fact together with (4.15) we see that Y is the uniform
limit of continuous functions a.s.
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YVe proceed to show that Y is in the domain of normal attraction
of Y. Let M, be independent copies of M; then

(Y-Y); = _f ewfx) M; (dx)

lx|2 2
are independent copies of (Y—Y;). Consider

S,=n Y (Y=Y = [ €0m Y Mdx).
. =4 - i=1 -

x|z ay
_As shown in Example 3, the random measure n~ '/ Z M; satisfies
(3.1)«(3.3) just like M. Therefore, by (4.14),
417) . - E[ sup |S @® < D[(m(xl = @)"7+1(o,0)].

tel—1/2,1/2,

Now let {Y,;} be independent copies of Y. We have

(E|ntr ;1 (%t e+ )= ¥ @) )

(E ' j' (ei<t+h,x) __ei<t,x)) (n—l/p i Mi (dx))l‘l)l/‘l
- : i=1

|x|<ak
’ 139 4 1/p

sc( [ {sin <x;> m(dx)) < C'Jh.
lx|<'-"k

Thus by Theorem 12.3 in [2], which also holds for te[—1/2, 1/2]", the
sequence {n~1/? Z Y,;} is tight, and since the finite-dimensional distri-
butions of this sequence converge weakly to the finite-dimensional distri-

butions of r( ¢“**> M (dx) by Lemma 3.1, we infer that {£(n™'" ¥ Y, )}
[x[<a - o=l

" converges weakly. By (4.17) we have

n 'n
d(n‘ilp Z Y;,n"”" Z y;“) - 0.
i=1 i=1 .

Thus, by Lemma 2.2, we see that 'Y satisfies the central limit theorem
with norming constants n~ '/ and limiting distribution. Y.
CorOLLARY 4.1. Let the processes '

Y={Y@: te[—12,121"} and Y, = {%(): te[—1/2,1/21"}

be given as in (4.1) and (4.5), where the random measure M now needs
only to satisfy (3.1) and (3.3). Then the process Y, has continuous sample
paths a.s. and converges uniformly to Y a.s. on [—1/2, 1/21V. Therefore, Y has
c“ontinuous ‘sample |path§ as. '
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Proof. Condition (3.2) for M is not used in the proof of the continuity
part of Theorem 4.1. (It is used in Lemma 3.1 and needed only to establish
the central limit theorem for the finite-dimensional distributions of Y.)

Remark 4.1. As we stated above, I (a,,) < oo was shown to be a suf-
ficient condition for the continuity of ¥ in [1]. It was also stated that this
condition is not necessary. Recently, G. Pisier and the second-named author
have shown that

- _t 5w
@18 lp(o,) = £ u(log (b/u))'"?
where a and b are given in (44) and 1 <p < 2, is a sufficient condition
for the continuity of ¥ and as far as we know there are no counterexamples
to suggest that this result might not also be necessary. However, the methods
used do not yet permit us to replace I(c,) by I,(c,) in Theorem 4.1 when
considering either the continuity of Y or the central limit theorem.

We will give some examples of processes (4.1) based on the measures
of Example 2 in Section 3. First, let X, in Example 2 be a random
variable associated with a probability measure on RY. Wthh places unit
mass at A, eR". Then

du < o0,

4.19) X@) = ; ace Eoexp [, 9], te[—1/2,1/27",

where {a,} € ?, {{} satisfies (3.4), and {g} is a Rademacher sequence inde-
pendent of {&}. It is clear that if I(o,) < co, then X (¢) in (4.19) is in
the domain of attraction of

(4.20) X0 = Z ae 0 exp [, ], te[—1/2,127,

where the {6} are as given in (3.2). It is also clear that the control
measure m of the stable process X is discrete, with m({4}) = |a’.

In keeping with the terminology of second order processes, 'we will call
the measure m that enters in the definition of the stable process ¥ in
(3.19) the spectrum of the process. In the example above, the spectrum of
X in (4.20) is discrete. One of the problems that motivated our work was
to find examples of non-stable processes in the domain of attraction of
stable processes with continuous spectra. This is easily done using Exam-
ple 2 of Section 3. Let us take a continuous probability measure v on R",
let {X,} be random variables with distribution v, and let

kz lalP = 1

Then the measure m in (3.7) is exactly v, and if I(o,) < oo for this v,
then processes of the form (4.1) based on this v are in the domain of
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attraction of a stable process with spectrum v. It is interesting to note that,
conditioned on {X,}, the process given in (4.1) is
Y@ = Z a, g & exp [i<X,, )],
k

ie. a random Fourier series. Thus Y is a mixture of random Fourier
series with frequencies distributed according to the measure v.

We now consider stochastic integrals

4.21) Xt ={f,(x)M@dx), tek,
- S

and »

4.22) X)) ={f(x)M@dx), tek,

as defined in (3.13) and (3.18), where M is a random measure - satisfying
(3.1)<3.3) for a real positive measure m on (S, 2) and M is an independently
scattered random stable measure of index p (0 < p < 2) with control
measure m as given in Example 1. Here we take K to be a pseudometric
space with pseudometric = such that

[rel

(423) , [ HY2(K, &)de < 0,

0

where H,(K, &) = log N.(K,¢) and N.(K,¢) is the minimum number of
open balls of radius ¢ in the pseudometric 7, with centers in K, that
cover K. We assume that, for each fixed xeS, f,(x)e C(X, 7). Also, for
each xe S we define

1A, = 1y, 0+ sup IS0

for a fixed sye S,

s,tekK T(S, t)
. . (s,)# 0 R
and assume that
(4.24) : : gllftllfdm < .

(Note that this implies that f, e (S, Z, m) so that (4.21) and (4.22) are
defined.) We also require the following

(4.25) S is a metric space, 2 is its Borel o-algebra, m is tight and
fi: §'— C is continuous for every te K. '

Then we have

THEOREM 4.2. If conditions_ (4.23)-(4.25) are satisfied, then the processes
X = {X(9): teK} and X = {X(t): teK} have continuous sample paths a.s.
and X is in the domain of normal attraction of X.

- Proof, We already know from Lemma 3.1 that the finite-dimen-

sional distributions of X are in the domain of normal attraction of those
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of X. Thus, it is enough to show that if X; are independent copies of X,
“then for every & > 0 there exists an # > 0 such that

~(426) P{ sup |ntP Z (X:0)-X: @) > ¢} <e
S <n

([2], p- 55). Define
kr

Xt = Z S )M (A4,)

(k, finite, -4, ;€ A4,; < S, {A, i}, , disjoint and measurable and r=1,2,..)
such that .

hm Z A, || Sl IE = _[ | filPdm and X' (f) - X(t) in probability

(such a set of partitions exists bééause of assumptions (4 24) and (4.25),
and by the definition of the stochastic 1ntegral) Then, as in (4.9), we infer:
that, for 0 < g < p,

4.27) (E sup ln"”” i (X,-‘(S)—Xi(t))lq)uq
s,tekK i=1
(s, <n

< lim (E sup |~ > (X7 (s)— X7 (9)]*)".
r=wo s,teK i=1
(s, 1) <#

Now let {¢;} be a Rademacher array (ie. a family of independent
identically distributed symmetric random variables each one taking on the
values +1) and let {M,} be mdependent copies of M and 1ndependent of
{e”} Wnte

i Y Z ke M)

Then Z; is equivalent in law to Z X:/n!'?. Define also

G(n,r) = ( m e Z Z £ Ge DIZ ME (4, )7

ci=1 j=1

and consider the process Z.(t)/G(n,r),t€ K. This is a subgaussian process

and, clearly,
F (R _ P 2\1/2
(EE ).____Z,, (=2, ) < 1(s, 1).

G(n,7)
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Therefore, by Theorem 4.1 in [8] (see Theorem 2.3.1 in [12] for a better
proof), we have
E, sup |Ze(s)—ZL (@) < C'g() G (n,7),

s,teK
r(s <y

1
where

n
gm) = [ Hi*(K, e)de+n(loglog n)t* >0 as n— 0,
0

“and C’ is a constant. Note that Theorem 4.1 in [8] is true for (K, 1) without

assuming compactness of K; compactness- is necessary only if metrics other
than t are considered. Now let r, be such that, for r > ry,

k, ‘
Y m(4 )| S E < 21 L2 dm;

i=1

then for r > r, and ¢ < min (1, p) we obtain

(4.28) (E sup ln_”” i (Xf(s)—Xf(t»lq)w <Cygm (E(G(”’r»q)llq‘
,teK i=1
T(s,2) <1 "

k"
< CCyg() Z Ilﬁ(/lr Mim(4,;) < 2CC g(n) .f 15117 dm,

where in the second inequality we use (2. 3) Since g(n) — 0, (4. 27) and (4.28)
yield (4.26).

Remark 4.2. The continuity part of Theorem 4.2 was proved for
processes of the form (4.22) in [1] and [6]. If. we take f(x) = “** for
xeR" and te[—1/2,1/2]" in (4.21), we get the processes considered in
Theorem 4.1. Theorem 4.2 is weaker than Theorem 4.1 in this case, but
it is shown in [1] that, depending upon the smoothness properties of m,
it can be quite good. :

Remark 4.3. Let 7' be a pseudometric on K. If (K, 1) and (K, 1) are
equivalent, then Theorem 4.2 shows that X and X have continuous sample

paths as. with respect to (K, 1) and that X is in the domain of normal
attraction of X in C(K, 7). In particular, if K is a compact subset of

R and ¢ is continuous with respect to the ordinary Euclidean metric, then

(4.23)-(4.25) imply that ‘X and X take values in C(K) and that X is in-

the domain of normal attraction of X in C(K), where C(K) is the space
of continuous functions on K with the Euclidean metric. -

Remark 4.4. We can extend Theorem 4.2 by taking f: (2, #, P) » C(K)
to be a C(K)-valued random variable independent of the random measure
M and satisfying

(4.29) s[ E|l £, ()2 m(dx) < oo
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and
(4.30)  f.(x, w) is a continuous function of xS for every te K and almost
every wef2.
Since (4.29) implies
[Elf,(x)Pm(dx) < oo for every teK,
S .

we can -define

@31 X(t) = X(t,0;, 0,) = If(x ;) M(dx, wz) teK,‘

as in Remark 3.1. From (i) in that remark it is obvious that the finite-
dimensional distributions of X (z) belong to the domain of normal attraction
- of the corresponding finite-dimensional distributions of

X@= | faM,
X0y :

where M is the independently scattered symmetric stable measure of index
p€(0,2) with control measure m = mx Pj. Thus, in order to show that X
is in the domain of normal attraction of X, we need only to prove that

{£(n Y X,)} is uniformly ﬁght, where the processes X; are independent
i=1 :

copies of X. From the proof of Theorem 4.2 it follows that, for almost
every w; €2,

(432 B, sup |n=1p Z (x; (s )= X,(t, op))[*
r(:if<'1

[2CK9(n)(I I f(wp)I?dm)!/?]?, 0 < g < min(l, p).

Therefore, an inequality analogous to (4.26) for the processes X; under
consideration here follows by taking expectation with respect to E; on both
sides of (4.32) and applying Chebyshev’s inequality.

We now specialize Remark 4.4 to random series. Let {£;} be the sequence
of mdependent random variables satisfying (2.1), {¢} a Rademacher series
independent of {&.}, and {X,(f),te K} a sequence of processes defined on
K, independent of {g,, &} and such that '

2. ElX,l? < oo,
' k=1
where 7 is a pseudometric on K satisfying (4.23). Then the process

X(t) = ki Xad, teK,1),
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is sample continuous and belongs to the domain of normal attraction of
the (sample continuous) stable process

X@)= | &'X,00)M@Ek o), 0), tekK,1),
NXQ'I
where {a,}el’, a, > 0, and M is the independently scattered symmetric

stable measure of index p and with control measure m = mx Py, m{k) = af.
This result follows from Remark 4.4 by observing that if M {k} = a, &,

k=1,2,..., then

X(0) = [ & X, (0 M (dk)

‘a{nd that X,(t, w,) is obviously continuous in k for each t and w,.

~ Appendix. In Theorem 4.1 we assume that I(s,) < oo. It is elementary
to see that I(h) < co (i.e. 6,(h) = h). We will use the following lemma to
show that these two conditions imply I(s,+h) < oo, that is (4.13).

- LEMMA A.l. Let K be a metric or pseudometric space and let (s, 1),
i =1, 2, be pseudometrics on K. Let N (K, ¢), i = 1,2, denote the minimum
number of open balls of radius ¢ in the metric or pseudometric 1,, with
centers in K, necessary to cover K. Then '

(A.1) N 4., (K, 4e) < N (K, )N, (K, &)

Proof. The lemma is obv1ous1y true if N (K,e) = o for some i. Thus
we assume N, (K, &) < o0, i =1,2. Given e > 0, there exists a cover of
K by N, (K, s) balls 4; of radius & with respect to 7, and centers
a;eK; s1m11ar1y, there exlsts a cover by N,; (K, ¢) balls B, of radius ¢ with
respect to 7, and centers b, eK. For 1<j< N, (K,e) and 1<k

N.,(K,¢) we write Cy = A;n B, and note that K = U Cy. Let cjke Ci
1f C_,k # @ and consider
Dy = {u: ty(cpp, w)+7,(cn, ) < 4e}.

To obtain (A.1) we show that C; < D;,. Let xeCy; then 7,(a;, x) <&
and 1, (b, x) < &. Therefore 7, (cy, X) < 1 (e, a;)+71(a;, X) < 2¢ and, sim-
ilarly, t;(cy, x) < 2e. This completes the proof.

Using Lemma A.1 we have

oo

J (log N., .., (K,4e))"de < [ (log N, (K, &))'*de+ [ (log N, (K, &))*?*ds.
(1] 0 0 :
Taking K = [—1,1]" and using Lemma 5 (17) in [11], we get (4.13).
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