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Abstract. Stable, random variables'with values in C [ K )  which 
can be represented by stochastic integrals ' with respect to indepen- 
dently scattered random stable measures are studied. A related class 
of stochastic integrals which are n o t  stable but which also take 
values in C ( K )  and which are in the domain of normal attraction 
of the stable random variables is introduced. Particular attention is 
paid to the Fourier transform of random measures on RN. These 
results extend recent work of Araujo and Marcus, and Gini. 

1. Introduction. By C ( K )  we mean, as usual, the Banach space of 
continuous complex-valued functions on a compact metric space with the 
sup norm. In the case where K = [-1/2, 1/2IN a sufficient condition for 
continuity and a central limit theorem were obtained in [8] for random 
Fourier series in which the random variables have finite second moments. 
This was generalized by Fernique 131 to a class of second order stochastic 
integrals. In [lo] the continuity conditions were extended to random Fourier 
series in which the random variables did not have finite second moments. 
Moreover, particular attention was paid to the case in which the random 
variables were real symmetric stable of index p (1 < p < 2). These latter 
series induce stable measures on C ( [ -  1/2,1/2IN), and hence were referred 
to as stable processes with continuous sample .paths. In [I], following 
Fernique's [3] extension of [8], a continuity result was given for stable 
processes represented by stochastic integrals which included the random 
Fourier series as a special case. In this paper* we generalize this class of 

* The research of the lirst-named author was carried out at the Institute Venezolano 
de Investigaciones Cientificas and at  the Universitat Authnoma de Barcelona. The second- 
named author was supported in part by a grant from the National Science Foundation, U.S.A. 
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stochastic integrals to include continuous processes in the domain of 
attraction of stable processes. Our main result is given in Theorem 4.1. 
The statement of the theorem appears cumbersome but we give some 
interesting examples in Sections 3 and 4 to which these conditions readily 
apply. We also consider a more general cIass of stochastic integrals that 
give rise to continuous processes on C(K) and obtain a central limit 
theorem for them. This generalizes results of [l J and [6] and is presented 
in Theorem 4.2. 

In Section 2 we include some known results on sums of random variables 
which hake distribution functions dominated by those of stable random 
variables and a modification of a result of Pisier [14]. In Section 3 we 
give examples of measures and, consequently, of stochastic integtals which 
satisfy the conditions of our main results. These are given in Section 4. 

2. Preliminaries. We will need two lemmas. The first is generaIIy known 
but for lack of a suitable reference we will prove it here. We denote by 
{ek)  a Rademmher sequence, that is a sequence of independent identically 
distributed symmetric random variables taking on the values + 1. 

LEMMA 2.1. Let (a,) be a sequence of complex numbers, kt (8,) be 
a Rdernmher sequence, and let {qk) be a sequence of complex-ualwd random 
variables not necessarily independent but independent of (ek). Assume that 
for some p ~ ( 0 , 2 )  Qnd a > 0 

(2.1) s u p t P P ( J q k J > t )  < a ,  t > O .  
k 

Then 

Furthermore, there exist ,finite constants C and C' depending on a, p, and 
q such that for 0 < q < p 

and 

Proof. Let (q,) be defined on the probability space (Q1,tF1, PI), let 
( E ~ )  be defined on the probability space (a,, 5,, P,), and let El and E2 

! be the corresponding expectation operators. The series z akEk& is defined 
- ,  k 

i 
I on the product probability space, which we denote by ( Q , 9 , P ) ,  with 
I expectation operator E. Let IIAl denote the indicator function of the set A.  
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We have 

(2.5) ~ { I z a k ~ k ~ k I  > f) = ~ i p , ( / ~ a ~ & k ' ? k t , ( m i ) [  > t } ~  
k k 

where w ,  E 4. Clearly, 

(2.6) P2 { l x a k & k % ( w ~ 1  > t )  = p2 ( l x a k c k ' ? k ( o l ) l  > t,sup 1 4 ~ k ( ~ l ) l  > t )+  
k k k 

Applying El to both sides of (2.6) and using ( 2 . 5 )  we get 

By (2.1) we have 

C k P{lakskl > r) .(C k ~ a t l q t - ~  

and 
l / \ ~ k l  t/l akl 

E kd2 I L I ~ ~ ~ ~ I  st] = u2 dP(I4rl & u) 2 J o 
{ l~ r l  > u)  du 

t/lakl 

$ 2u o ul- 'du = 2 ~ r ( Z - p ) - ' ( t / l a ~ 1 ) ~ - ~ .  

Substituting these last two inequalities into ( 2 . 7 )  we get (2.2). 
We now obtain (2.3). Without loss of generality we may assume that 

lakIP = 1 ; let 
k 

Then 

which implies ( 2 . 3 ) .  
For ( 2 . 4 )  we use Khintchine's inequality (see, e.g., [7], p. 66). This gives us 

1 ~ k ( ~  JI' 3 C"( b k 1 2  I % ( ~ I ) I ' ) ~ ' ~ ~  
k k 
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where C" is a constant depending on q. Therefore 

and (2.4) follows from (2.3). 
Next we give a simple but useful criterion for weak convergence which 

elaborates on a result of Pisier ([14], Theorem 1.3). Let S be a separable 
metric space. It is well known that the metric 

(2.8) d ( X ,  Y )  = inf{r > O :  P{IIX-YJI > E }  B E )  

(X.and Y are S-valued random variables) metrim the topology of convergence 
in probability. Note also that d (X, Y) G (E / ( X  - Y 1/)1i2 as can readily be 
shown using Chebyshev's inequality. As usual, the law of X is denoted 
by 2' (XI. 

LEMMA 2.2. Let B be a separable Banach space and ( X , )  a sequence of 
3-valued random variables such that for each E > 0 there exists a sequence 
(Y,,,) of 3-~alued  random uariables satisfying 

(2.9) (9 (K,J} converges weakly, 

(210) there exists n (E) < co such that, for n > n ( ~ ) ,  d (Xm, Y,,J < E .  

Then (9 (X,)) converges weakly and the limit is 

w- lim 9 (X,) = w-lim [w- lim 9 (%,E)]. 
n-rm E - r O  n+m 

Proof. Let B (B) denote the set of Borel measures on B. The Prokhorov 
metric on 9 ( B )  is given by 

~ ( ~ 4  v)  = i d { &  > 0: p ( f l  < ~ ( F , ) + E ,  F c B ,  F closed}, 

where p, v E 9 (B) and F, = {x: IJx-ylJ < E for some y E F }  . The weak 
topology of P(B) is metrizable by Q and ( Y ( B ) ,  Q)  is a complete metric 
space ([15],  Theorem 1.11). Note also that for X, Y E  B 

By (2.9), (2(~,,,)} converges weakly for each E > 0. Let Y ,  denote the 
B-valued random variable associated with w- lim 9 (K,,). Then, by (2.9), 

n-r m 

(2.10), (2.12), and the triangle inequality, it is easy to show that 

Q ( ~ ( K ) , ~ ' ( Y , , ) ) < E + E '  and ~ ( $ P ( X , ) , 9 ( Y , ) ) < ~ f o r n > n ( ~ ) .  

This, together with the completeness of ( Y ( B ) ,  g), shows that ( 9 ( X , J )  
and { 9 ( Y , ) )  both converge and that their liinits coincide. 

3. A class of random measures and random integrals. Let (Q, 5, P) be 
a probability space and (S, E) a measurable space. Let M = M ( -, w),  w E 62, 
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be a random measure on (S, E). That is, if A,, ..., A,€ S are disjoint 
measurable sets, then 

n n 

and if furthermore (j A, A ,  then M (A,, o) converges to M ( A ,  o) in 
i =  1 i =  1 

probability. We will require M to have the following properties: 

(3.1) - Let A, E Z (k = 1 ,2 ,  . . .) be disjoint and k t  (E,] be a Rademacher 
sequence independent of M .  Then (M(A, ) ]  and (E ,  M(A,)) have the 
same probability law. 

(3.2) T h r e  exists a veal positive jrnite measure m on ( S ,  2) such that, for 
each finite collection of disjoint sets A,, .. ., A, E i, the random vector 
(M(A,) ,  . . ., M (AJ) is in the domain of norm1 attraction of 
( (m(~ , ) )~ l '  B 1 ,  . . . , ( ~ ( A J ) '  jpOn), where the randm variables 8, , . . . , O n  
are independent identically distributed and E exp [itel] = exp [-l tIq,  
-00 < t < 09. 

(3.3) l i m s u p t P ~  (A) > t < c for some constant c. 
t 4 m  A d  {I (m(A))l" I 1 

The first of these properties is that M has sign-invariant increments. 
The next two imply, in an appropriate sense, that M is in the domain 
of normal attraction of some independently scattered random stable measure 
with control measure m. (This is defined in Example 1 which foIlows.) 
Note that "(M (A,) ,  . . . , M (AJ)  is in the domain of normal attraction of 
((m (A,))'" el ,  . . . , (nr (A#" On)'' means that 

where Mi are independent copies of M. We remark that if M has independent 
increments, then the condition 

(3.2)' For each A E  Z, M ( A )  is in the domain of normal attraction of 
(m(A))llpO, where Eexp [itef = exp [- Itlp], - ~o < t < a. 

implies condition (3.2), but we do not know if the implication is true in 
the more general situation of sign-invariant increments (it is true in the 
case p = 2). 

We give some examples of random measures M satisfying (3.1)-(3.3). 
Ex amp 1 e 1. Independently scattered random stable measures. Let m be 

a positive finite measure on (S, 2). For each measurable set A E Z we 
define M (A)  by 
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For A,  n A, = 0 we take M ( A , )  and M (A,) to be independent. This 
random set function can be extended to all of (S, C) by the Kolmogorov 
extension theorem. The result is a random measure on (S, Z) with 
P (M (A)) = Y ((m (A))'/PB). This shows that (3.2)' (hence (3.2)) and (3.3) are 
satisfied; (3.1) is clearly satisfied since M ( A , ) ,  MCA,), . . . are independent 
and symmetric for disjoint A , ,  A,, ... EX. The measure m is called the 
control measure of M. 

Example 2. Generalized empirical measures. Let {Xk) be a sequence of 
random variables with values in (S, E) .  Let (8,) be a Rademacher sequence 
and let itk) be a- sequence of real-valued independent random variables 
such that 

(3.4) each tk is in the domain of attraction of 13 and - 

sup tPP{(<,l  > t )  d c for some constant c and t 2 0. 
k 

Assume that the sequences {g), (&), and {Xk} are independent of each 
other. Let E,, E,,, and Ex denote expectations with respect to these 
sequences in the product space on which they are defined, as in the proof 
of Lemma 21. 

For (a,} E P and A E C we define 

and refer to it as a generalized empirical measure. We will show that it is 
a random measure and satisfies (3.1)-(3.3). By (2.3) we have 

Therefore, applying Ex we get 

For M as given in (3.5) we define the real positive finite measure rn 
on ( S ,  4 by 

Thus 

This inequality gives us the desired convergence properties and shows 
that M is a random measure on (S, E ) .  I is easy to see that M satisfies 
(3.1) since, for A, n A, = @, I,xkE.41, = 1 implies IIXkeAZl = 0 .  



Domain of attraction of stable measures 

Let P,< denote conditional probability with respect to (X,). By (2.2) we 
obtain 

Applying Ex to both sides, we get " 

and since this is true for .all t > 0, we have 

which gives us (3.3). 
Finally, note that, for (X,) fixed, A,, ..., A,EZ disjoint, and a,, ..., a,, 

n m 

arbitrary, x a; akzk tk I~XFAil is in the domain of normal attraction of 
i = l  k= 1 

This follows from several references (see, e.g., [13], Lemma 5.3 along 
with the bottom of p. 89, or [6], Proposition 2.4 together with inequality 
(2.2) here). Therefore 

for the constant 
C = Iim tP P (101 > t) , 

t -m 

where 0 is as in (3.2). By (2.2) and the dominated convergence theorem 
we can apply Ex to both sides of (3.10) to get 

which implies, by the Cramir-Wold theorem, that the random measure M 
n 

satisfies condition (3.2) (as f a, (m(~,))"' 0, has the law of ( jailp m (A~))"' 0). 
i =  1 i = l  

Example 3. Normed sums of random measures M satisfying (3.1)-(3.3). 
Let M be a random measure satisfying (3.1)-(3.3) and let Mi be independent 
copies of M. Then 

A 
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is also a random measure satisfying these conditions. Moreover, (3.3) holds 
uniformly in n, that is . , 

for some C' < m. 
It is very easy to show this. Indeed, it is immediately seen that N ,  

satisfies (3.1) and (3.2). Furthermore, inequality (3.12), which implies (3.31, 
foIlows from (2.2). Therefore 

for some constant C' > 0. 
We will now define the stochastic processes that will be the object of 

our study. Let M be a random measure satisfying (3.1)-(3.3) and let m be 
the real positive finite measure associated with M .  Let T be some set and 
for each r E T let , f ; :  ( S ,  E )  + C be a complex-valued function in LP((S, Z), m), 
0 < p < 2. We define the stochastic integral 

(3.1 3) X(t]=jf , (x)M(dx),  ~ E T .  
T 

The argument is standard. Let f be a simpie jknction; that is f (x) = yi 
for x E Air where {Ai] is a disjoint Z-measurable cover of S. For such 
a function and for 0  < q < p, by (2.3) we have 

for some constant C. Since the simple functions are dense in E((S,  Z), m), 
we can extend the map f + J f M (dx) to all f E E ((S, C), m). Thus for 
each t~ T and for X(t) given by (3.13) we see that 

(3.14) ( E ] X ( t ) l q ) l / q < C ( ~ ~ J ; ( ~ ) ~ p m ( d ~ ) ) l i P ,  O < q < p .  
S 

We will particularly be concerned with the case where S = RN, N < a, 
T = [- 1/2, 1/21N and f; (x) = ei(L3x), t E T, x E RN . (The measurable sets are 
the Bore1 sets.) In this case we put 

(3.15) Y ( t ) =  e i ' t3x)~(dx) ,  t~C-1/2,1/2]~,  
RN 

and we choose (Y (t): t E [- 1/2, 1/21N) to be separable. By (3.14) we have 

for some constant C' depending on q.  
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For a given positive finite measure rn we define 

Note that d ( t ,  t+h) = cr,(h) is a translation invariant pseudometric on T. 
One can show this by using the standard sum formula for sin ( (h ,  fh,, x)/2) 
and the fact that E(P, m) is a metric space. 

Our goal is to obtain conditions under which the processes In (3.13) and 
(3,151 have continuous versions and satisfy a central limit theorem. To this 
end we -will associate with each process X as given in (3.13) a stable process 
such that if X satisfies a central limit theorem, then its normed sums will 
converge to this stable process. We have seen that to each random measure 
1W satisfying (3.1143.3) there is associated by (3.2) a real positive finite 
measure m. For this m we define as the independently scattered random 
stable measure given in Example 1 and the processes 2 and respectively, as 

and . . 

It is easy to see that 

so that { z ( t ) ,  t E T }  is a symmetric stable process of order p. 

LEMMA 3.1. The finite-dimensional distributions of the process { X  (t), t E T }  
given in (3.13) belong to the domain of normal attraction of the corresponding 
,finite-dimensional distributions of (%(t), t~ T) given in (3.18). In particular, 
this holds for the special cases Y and given in (3.15) and (3.19). 

Proof. It is enough to show that, for all finite sets { t i }  and {mi}, 
aiX( tJ  is in the domain of norma1 attraction of oliX(t3.  This amounts 

i i 

to proving that for every f E E ( ( S ,  C), m) the random variable X 
= f (x) M (dx) is in the domain of normal attraction of f = f (x) a (ax). 

S 

We observe first that there exists a K > 0 such that 

sup tPP { ( [ > t  d K .  
t z o  1 

4 - Rob. Math. Statist. 212) 
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Indeed, if f is a simple function, then since M s a t i ~ e s  (3.3), we infer 
from (2.2) that 

for the same c :as in (3.3). Now, if f E LP((s, Z), m), then there exists 
a sequence of shple  functions f ,  such that 

in probability, and consequently (3.21) foIlows. 
Now let ( X , ]  be independent copies of X.  Then, by (2.2) and (3.21), 

for all n we obtain 

This inequality holds for all f E (IS, Z), m). Consequently, given E > 0, 
there exists a simple function S, EH((S, Z'), rn) such that if X, = f , d M  
and if (X,,,) are independent copies of (X,), then for a11 n E 

where d is as given in (2.8). Now, it follows from (3.2) that 

Furthermore, by the definition of the stochastic integral, 9 (ze) converges 
weakly to ~(2). In view of these remarks and (3.23), Lemma 3.1 follows 
now from Lemma 2.2. 

Remark 3.1. We may consider stochastic integrals of the form (3.13) in 
which the function f; is random and independent of M. Let 

( n , F , P )  = ( B , X ~ ~ ; ~ ~ , ~ , X F ~ , P ~ X P , )  

and assume that f ,  = f;(x, o,) depends only on 8, and M on a,. The 
same argument as above, with an additional integration with respect to 
PI , gives : 

(i) The random integral 

(3.24) x(t, w1, (32) = J ft(x, ~ 1 )  W a x 3  ~ 2 )  
s 

can be defined f o r J ; ~ L * ( S x i 2 ~ , C ~ ~ ~ , r n x P ~ ) .  
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(ii) The finite-dimensional distributions of X( t ,  w , ,  w,) belong to the 
domain of proma1 attraction of 

(3.25) S ( t , w > =  1 f , ( u ) ~ ( d u , w ) ,  
S x 0' 1 

where ( P i ,  Fi, 51;) is an independent copy of {Pl, 9,, Q,), M is an indepen- 
dently scattered random measure of i d e x  p with control meamre m x  Pi on 
( S  x Q,), and w E Q. 

We will sketch a proof of (iij. Let us consider the random variable 
1 f (x, a,) M (dx, w,) with j E 1 f lPdm < a. By Lemma 3.1 we see that for 
S s 
almost all fixed w, ECJ, this random variable is in the domain of normal 
attraction of f f (x, w,) fi (dx,  o,). This latter random variable is stable 

S 

(for L L ) ~  fixed) and has the same law as ( J  1 f (x, wl)lPdm(x))li~O1, where 
S 

8, is given in (3.2). Therefore, for each ol E Ul, W; r 62, P(QIR;) = 1, we 
have 

Also, as in (3.21) but with an additiond integration, we can show that 

for some constant K .  Thus we can take expectations in (3.26) to obtain 

(3.27) lim t p ~ ( I j f ( x , ~ , ) ~ ( d x ,  w,)J > t) = c j ~ l f l ~ d m .  
l'ao S S 

The reader can now check, using 13-20), that z ( t ,  a) in (3.25) is stable 
with the same law as 

( 1.h (x, w;)lpdpL @;)dm (x))1'p81 = ( J E ~;(x)l~dm(x))'"6, . 
S x Pi S 

Now, using (3.27), the above comment, and repeating the proof of 
Lemma 3.1, we obtain (iij. 

4. Domains of attraction of stabIe measures. We first consider 

(4.1) Y( t )= [e i< tvx )~ (dx) ,  t~[-1/2,1/2]", 

and the associated stable process 

(4.2) F(t )  = 1 ei('gX> a (dx), t E [- 1/2, 1/2IN, 

as defined in (3.15) and (3.19). In this case the integraI is taken over @, 
M is a random measure satisfying (3.1)-(3.3) for a real finite positive measure 
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m on RN, and M is an independently scattered random stable measure of 
index p (1 < p < 2) with control measure m as given in Example 1. We 
emphasize that in what follows we take 1 < p < 2 .  We also have, by (3.16), 

for 1 < q < p, where ap(h)  is given in (3.17) and C' is a constant determined 
by (3.3). Inequality (4.3) also holds with replacing Y since is only 
a special case of the class of processes denoted by Y. 

Let p,,, (6)  = i { h  .. E . [- 1, 1lN : up (h) < s) , where 1 is Lebesgue measure. 
Put. 

b(4 = SUP IY: IC,Q < u )  
and let 

Gp = sup a, (u). 
"4 - 1.11N 

We see that 5 is a non-decreasing function on [O, zN] and 0 G 5, < SP. 
Following [I11 and [I21 we call 5, the non-decreasing rearrangement of up.  
We define the integral 

" ql(u)  du, 
'(gp' = u (log ( b / ~ ) ) ~ l ~  

where a = + = 2" and b = bN = 4"". The following theorem comple- 
ments Fernique's theorem in [3]:  
THEOREM 4.1. Let the processes 

Y =  ( Y ( t ) :  t ~ [ - 1 / 2 , 1 / 2 I N }  and P =  ( F ( t ) :  t ~ [ - 1 / 2 , 1 / 2 ] ~ ]  

be given as in (4.1) and (4.2). Let {cl,) be a sequence of positive real numbers 
increasing to infinity. If I(a,) < ao , then the processes 

(4.5) 4 ( t ) =  S e i<'9x) M (dx), t E [- 1/2, 1/2IN, 
Ixlsak 

have continuous sample paths a.s. and converge unijiirrnly to Y a.s. Hence Y 
has continuous sample paths a.s., and so does (as a special case). Further- 
more, Y is in the domain of normal attraction of p. 

Note. The continuity of is shown by Theorem 3.1 in [I]. There 
' are some errors in defining in [ I ]  ; aIso the assertion that P is a stationary 
process is incorrect. We thank Marek Kanter for pointing this out to us. 

Proof. As a first step in the proof we obtain the inequality 

where T = [- 1/2, 1/2IN, S = m (RN) , and D is a constant. The dependence 
of D on M will be discussed in the sequel. 
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Now we shall prove (4.6). By the definition of Y there exist Y 
= { Yr ( t ) :  t E T ]  of the form 

where A F J ~ C  and {ArVj)j"=, are disjoint for each r and such that 
Y r ( t )  + Y ( t )  in probability for each t E T. We use the separability of Y to 
express the left-hand side of (4.6) as a limit of the same expression for 
the process P. We have 

E sup I Y (t)lq = q 1 xq-  l P {sup I Y (t)l > x) dx 
IET 0 ~ E T  

m 

= q 1 xq-' lim P(sup IY(t)l > x ) d x ,  
o {ti)? t 4 r i I  

where (ti) is a finite set increasing to a dense set of S .  By the monotone 
convergence theorem, this is equal to 

m 

(4.8) lim q j x4- P {sup ( Y (t)l > x )  dx  
P3t o t€[tiJ 

m 

< Iim q j xq- lim P sup 1 Y' (t)I > --- 
{tilt o 

> d x  
, l + S  . 

for 6 > 0, since Y ( t )  + Y ( t )  in probability for each t ES. The expression 
in (4.8) is clearly less than or equal to 

which, by Fatou's lemma and a change of variables, is not greater than 

Since this is true for all S  7 0, we get 

(4.9) E [sup I Y ( t ) [q] l /q  < !@ E [sup I Y r  (t)lQ]l/Q. 
IET IET 

By condition (3.1) we have 

where { E ~ ]  is a Rademacher sequence independent of M. Let (a1, F,, PI) 
be the probability space of M and (a,, FEY PC) the probability space of 
{e,), and let El and E, denote the corresponding expectation operators. 
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I 
I 
I The process in (4.10) is defined on the product of these two spaces. As 

usual we denote by E the expectation with respect to the product space. 
For a fixed o, E a, we consider 

This is a random Fourier series of the type considered in [ill. It 
follows from   he or em 1 in [ll] and Holder's inequaIity that 

(4.11) E, [sup I Yr(<, ol)lq]'tq 
I ~ E T  

i =  1 
({ i =  2 1 1 sin '"" 2 " 1' MZ (A, ,~ ,  r n , ) ) l t 2 ) ] ,  

where C is an absolute constant independent of M. Apply (E l  I .lq)lJ* to 
each side of (4.11) to get 

I ni l  l / q  @ SUP / r ( f ,a~) l ) I*I  G c[(E~ I f M2(lr,i, + 
i IET i=  1 

By (2.4) with qi = M (A, ,~) / (~(A~,~))"'  we obtain 

for some absolute constant C". It follows from Lemma 5 in [ i l l ,  a slight 
generalization of Lemma 6 in [ I l l ,  and (2.4) that 

112 q  119 

(.I I I ( {  i =  f 1 1 sin '*r; " I ~ ' . z ( A ~ , ~ ,  )I ) 
where C1 is a finite constant. (These arguments can be found in greater 
detail in 1121.) Putting all this together we have 

where the only dependence of D upon M comes through the constants 
in (2.4) and (3.3). 
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Taking the intervals Argi sufficiently small we can get 

from which it follows that the non-increasing rearrangements satisfy 

( h ) +  h ~ [ - l , 1 I N .  

We will show in the Appendix that 

I ~ i v e n  this we can use (4.9) and the dominated convergence theorem I 
in (4.12) to obtain (4.6). To see that 

- - 
lim G, (h) = up (h) 
r'm 

one can use either Lemma 2.1 in [4] or Lemma 2.1 in [8]. (Note that 
these results are given for functions on a compact subset of R.  It is 
easy to see that they also hold for functions defined on compact subsets of RN.) 

Now consider 

By (4.6) we have 

where 

Note also that the constant D is independent of k since Y- Y ,  is defined 
for the same M. Since the increments {I;,, - &) are sign-invariant, we can 
use Livy's inequality and (4.14) to obtain 

(4.15) E [sup sup I Y ( t ) -  q(t)l] < 2 0  [(m (1x1 2 + l ( ~ ~ , ~ ) ]  . 
jsk teT 

It is clear from the arguments above relating to dominated convergence 
that the limit as k + co of the right-hand side of (4.15) is zero. 

Finally, we observe that 

for some constant C,. Therefore, by Kolmogorov's theorem (151, p. 170; 
note that it also holds for t  E [- 1/2, 1/2jN), Y,  has continuous sample paths 
a.s. Using this fact together with (4.15) we see that Y is the uniform 
Iimit of continuous functions a.s. 
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We proceed to show that Y is in the domain of normal attraction 
of F. Let M i  be independent copies of M; then 

are independent copies of (Y- YJ, Consider 

n 

.As shown in ~ x a r n ~ ~ e  3, the random measure n-'IP Mi  satisfies 
(3.1H3.3) just like M. Therefore, by (4.14), f = l  

Now let (I;,,i} be independent copies of &. We have 

Thus by Theorem 12.3 in [2], which also holds for t E [-1/2, 1/21N, the 
n 

sequence ( n - l l ~  x is tight, and since the finite-dimensional distri- 
i =  1 

butions of this sequence converge weakly to the finite-dimensional distri- 
n 

butions of I ei('sX' fi (dx) by Lemma 3.1, we infer that (9 (n-'IP x G,~)] 
IX i =  1 

converges weakly. By (4.17) we have 

Thus, by Lemma 2.2, we see that 'Y satisfies the central limit theorem 
with norming constants n- l i p  and limiting distribution p. 

C~ROLLARY 4.1. Let the processes 

Y =  { Y ( t ) :  t~ [ -1 /2 ,1 /2 ]~ )  and - & =  (&( t ) :  t~ [ -1 /2 ,1 /2 ]~ )  

be given as in (4.1) and (44,  where the random memure M now needs 
only to satisfy (3.1) and (3.3). Then the process % has continuous sample 
paths a.s. and converges uni$ormfy to Y a.s. on [- 112, 1/2IN. Therefore, Y has 
c p n t i k s  sample ,paths a s .  

I I 
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Proof. Condition (3.2) for M is not used in the proof of the continuity 
part of Theorem 4.1. (It is used in Lemma 3.1 and needed only to establish 
the central limit theorem for the finite-dimensional distributions of Y.) 

Remark 4.1. As we stated above, l(cp) < co was shown to be a suf- 
ficient condition for the continuity of in [I]. It was also stated that this 
condition is not necessary. Recently, G. Pisier and the second-named author 
have shown that 

where d and b are given in (4.4) and 1 .< p < 2, is a sufficient condition 
for the continuity of and as far as we know there are no counterexampIes 
to suggest that this result might not also be necessa'ry. However, the methods 
used do not yet permit us to replace I(crp) by I,(u,) in Theorem 4.1 when 
considering either the continuity of Y or the central limit theorem. 

We will give some examples of processes (4.1) based on the measures 
of Example 2 in Section 3. First, let X, in Example 2 be a random 
variable associated with a probability measure on RN which places unit 
mass at A, ER". Then 

(4.19) x (0 = C ak gk tk exp [ i  <Ak, 01, t E C- 1/2, WIN, 
k 

where {ak> E F', (&) satisfies (3.4), and (E,)  is a Rademacher sequence inde- 
pendent of (c,). It is clear that if I(a,) < oo, then X(t) in (4.19) is in 
the domain of attraction of 

(4.20) S ( t ) = C a , ~ , e , e x p [ i ( L ~ , t ) ] ,  t~[-1/2,1/2IN,  
k 

where the (9,) are as given in (3.2). It is also clear that the control 
measure m of the stable process is discrete, with m({Ak}) = takIP. 

In keeping with the terminology of second order processes, we will call 
the measure m that enters in the definition of the stable process I7 in 
(3.19) the spectrum of the process. In the example above, the spectrum of 

in (4.20) is discrete. One of the problems that motivated our work was 
to find examples of non-stable processes in the domain of attraction of 
stable processes with continuous spectra. This is easily done using Exam- 
ple 2 of Section 3. Let us take a continuous probability measure v on RN, 
let {X,) be random variables with distribution v, and let 

Then the measure m in (3.7) is exactly v, and if I(cp) < for this v, 
then processes of the form (4.1) based on this v are in the domain of 
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attraction of a stable process with spectrum v. It is interesting to note that, 
conditioned on {X,), the process given in (4.1) is 

i.e. a random Fourier series. Thus Y is a mixture of random Fourier 
series with frequencies distributed according to the measure v. 

We now consider stochastic integrals 

(4.21) 

and 

as defined in (3.13) and (3.181, where M is a random measure satisfying 
(3.1)-(3.3) for a real positive measure m on (S, Z) and is an independently 
scattered random stable measure of index p (0 < p < 2) with control 
measure m as given in Example 1. Here we take K to be a pseudometric 
space with pseudometric z such that 

where H, (K, E)  = log N ,  (K, 8) and N ,  (K, E) is the minimum number of 
open balls of radius E in the pseudometric Z, with centers in K ,  that 
cover K ,  We assume that, for each fixed x E S, J; (x) E C (K, z). Also, for 
each X E  S we define 

Ilf,(x)ll, = If,o(x)i+ SUP 
' for a fined so E S ,  

s . ~ E K  Z(s, t) 
r(s;t)* 0 . 

and assume that 

(Note that this implies that f ;  E E(S ,  C, m) so that (4.21) and (4.22) are 
defined.) We also require the following 

(4.25) S is a metric space, C is its Borel a-algebra, m is tight and 
f;: S.+ C is continuous for every t E K. 

Then we have 
THEOREM 4.2. If conditions (4.23)-(4.25) are satisfied, then the processes 

X = ( X ( t ) :  t EK) and = (z(t): t EK) have continuous sample paths a.s. 
and X is in the domain of normal attraction of 8 .  

Proof.; We already know from Lemma 3.1 that the finite-dimen- 
sional distributions of X are in the domain of normal attraction of those 
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of 2. Thus, it is enough to show that if Xi are independent copies of X,  
then for every E > 0 there exists an q > 0 such that 

(4.26) P{ sup In-11p x (x,(s)-xi(t))l > E )  < E 
S. ~ E K  i =  1 

([2] p. 55). Define 
kr 

Xr (t) = C l l r , i )  M IAr,i) 
f=1 

-. - - 
(k, finite, - A r Y i ~  ArPi c S ,  {A,~}?=, disjoint and measurable, and r = 1,2, ...) 

I 

such that 

kr 

lim C m(Ar,i) l/ft(Al,i)llf = S Il.f;ll!am and X' (t) -, X (t) in probability 
r-m i = l  S 

(such a set of partitions exists because of assumptions (4.24) and (4.25), 
and by the dehition of the stochastic integral). Then, as in (4.41, we infer 
that, for 0 < q < p, 

(4.27) (E sup In-'" 2 ( ~ ~ ( s ) - X , ( t ) ) / ~ ) " ~  
S.IEK i = l  

< @ (E sup l n - " ~  2 (~; (s ) -~; ( t ) ) l~) '" .  
r+m s . t ~ K  i =  1 

Now let {cij] be a Rademcher array (i.e. a family of independent 
identically distr~buted symmetric random variables each one taking on the 
values + I )  and let (Mi} be independent copies of M and independent of 

Write 
n kr 

n 

Then 2: is equivalent in law to 1 x;/nllp. Define also 
i =  1 

G (n, r) = (n-2tP C C I l  f; (S,j)li: Mi2 (Ar.j))liz 
i = l  j = l  

and consider the process 2; (t)/G (n, r), t E K . This is a subgaussian process 
and, clearly, 

(& 1. z: (t) -2; (s) lzyi2 < Z(S, t). 
G ( n ,  r) 
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Therefore, by Theorem 4.1 in [a] (see Theorem 2.3.1 in 1121 for a better 
proof), we have 

Ec SUP IZ;(~)-Z;(f)l<CIg(tl)G(n,r), , 
a , t d  

r(a,tl<? 

where 
tl 

and C' is a constant. ~ o t e  that Theorem 4.1 in 181 is true for (K, t) without ' 

assuming compactness of K ;  compactness is necessary onIy if metrics other 
than z are considered. Now let r,, be such that, for r > rO,  

then for r > r, and q < min (1, p) we obtain 

(4.28) (E sup ln-l'p (~;(s)-x~(t))I')'" S C ' g ( t l ) ( ~ ( G h , r ~ ) ? ~ "  
s , f K  i =  1 

where in the second inequdity we use (2.3). Since gtq) -, 0, (4.27) and (4.28) 
yield (4.26). 

Remark 4.2. The continuity part of Theorem 4.2 was proved for 
processes of the form (4.22) in [I] and 161. If we take J ( x )  = ei(',"> for 
x € R N  and t ~ [ - 1 / 2 ,  1/2IN in (4.21), we get the processes considered in 
Theorem 4.1. Theorem 4.2 is weaker than Theorem 4.1 in this case, but 
it is shown in [I] that, depending upon the smoothness properties of m, 
it can be quite good. 

Remark 4.3. Let z' be a pseudometric on K.  If (K, z) and (K, z') are 
equivalent, then Theorem 4.2 shows that X and have continuous sample 
paths a.s. with respect to (K, z') and that X is in the domain of normal 
attraction of 2 in C(K, z'). In particular, if K is a compact subset of 
RN and z is continuous with respect to the ordinary Euclidean metric, then 
(4.23)-(4.25) imply that X and 3 take values in C(K) and that X is in 
the domain of normal attraction of in C(K) ,  where C ( K )  is the space 
of continuous functions on K with the Euclidean metric. 

Remark 4.4. We can extend Theorem 4.2 by taking f : (9,9, P) -, ~ ( k )  
to be a C(K)-valued random variable independent of the random measure 
M and satisfying 
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and 
(4.30) f,(x, o) is a continuous function of x E S for every t E K and almost 

every w E 0. 

Since (4.29) implies 

jEIf,(x)Iprn(dx)< % for'every ~ E K ,  
S 

we can -define 

(4.31) . X ( f ) = X ( t , ~ ; , ~ i ) 2 ) = ~ f ; ( x , ~ l ) M { d ~ , ~ 2 ) ,   EX, 

as in Remark 3.1. From (ii) in that remark it is obvious that the h i te -  
dimensional distributions of X (t) belong to the domain of normal attraction 
of the corresponding finite-dimensional distributions of 

where M is the independently scattered symmetric stable measure of index 
p ~ ( 0 , 2 )  with control measure m = rn x P ; .  Thus, in order to show that X 
is in the domain of normal attraction of 2, we need only to prove that 

4 

{9(n-lIp xi)) is uniformly tight, where the processes X i  are independent 
i =  f 

copies of X. From the proof of Theorem 4.2 it follows that, for almost 
every w, E P I ,  

(4.32) E, sup In-'" ( X i ( s ,  el)-Xi(t, ol))r 
a . i ~ K  i =  1 

Therefore, an inequality analogous to (4.26) for the processes Xi under 
consideration here follows by taking expectation with respect to El on both 
sides of (4.32) and applying Chebyshev's inequality. 

We now specialize Remark 4.4 to random series. Let {r,) be the sequence 
of independent random variables satisfying (2.1), ( E ~ )  a Rademacher series 
independent of {c,), and (X,(t), t EK) a sequence of processes defined on 
K ,  independent of {ek, e,) and such that 

CO 

IIXkll! < Oo' 
k= 1 

where z is a pseudometric on K satisfying (4.23). Then the process 
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is sample continuous and belongs to the domain of normal attraction of 
the (sample continuous) stable process 

where {a,) E P, a, > 0, and M is the independently scattered symmetric 
stable measure of index p and with control measure ti = m x P i ,  m {k) = a:. 
This result follows from Remark 4.4 by observing that if M {k) = ak E ,  S , ,  
k = 1 ,2 ,  ..., then 

X ( t )  = j a, X,(t) M (dk) 
9 

and that X,(t, o,) is obviousIy continuous in k for each t and o,. 

Appendix. In Theorem 4.1 we assume that I(G,) < co. It is elementary 
to see that I ( h )  a)< oo (i.e. up(h) = h). We will use the following lemma to 
show that these two conditions imply I(o,+h) < a, that is (4.13). 

LEMMA A.1. Let K be a metric or pseudometric space and let ri (S , t), 
i = 1 ,  2 ,  be pseudometrics on K. Let N , , ( K ,  E), i = 1 , 2 ,  denote the minimum 
number of open bulls of radius E in the metric or pseudometric zi, with 
centers in K ,  necessary to cover K .  Then 

Proof. The lemma is obviously true if N,, (K, E )  = co for some i. Thus 
we assume N , , ( K ,  E )  < co, i = 1,2.  Given E > 0, there exists a cover of 
K by N,,(K,&) balls Aj of radius E with respect to T, and centers 
aj  E K ;  similarly, there exists a cover by NTi ( K ,  E )  balls 3, of radius E with 
respect to z2 and centers b,eK. For 1 < j < N,, (K, E) and 1 S k 
< N,, (K,  E) we write Cjk = Aj n Bk and note that K = (J Cjk.  Let cjk E Cjk 
if Cjk # 0 and consider j,k 

Djk = {u: (cjk, U ) + ~ ~ [ C ~ , ,  U) < 4 ~ )  - 
To obtain (A.1) we show that Cjk c Djk. Let x E C,%; then z, (aj, X) < E 

and z, (b,, x) < E. Therefore z, (c jk ,  X) < z1 (cjk, aj)  + z l  (a j ,  x) < 28 and, sim- 
ilarly, z, (cjk, x)  a)< 2 ~ .  This completes the proof. - 

Using Lemma A.1 we have 
m m m 

(log N,, +,, [ K ,  4 ~ ) ) " ~  d€ < (log N,, (K, &))'I2 d.5 + (log N7, (K, &))'I2d&. 
0 0 0 

Taking K = [-I, 11" and using Lemma 5 (17) in [ll], we get (4.13). 
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