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A SEQUENTIAL CONFIDENCE INTERVAL FOR THE ODDS RATIO 

D. SIEGMUND (S~ANPORQ, CALIFORNIA) 

Abstract. In this paper*, a sequential fixed width confidence 
interval is proposed for the .log odds ratio of a (2 x2)-table. It is 
shown that the proposed interval has asymptotically the correct 
coverage probability and is asymptotically efficient unirormly in the 
unknown parameters. 

1. Introduction. For i = 1 ,2  let sini and Jni = ni-sin, be the numbers 
of successes and failures, respectively, in ni independent Bernoulli trials with 
constant success probability pi on each trial. A simple large sample approx- 
imate confidence interval for the log odds ratio, log l p ,  q2/p2 q,), is 

(1) 1% ( s i n l  f2n2/s2n2 f i n l ) + ~ z  C n l / s l n l  f i n 1  + n 2 / s 2 n 2  f2n211'29 

where 
w 

j ( 2 ~ ) -  exp ( - x2/2)  dx = 42 
=a 

(see 121, p. 35). The cofidence coeffjcient 1-ol is asymptotically correct 
for fixed p ,  and p ,  as min (n,, n,) -, co. 

These intervals have two defects when p, and p2 are near 0 or 1. On 
the one hand, the rate of approach to normality can be very slow, so 
that the use of asymptotic theory is questionable. More importantly, however, 
even with exact calculations, no fixed sample size designs will permit' one 
to estimate the Iog odds ratio by an interval of preassigned width in 
these boundary cases. 

* prepared with partial support of ONR Contract N00014-77-C-0306, NSF Grant MCS 
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5 - Rob. Math. Statist. 32)  



150 D. Siegmund 

For one binomial population with success probability p, Robbins and 
Siegmund [7] proposed a sequential scheme for obtaining approximately 
a coddence interval of preassigned width for log (p/q).  However, they do 
not consider the question of the uniformity of their procedure for p near 
0 or 1, when a sequential procedure would presumably be of the greatest 
value. 

The purpose of this paper is to consider the two-population analogue 
of the procedure of Robbins and Siegmund. The procedure will be seen to 
attain asymptotically the required coverage probability and to be asymptot- 
ically efficient uniformly in 0 < p , ,  pz < 1. 

In Section 2 the one-population case is reviewed, and the results of 
Robbins and Siegmund are appropriately strengthened to provide the tools 
for the two-population problem. It is also shown that the modification of 
the empirical odds ratio, suggested by Haldane [3] as a bias reducing 
device, is inappropriate in the sequential case. 

Section 3 is concerned with the case of two populations. Remarks about 
further extensions are collected in Section 4. 

2. One population. Let x,, x 2 ,  ... be independent with P { x j  = 1) = p, 
P { x j  = 0) = q = 1-p ( j =  1 , 2  ,... ). Let s, = x,+ ... +x, and S, = n-s,,. 
For large n, log (s,Jh) is approximately normally distributed with mean 
log @/q) and variance l / (npq) .  Hence to find a confidence interval for 
log (p/q) of preassigned width or, equivalently, in large samples to estimate 
Iog (p/q) by an estimator with preassigned variance l/c, Robbins and 
Siegmund [7] define 

(2) T =  inf{n: s,S, > n c ) .  
' 

They propose estimating log (p/q) by 

which they show is asymptoticaIIy normally distributed with mean log (plq) 
and variance l/c as c -+ co. The modification of the empirical log odds 
by adding 3 to numerator and denominator was originally suggested by 
Haldane [3] as a bias reducing device' in the fixed sample case. Robbins 
and Siegmund also show that ET - c /pq  as c -+ co. This may be interpreted 
as showing that their procedure is asymptotically efficient in the sense of 
requiring asymptotically about the same number of observations as a fixed 
sample procedure chosen to be appropriate for a value p, which happens 
to be the actual value of p. 

In this section it is shown that the asymptotic normality of (3) holds 
uniformly over 0 < p < 1. This is in marked contrast with the fixed sample 
case, as was noted in the Introduction. It will also be shown that the 
analogue of Haldane's bias reducing device in this sequential context is to 
subtract $ from numerator and denominator of the empirical odds ratio. 
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However, since the effect of this bias reduction on the asymptotic distribution 
is unknown, and because the appropriate modification for the two-sample 
case is likewise unknown, in most of what follows only the unrnodiiied 
empirical odds ratio is considered. 

The main resuIt of this section is Theorem 1. Lemma 1, which was 
obtained by Robbins and Siegmund 171, is of interest in its own right. 
It asserts that the asymptotic efficiency of (2) is uniform in 0 < p < 1. 
The repeated use will be made of the algebraic identity 

(4) s, fa = (4 - P)  (s, - np)  + npq -(sn - npI2/n 

I THEOREM 1. For the stopping rub T defined in (2), uniformly in 0 < p < 1 

x 

@ ( x )  = (24)- '1' j exp (- u2/2) du . 
- m 

The proof utilizes the following lemmas. For the simple proof of Lemma 1 
based on (4), see [7J. 

LEMMA 1. c < p q E T <  (c+l) /[ l -(&)- ' I .  
LEMMA 2. There exists a co such that for all c > c, and all g (0 < p < 1) 

LEMMA 3. For each 6 (0 < E < 1) and c 2 c,, where c0 is defined as in 
Le&a 2, 

P{IsT-pTI 2 E P ~ T )  < x /c2c ,  

where x does not depend on E or c.  

Proof of Lemma 2. Squaring (4) gives 

(s, f J n  - = ( 4 - - ~ ) ~  (3" - npI2 + IPd2 (n - c / ~ q ) ~  + (s, - nd4/n2 + 
+ 2 ((q - P) (s, - np) (pqn - c )  - tq -PI (s, - npI3/n - (npq - c) (sn - n ~ ) ~ / n )  . 

By the Schwarz inequality and Wald's second moment identity, 

IE ~ - P T )  (T-c/pq))l { P ~ E ( T ) E ( T - ~ / P ~ ) ~ } ~ ' ~ .  

Hence, since (sT fr/T-# < 1, Wald's second moment identity yields 
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Taking square roots in this expression, then rearranging terms and 
squaring yields 

( ~ 4 ) ~  E (T- ~ / p q ) ~  s {(pq E T ) ~ ' ~  + ( 1  + 2pq  E T ) I / ~ ) ~  

< 2(1+3pqET) < 2 + 6 ( c + l ) / ( l - l j 4 c ) ,  

where the last inequality follows from Lemma 1. This completes the proof. 
Proof  of Lemma 3. Let 0 < S  < 1 and no = c/pq. By Lemma 2 

P (IT- n,l . > . Scjpq)  d ( 6 ~ ) -  (pq)' E(T- noI2 < 7/a2 c . 

Hence, by Wald's lemma for the second moment and Lemma 1, 

Proof  of Theorem 1. From the mean value theorem one obtains 

c1'2 [log ( ~ T l f r )  - 1% Wqll 

where I ~ T  -pl < IT-' ST - p l ,  and as before no = c / p q .  Hence it suffices to 
show that uniformly in 0 < p  < 1 

lim P { n t t Z  (s, - p T)/(pq)l t2  T < x) = @ (x) and pq/qT ( 1  - qT) 5 1 . 
c-r m 

The second statement follows easily from Lemma 3, and the first may 
be obtained by minor modifications in the standard proof of Anscombe's 
theorem (e.g., [6], p. 390). 

An asymptotically more precise approximation to ET than that provided 
by Lemma 1 ,  although one which is decidedly not uniform in p ,  is 

which is valid fpr all p for which (plq)' is irrational. This result follows 
easily from (4) and Theorem 2 of Lai and Siegmund [4]. 

As an estimator of log (plq), Haldane [3] considered log {(s, +a)/(f, +a)} 
and showed by a Taylor series expansion that the choice of a minimizing 
the asymptotic bias of this estimator is a = 9. The following heuristic 
calculation shows that a = -* is appropriate in the present context. The 
machinery for justifying this calculation may be found in 151. It should 
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be noted that this result is appropriate far the stopping rule T defined by (2). 
It does not carry over to the two-population case discussed in Section 3. 

A two-term Taylor series expansion gives 

log { (ST + a ) / I f ~  + a))  - log (plq) = (ST -P T+ a)/p T- ( A  -q  T+ +)/q T- 

- ( s T - P T ) ' / ~ ( P T ) '  +(fT-4T)2/2(4T)2 + ~ l ' ( c - ' ) .  

Since T c/pq, and hence 

E ( ( s ~ - ~ T ) ~ / T ~ )  l p q ~ - ~ ) ~ E ( ~ ~ - p T ) ~  = b q ~ + ~ ) ~ p q E T -  Cpq)2/c, 
. . 

one obtains 

(6) 

E Clog ((ST + a)/(fi- + a))]  - log b/q) -- E ( (ST - pT)/pqT) + c - I  (q - p) (a - 3). 
It  is proved in the sequel that 

which shows that the right-hand side of (6) is .- c -  ' (q - p ) ( a  + +), leading 
to the optimal choice a  = -+. 

Let tT = ST fT/T-c.  By (4) and Taylor expansions, one obtains 

I 
It is easy to see from (4) that c + EtT = pqE T-pq + o ( l ) ;  and Robbins I 

and Siegmund [7] have obtained E  (T- ~ / p q ) ~  = (q - p)' c/(pq)' + 0 ( 1 ) .  Hence, 
by the asymptotic independence of 5 ,  and c-'I2 (T- c/pq) (see [4]), 

I 

E { (sT-PT)/T)  = ( q - ~ ) - '  ( c + E t ~ )  (pqc-l - ( P ~ C - ' ) ~ ( E ~ T / P ~ +  I )+  

- c- lpq(q-p) ,  
as claimed. 

I 

3. Two populations. Consider again the two-population case described in 
the Introduction and suppose that observations are taken in pairs, one from 
each population, so n ,  = n, = n, say. This restriction is stronger than 
necessary, but it simplifies the subsequent, analysis. It is easy to modify the 
results to accommodate the case in which observations are taken from the 
two populations in an arbitrary fixed ratio. It seems possible to achieve 
a slight reduction in the total expected sample size by choosing the sampling 
rates adaptively, but the fairly small improvement seems not to be worth 
the considerable complication in analysis. 



154 D. Siegmund 

The obvious analogue of the stopping rule (2) is (cf. (1)) 

The main results of this section are Theorems 2 and 3, which correspond 
to Lemma 1 and Theorem 1, respectively, in the single-population case. 
Theorem 2 shows that T defined by (7) is uniformly asymptotically efficient 
and Theorem 3 asserts that it asymptotically provides the correct coverage 
probability uniformly in p ,  , p, . 

THEOREM 2. Uniformly in 0 < p ,  , p2 < 1,  

E T -  ~{(Plql)-1+lp2q2)-11 (c + 03). 

The inequality in one direction is a consequence of the following trivial 
lemma: 

LEMMA 4. For all p ly  p,  (0 < p,, p2 < 1) and all c  

Proof. From (4), WaId's identity and Jensen's inequality one obtains 

c- l  2 E (T  (l/slT f l T +  I/sZT f i T ) )  2 { E ( ~ l T  f ; T / ~ ) ) - l  f {E(s2T f 2 T I T ) } - l  

= (PI 41 ET-E [ ( s ~ T - P ~  T ) 2 / T ] ) - 1 f  ( ~ 2  42 ET-E [ ( S Z T - P ~  

2 {(PI !Ill-l +(P, qz>-'). 

To obtain asymptotic upper bounds on ET it is useful to define (cf. (2)) 

(c) = inf { n  : n/s, fin < 1/c) . 
Since si, J,,/n increases with n, for all a > 1 and B > 1 such that 

l /a  + l/fi = 1 one gets 

With these fixed values of u and f i  there is no ambiguity in writing 
T1 for Tl (ac) and T, for T, (fie). 

It is now possible to complete the proof of Theorem 2. Obviously, by (a), 

Let E > 0 be arbitrary and put y = f i c ( l + ~ ) / p ~ q ~ .  Then 

(1 1) I T z d P <  TzdP+ 1 T,dP 
lT G T21 ITl <T2,T2<~J iT2>yt  

< Y P { T ,  < T2}+(P2q2)-1fi~P{T, > Y ) +  

+ 1 IT,-(P2q2)-'ficldP- 
f T 2  >YI 
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Confidence interval for the odds ratio 

By Lemma 2 

(Pzq~)-~Bcp{Tz > YI 7@2q2)-1~-2; 

and by the Schwarz inequality and Lemma 2 again 

5 IG-Ip2qJ-lBcldP 
{ T ~ > Y J  

C ( P 2 q 2 ) - 2 E l ~ z q 2 T 2 - P ~ 1 2 P ( ~ Z  > Y ) I ~ / ~  7(PZq2)-1~-1. 

Putting these inequalities together with (9), (101, and (11) yields 

E T d  c((pl q,)-' +@2q, ) -1) ( l+&+14/~2~) ,  

which completes the proof, as E is arbitrarily small. 

THEOREM 3. For T defined by (71, unvormly in 0 < p,, p, < 1 

Iim (cli2 [log @IT ~ Z T / S Z T  f i ~ ) - ] ~ g  (Pi ~ Z / P Z  9111 x) = 
c+ m 

With the help of Lemma 5 below, the proof of Theorem 3 may be 
carried out: along the same lines as the proof of Theorem 1. 

LEMMA 5. Let p = ((p, q,)-l+(p2q,)-')-l. For all E > 0 and all Earge c 
(not depending on E )  

Proof .  The proof of Theorem 2 shows that 

The same upper bound for P {T < c (1 -t) p - l }  follows by a similar 
calculation and the observation that T >  min (TI (ac), T,(Pc)). 

4. Remarks. (a) Unpublished numerical computations of H. Levene in the 
one-sample case show that the asymptotic theory of Section 2 provides 
good approximations for c 2 10 and reasonable ones for c as small as 3. 
It seems likely that similar results hold for two populations. 

(b) The heuristic principle which suggests the stopping rules (2) and (7) 
is quite common in the literature of fixed precision estimation (e.g., [I]), 
and it leads to reasonable stopping rules for more complicated log linear 
models. However, the uniform asymptotic theory developed here seems to 
require new ideas for very simple extensions. 

One important generalization is a set of (2 x 2)-tables with equal odds 
ratios. Appropriate asymptotic theory might involve a large number of 
observations from each of a smaII number of tables or a Iarge number 
of tables. 
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Another interesting variation is log linear regression. In tlus case one 
might also wish to consider sequential design in/selecting values of the 
independent variable. 
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