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Abstract. Let K, c Rr be the r-dimensional cartesian product of 
the set of positive integers and let {Xi, k E K,} be a random 
field - a collection of independent, not necessarily identically distri- 
buted random variables with mean zero. Under appropriate additional 
assumptions we derive for {Xi, &E K,} strong limit theorems of the 
same type as the ErdOs-R6nyi law of large numbers. Our results ate 
based on the large deviation theorem of Petrov extended to random 
fields. 

1. Introduction. Let K ,  be the set of r-tuples 

k = ( k l l ) ,  k ( 2 ) ,  ..., k(r ) )  

with k( i ) ,  1 ,( j < r ,  taken from the set JY of all positive integers and let 

The sets K ,  and K: can be partially ordered by the relation 

k < m e k ( j ) < m ( j )  for j =  1 , 2  ,..., r .  
Write 

r 

where Ex] denotes the greatest integer less than or equal to x ,  



180 , A.M. ZapaIa 

In what follows, ii -* oo means that kCi) 4 a- for j = 1 , 2 ,  ..., r .  
We shall study a random field {X-,, EE K,), consisted of independent 

random variables indexed by K,, with zero means, defined on the same 
probability space (O, 9, P). Let us put 

and 

s (n, n+ K;)} C (N, Kg)) = max 
i~<i<i~-d$ JES' (El E+ IT!'} $ (Q (El ~ $ 1 ) )  ' 

where Kg) 4 N and 1,6 (@ (ii, K:))), a = 1 , 2 ,  will be defined precisely in 
the sequel. 

To define C +(e(E, ~ $ 1 ) )  consider real functions 

:  + 1 < j <  r ,  
satisfying the following conditions: 

(1) $ j ,  1 d j < r, are continuous and monotonically increasing to infinity; 

(4) theset 

+j(AJfkm) 
j =  1 

IXI - m IEI = 01, 

where d" is a positive constant, is nonempty. 

In addition, let us put 

~ $ ) ~ = + ; ' ( 2 1 - ' c ~ - ~ " ) ~ l o g ~ ( l ) ) ,  l < j < r ,  

where 1 and A(") (a = 1,2) are positive constants, 

Kg' = [R;' Cj) / At")] , 

E i )  = ( K g )  (I), Kg) (21, . . . , Kg) (r)) , 

~ ( ~ 0 1  = s) = (~111, ~ ( 2 1 ,  - . - 1   PO'--^), s, pIj+1)1 --., p(r)), 

mj(n, Kg)) = min ~ ~ ~ ~ + Q - i ) ( ~ ~ ) - l = O j , f i + ~ ( p ~ ) = K ~ ) ~ ) ) ) ,  
1 p(i) < dl)( i )  . 

i* j 
N 

M ~ ( ~ , K ( ~ ) ) =  N max 2 s ( n + @ - - T ) ( p ( ~ - l = o ) , n + p ( p ( j ) = ~ ~ ~ ) ( j ) ) j ,  
1 6 p(i) C K;)(Z) 

i# j 
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and 
r 

C $ ( ~ ( f i ,  Kt')) = C $j(wj ( f i 7  r7F1)), 
j= 1 

Let us observe that in the case where (Xi, I C E # , )  are independent 
and identically distributed random variables with crZ Xi = a2 we have 

m, (n, I?;)] = ~ ; ) ( j )  g2, M~ (n, ~ $ 1 )  = ~ < ~ ) 1 j )  N g2. 

I To'describe the asymptotic behaviour of sums of the type x ( N ,  #:I) 
we need a result giving estimates for large deviation probabilities of lattice 
indexed sums of independent random variables. 

THEOREM 1. Let (Xi, ~ E K , )  be a random .field of independent wndom 
variables with EXi = 0 and o2 Xi = CT; < CQ. Suppose that there exists 
H > 0 such that for 1.~1 < H there exist moment generating finctions 
E exp (zX-,) for all EE K,, and let us put 

Lx (z) = log E exp ( Z X ~ ) ,  Li (0) = 0. 

I f  there exists b-,, k i ~  K,, such that 

(51 L ( )  for ~ z ~ < H , Z E K ~ ,  ' 

1 
lirn sup -- C l f t 2  < co , 

IkI-+m ;,i 

and there exists a positive constant A' > 0 such that, for E d , ,  
1 
-- C u: 2 A', 
lkl ;,, 

and Vx-, 2 0 ,  xG = o(&) as tiil + m, then 

where 

F&) = P [ S ( ~ ,  n) < xi Jm], 
@ denotes the standard normal distribution finetion, while gi(t) are (known) 
.power series convergent uniJormly with respect to ii for all suflciently 
small t 2 0.  ' 

Theorem 1 can be proved following Petrov's considerations of l4], 
p. 270-280. 

7 - Prob. Math. Statist. 2(2) 

i 
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2. The Erdiis-RCyi law of large umbers for directed sets of independent 
random variables. Using Theorem 1 and some ideas of [2] we can prove 
the folIowing result: 

THEOREM 2. Let ( X i ,  ~ E K , )  be a random .field of independent random 
variables with EX-, = 0 ,  EX: = of < m, and let L-,(z) = log E exp (zXE), 
where Li; (0) = 0. 

Suppose that there exist positiae constants H and bk, E E  K,,  such that 

. . 

' I 1 i+k 

lim sup sup - c q12] < m ,  
lit-a iEK: lkl T = i + i  

I and there .exists a constant A' > 0 such that for 14 > k, , where k E K, and 
I kl is a positive number, 

If @ j ,  1 < j < r ,  are real functions satisfying conditions (1)-(41, then for 
any given A > 0 and 0 < A(') G A', and for N -, co in such a way that 
{K:]) E Wd-, we have 

lim sup C (N, Kt') < R, as., 
N + m  

and for any given I > 0 and A(') 2 A'' > 0, and for N -, ao in such a way 
that (K;)] E Wd", we obtain 

I 

(1 3) lb inf C (N, K:]) B i a s .  
N - r m  

I Remark. If (9)-(11) are satisfied, then there exists a constant A", 

0 < A" < oo, such that 
1 i + E  

(1 4) sup- x a:<A" f o r i i ~ ~ , .  
;EK: l(k T = i + i  

COROLLARY 1. If { X i ,  E K,) are independent and identically distributed 
random variables with A(') = 41') = o2 Xj;, then. Kg) = K;)(= Kk) and 

C (e (6, Kill) = $ (e (6, Kg))) = C $ (Q (n, KN)), 
lim C (N, Kfi) = R. a.s. 

fi-41 

I 
I COROLLARY 2 (Book [2]).  If  r = 1, then 

lim sup 1 ( N ,  KG)) < L as., 
N+m 

lim inf ( N ,  K f ) )  2 A a.s. 
h'+m 
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C~ROLLARY 3. Let {Xi, ,& e K,) be a random field of independent and 
identicdy distributed random variables with EXX = 0, EX: = 1 ,  E s K , ,  such 
that (9) is satisfied. 

~f * j ( x )  = x(2- i j1Pj ,  where 1 < t j  i 2,  1 < j < r ,  and if d ( l )  = A(2)  = 1, 
then K t )  = KP) and 

N 

For P = 1 Cordlary 3 reduces to Theorem 2,l of [ I ] .  
Suppose now that we change the asymptotic behaviour of ( E g ) )  by 

the following additional condition: 
There exist k,, k,, ..., k, (1 < k ,  < k2 < ... < k, < r) such that for a11 k,, 

1 d i < s ,  

where (R#l(k,)),  1 d i B s, are arbitrary increasing sequences of real num- 
bers, indexed by N (k,), such that R f l  (k,) + m and ( k d / ~  (kJ + 0 as 
N(kj )+oo for i = 1 , 2  ,...., s, while Ki l (k ) ,  k = 1 , 2  ,..., r ,  i s  defined as 
previously, i.e. 

Kf1(k , )  = [R#)(ki)/Acl)], 1 < i < s ,  

, ~ $ ) ( k ) =  [ + L l ( ~ ~ - z c [ - ~ " b  log N (k)) /d l )]  for k # k,, i = 1,2,  . . ., s . 
Write 

where 1 < j , <  ... < j r - , < r , j , # k , ,  l < n < s , l < r n < r - s .  
Now we can prove the following result: 
THEOREM 3. Let ( X i ,  E E  K,) be a random .field of independent random 

variables with mean zero satisjying (9)-(11) and let + j ,  1 < j < r ,  be real 
functions satisfying (1)44). Furthermore, suppose that condition (15) is-satisjed. 

Then, for an arbitrary 1, '> 0 and 0 < A(') < A', and for N -, a in 
such a way that {K:)) E WA", (12) is true and, moreover, for -, m with 
Ip'l bounded in such a way thlat (Ky)) E W,., , we have 

COROLLARY 4. If T = 1 and $ (&)/log N -, co as N -+ co , then 

lim C (N, Khl)) = 0 a.s. 
N - r m  

This is Theorem 4.1 of [2]. 



Let us consider now the case where (15) is replaced by the following 
condition : 

There exist k,, k,, ..., k, (1 < k, < ... < k, < r) such that for all k,, 
l S i d s ,  

where (Rfj(ki)), 1 < i < s, are arbitrary increasing sequences of real num- 
bers, indexed by - -  N (ki), such that R;) (k i )  + oo as N (k,) - m for 
i =. 1,2,  ..., s and, as previously, 

K~)(k)'=[#;L(2~-2$A'2filog~(k))/~(z)] for k +  k,, i = 1 , 2 ,  ..., a .  

THEOREM 4. Let ( X i ,  K E  K,) be a random .field of independent random 
variables with mean zero satidying (9)-(11) and let @,, 1 < j < r ,  be real 
functions satigying (1)44). Furthermore, suppose that condition (17) holds, 

Then, for an arbitrary A > 0 and A(') 2 A", and for N -, oo in such 
Q way that (K;)] E WA.., (13) is true and, moreouer, for N' -+ a, with tp'( 
bounded in such a way that (KF)) E Wdu, we have 

(18) lim C (N, Kt)) = XI a.s. 

COROLLARY 5. If r = 1 and I/I (&)/log N -, 0 as N -, co, then 

lim (N, = oo a.s. 
N+m 

This is Theorem 4.2 of C2j. 

3. Proofs. In what follows C will denote positive constants, in general 
different. . . 

Proof of Theorem 2. Inequality (14) can be proved by the same 
arguments as in [4], p. 271, applied to the random field ( X i ,  E E  K,) . 

To prove (12) let us put 

(19) 6 (k )  = min {m E A'" : j (k) < I/Ii (21-' log m)/A(')}, 

(20) Mj (k) = max {rn E Jlr : $il (21-' log rn)/A(l) < j (k) + I} , 

where 3~ K,. We need only to consider such J E  K, for which q (k) < Mj(k), 
k = 1,2,  ..., r, since if q (k )  > Mj(k), then K:) cannot take the value j. 
Note that for all N E K, such that rq (k) < N (k) < Mj (k), k = 1,2,  . .., r, 
the numbers 

E S ~  ( n ,  n+K;)) C I/I (Q (ii, R p ) )  = Es2 (n, n+j> C $ (e (ii, 7)) 
depend only on ii and 7. 
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Put 
s(n,  %+KG;} 

(21) ~ ( 4 )  = max 
1 < , , ~ 4 - ~ [ ~ )  M j  ,/es2(n, i i +~g i )  * ( e ( g ,  %:;I) ' 

It is easy to see that for all N E K, such that q ( k )  < N ( k )  < Mj(k), 
k = 1,2, ..., r, the inequality (N, Kg)) < z(aj) is true, Hence, for any 
given E > 0, 

By Theorem 1 we have 

(23) P [z(Iw5) > A + E ]  

for sufficiently large rl. Taking into account assumption (4) and inequality 
(14), we get 

But series g- -(l ,(r) are uniformly convergent with respect to I?& and 
n,K - 

Mj 

EEK,  for dl sufficiently small t 2 0, so we can write (23) in the form 

where 6 is a positive number such that 0 < 6 < &/A. 
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Now, by assumption (11) and condition (2), we can choose N 1  = N 1  (d), 
such that, for N 2 N , ,  

$j[wo))r (1 + 6 )  log 9 

By similar considerations we get 

Moreover, for all values of R E K, such that K:) = TE K,, we have 

$k(d(l)j(lc)) < U - a  cF,-'('b lo g N ( k )  < h ( d " ' ( I ( k ) + l ) ) ,  k = 1,2 ,..., r .  

Hence one can obtain 

#I2 ' < exp Ji- C ; [ - ~ ( l l ~  
k =  1 

$h ( ~ ( l ) ( i ( k ) +  l ) ) }  . 

Noting that, by ( l l ) ,  for sufficiently large 7 the inequality mk(ii, K(!)] 
2 A ( l J j ( k )  holds, and using (27) with (24) we get "; 

(28) P [Z  (M~) > A + E ]  < C ]Mjl exp 

- [ - A u ~  $k(d(l)(j(k)+ 1 ) - i + l )  
$k(d") ( i (k )+ l ) )=  n 

i = l  ! b k ( ~ ( ' ) ( i ( k ) + 1 ) - i )  
~ l i  ( ~ ( ~ 1  (j (k) + 1) + [ - ~ ( l ) ] )  
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where qk > 0 can be arbitrarily small for sufficiently large j ( k ) ,  k = 1 , 2 , .  . . , r. 
 heref fore, we can find 7 > 0 such that, for sufficiently large 1, 

r 

(29) P[2(aj) > I+d $ Cexp { - r  ' ~ = l  @ k ( ~ ( ' ) j ( k ) ) } .  

Taking into account (3) we conclude that 

Hence, the Borel-Cantelli lemma and (22) allow us to write 

lim sup C (N, Kt)) d ;1 + E  a.s. 
R-t m 

Thus (12) is proved since we can take E + 0, 
To prove (13) we take E > 0 such that A - E  > 0 and we set S > 0 

such that - 6  -(1 ( 1  +dl2 2 -(1-2aI) for some 6, > 0. One can 
note that 

- s (a$), (m + T) ~ f ) )  - < n N(k)  P id=S. (s;), (ni + i) Kp) ly (Q (mi? , Kg))) 
~ < n ( t ) ~ [ ~ ] - l  KC ( k )  

, By Theorem 1 ,  we get 

1 (n - E ) ~  
x exp { - Z ( ~ - ~ ) 2 ~ ~ ( ~ ( f i ~ ~ ) ~ y ~ ~ ) ) ) +  I& - ( 2 )  I 112 



Inequality (14) and assumption (4) imply that 

I uniformly with respect to 8. Moreover, the series ghxL2)xg, (t) converge 
I N 
I 

, uniformly with respect to K!) and pTi for sufficiently smdl t 3 0. Thus, 
for sufficiently large N E K , ,  equality (32) can be replaced by 

Furthermore, for sufficiently large ~ E K ,  we have 

as q, can be arbitrarily small for sufficiently large Kgl(k), 1 d k < r. 
Therefore, the term on the right-hand side of (33) for sufficiently large 
N E K, can be estimated from below by 

1 2 

exp { - (1 -:) (1 +dl2 log IN,  2 - d - ( l  + a ~ .  ,/m 1 
Hence, on account of (31), for sufficiently large N E K, we obtain 

(34) 
P [ ~ ( N ,  Kg)) < A - E ]  < exp ] n ( 1 - I ~ 1 - 6 - ~ - ~ / ~ ) 2 ( l + ~ ~  

Moreover, condition (3) implies that, for sufficiently large N, 

Therefore, basing on (331, we have 

(3 5) P[C(N,  ~ $ 1 )  < 1-E] < exp { - ] ~ t l } ,  
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which by the Borel-Cantelli lemma proves that 

lim i n f z ( ~ ,  K g 3  3 A-E a.s. 
%+a 

Letting E + 0 we get assertion (13), completing the proof of Theorem 2. 
Proof of The orem 3. Let s > 0 be an arbitrarily fixed real number. 

Using Theorem 1 and choosing sufficiently large N', we get 

Moreover, under assumption (4) and by (14) we have 

Taking into account the fact that g- -(1, (t) converges uniformly with 
n,K - IV 

respect to fi and K$) for sficiently small t 2 0 and using (37), we conclude 
that 

We note now that, by (Il), (3) and (IS), 

1 1 ' 
(39) 2 C +(Q (n, Kt))) 2 - c2 e ; [ - ~ ( ' h  $k (Rl,tl (k)) 2 3 log IN']. 

4 k = l  

Using (38) and (39) we obtain 

< c IN1 exp ( - 3  log JN'I) = C IR"1 [NII-*. 
But tN"1 is bounded, so 
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which, by the Borel-Cantelli lemma and the fact that E > 0 is arbitrary, 
implies 

(41) Iim sup C (N, K#)) < '0 as. 

as N' + oo and jNvl remains bounded. 
Now one can note that the random variables ( - X x ,  EEK,)  satisfy .all 

the assumptions of Theorem 3. Therefore, by (411, we have 

-S(ii ,  i i+q?)} 
lim sup max 

. . .. < 0 a.s., 
O L ~ S N - K ~ ~ )  ,v J E S ~ ( E ,  n- t  K:)} $(e(ii,  x:))) 

as N' + co and )PI is bounded. The Iast inequality implies that 

lim inf C (N, Kt') 3 o is. 
as R + m and I N ' I  is bounded, which together with (41) gives (16). 

The proof of (12) is similar to the proof of the same assertion in 
Theorem 2, so we omit details. 

Proof  of Theorem 4. Let us fix T >  0 and assume that N'+ co 
and JN"1 is bounded. In addition, assume that 

Taking into account (14) and assumption (4), we note that 

uniformly in f i .  
Hence, following considerations leading us to (32) and (33), by Theorem 1, 

we obtain 

(43) P [  
s (fiEg), (fi + J) ~ f ) )  

T J I: $ (Q ( f i ~ f ) ,  KF))) 
E S ~  ( r ~ z ~ ; ) ,  (m+ i) Kg)) I 



Laws of large numbers 
f 

where 6 > 0 is an arbitrary constant and 3 p(S). Moreover, by (14) 
and under assumption (17), for sufficiently large we have 

1 
G 

TZ (1 + 8) 
log + C log JPI. 

Hence (43) is bounded ..from below by 

C 1 p 1 - 1 / 2  3 1p1-6-ltZ 

(log jN'J)ljZ 

for sufficiently large N' 2 N f ( 6 ) .  
We note now that condition (3) implies the inequality t,bki (x) 3 (1/S) log x 

for an arbitrary 6 > 0 and sufficiently large x. Therefore, from (17) it follows 
that 

Using (31) and estimates given above, we get the inequality 

< exp (-1R'11/2-26). 
But 1p1 is bounded, so for 0 < S < 1/4 we obtain 

C exp ( - j m ' ~ ~ 1 ~ - ~ * )  < CO, 

t 
which by the Borel-Cantelli lemma implies that 

Iim inf 2 (N, K f ) )  2 T a.s. 

as R' -+ oo and IN"[ is bounded. Letting T -+ cx, we get (18). 
The proof of (13) is essentially the same as in Theorem 2. 
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