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Abstract. Let K, = R be the r-dimensional cartesian product of
the set of positive integers and let {X;, ke K,} be a random
field — a collection of independent, not necessarily identically distri-
buted random variables with mean zero. Under appropriate additional '
assumptions we derive for {X3, k € K,} strong limit theorems of the
same type as the Erdds-Rényi law of large numbers. Our results are
based on the large deviation theorem of Petrov extended to random
fields.

1. Introduction. Let K, .be the set of r-tuples
' k= (k(1),k(Q2),..., k(r)
with k(j), 1 <j < r, taken from the set .4~ of all positive integers and let
K? = {k = (k(1), k(2),..., k(): k(PeA L{0},1<j<7r}, * 2 1.
The sets K, and K? can be partially ordered by the relation

k<mek()<m@) for j=1,2,....r.
Write . o

ki = I1 ko),
ktm = (k(D)£m(1), k2)+m(2), ..., k() tm(r),
_ [tk = ([tk (1)], [tk (2], e [tk(r)]), t=0,
where [x] denotes the greatest integer less than or equal to x,
mk = (m()k (1), mk(2), ..., mr)k(r),
(@,b) = {keK,: a+1<k<b,aeck! bek,}.
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In what follows, k' — co means that k(j) » oo for j = 1,2,...,r
We shall study a random field {X3,keK,}, consisted of independent
random variables indexed by K,, with zero means, defined on the same
probability space (22, #, P). Let us put
S(@,by= Y Xp.
ke(a.b>
and

e o 7, i+ R |
Y(.KP) = max SE P8
Y oensn-k9 JES2(@, i+ KDY Y Yo, KD)
where K < N and ) |//(Q(n,K‘-"”)), « = 1,2, will be defined precisely in
the sequel :
To define Y y (o (%, K&) cons1der real functions

‘llj:‘@+-_>'%+a l\j\r

' satisfying the following conditions:

@  y;1 < r, are continuous and monotonically increasing to infinity;
!ﬁ (x) ' .
2) lim — =, 0 <1,1<j<r;
@ ey S t<asbilsisr
m Vi) .
Sjsr
@G Im ey = Isisr

4) the set

| > ¥,(4" k()
= [{E} c K,: lim E—I—El——— = OJ,

[&| = oo

where 4” is a positive constant, is nonempty.
In addition, let us put

ROG) = Y71 (24724 og N(), 1<j<r,
where A and A® (a = 1,2) are positive constants,

K () = [ROG)/ 4],

1<p0 <k

K = (K;_;‘)a), K®(2),..., K1),
.ﬁ(p(’) = S) = (P(l),p(Z), feey p(]—l)’ S,p(]+1), ey P(")):
m;(A, K{P) = min oZS(ﬁ+(ﬁ—I)(p(i)—'1 = 0),7+5(p() = KL (),
M;(#n, K@) =" max oJS(n+(p Dp®-1=0),a+p(p0) = KL (),

i#j
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and

3 (el K) = 3 vyt ).
Y ¥, KY)

Let us observe that in the case where {Xj, k eK} are independent
and 1dent1cally distributed random variables with o 2 X; = o we have

m;(i, KY) = KP(G)o?,  M;@HE KP) = KP(G)a*.

To describe the asymptotic behaviour of sums of the type ) (N, KY)
we need a result giving estimates for large deviation probabilities of lattice
indexed -sums -of independent random variables.

TueoreM 1. Let {Xk,keK } be a random field of independent random
variables with EX; = 0 and ¢’ X; = a- < co. Suppose that there exists
H >0 such that for |zl < H there extst moment generatmg Sunctions
Eexp (zX;) for all ke K,, and let us put

L;(z) = log Eexp (zX3), Lz(©0) = 0.
If there exists by, k € K,, such that

il

j; v (M; (A, KP).

(5 Lz (2) < b for lzl < H,keK,,
6 li b} <
© Wa [k |k1 2 .

and there exists a positive constant A' > 0 such that, for ke K,,

(7) T Z o.;‘Z = A,’

and if x, 2 0, x; = o(/I|A]) as || — oo, then

(8) 1-@()6;,) - exP{ |ﬁ} In \/ﬁ + \/ﬁ as lﬁl 0,

where

%

Fy(x:) = P[S(O, 1) < x;1/0%8(0, )],

® denotes the standard normal distribution function, while g;(t) are (known)
power series convergent uniformly with respect to n for all sufficiently
small t > 0. *

Theorem 1 can be proved following Petrov's considerations of [4],
p- 270-280.

7 — Prob. Math. Statist. 2(2)
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2. The Erdds-Reényi law of large numbers for directed sets of independent
random variables. Using Theorem 1 and some ideas of [2] we can prove

-the following result:

THEOREM 2. Let {X;,keK,} be a random field of independent random

" variables with EX; = 0, EX? = o2 < o0, and let L;(2) = log E exp (zX3),

where L;(0) = 0. ~
Suppose that there exist positive constants H and by, ke K,, such that

) |Lz(2) < by - for |z| < H,
‘ o o 1 7tk
(10) lim sup [sup —_ ¥ Ir’"{l < 0,
‘ Moo Lieko Ikl +-541

and there -exists a constant A" > 0 such that for |k| > k,, where ke K, and
ky is a positive number,

i n+k
(11) mf 2> 4.

neK lkl i=n+1

If Y;,1<j<r, are real functions satisfying conditions (1)-(4), then for
any given A >0 and 0 < AN < A, and for N — o0 in such a way that
{K®"} e Wy, we have

12 lirﬁl} sup ) (N,K¥) < 1 as.,

and for any given A > 0 and 4? = A" > 0, and for N - o in such a way
that {K("} € Wy, we obtain

(13) lim inf ¥ (¥, K‘Z’) > ) as.

Remark. If (9)-(11) are satlsﬁed, then there exists a constant A4”,
0 < 4” < o0, such that

_ .
14 SUp ——- |k| Z < 4” for keKk,.

neK 0

CorOLLARY 1. If {Xg, keK are independent and identically distributed
random variables with AV = A® = ¢ X3, then. K{) = KP (= K ~) and

YUle@ KP) = Y v(e@, KP) =Y vle, KN))
hm Y (N,Ky) = 4 as.

CoroLLARY 2 (Book [2]). If r =1, then
limsup ) (N, K{) < 4 as,

N-w

fim inf 3 (N, K®) > 1 as.



Laws of large numbers 183

COROLLARY 3. Let {Xj,keK,} be a random field of independent and
identically -distributed random variables with EX; = 0, EX? = 1,keK,, such
that (9) is satisfied.

If v;(x) = X2, where 1 < t; < 2,1 <j<r, and if AV = 4D =1,
then Kz(v” = KI(VZ) and

lim max S@, n+Ky) = 1 as.

N~ | Dercf-Ry \/IKnl Z (Kx ()%

For r=1 Corol]ary 3 reduces to Theorem 2.1 of [1]. _
Suppose now that we change the asymptotic behaviour of {K{’} by
the following additional condition:

There exist ky, ky, ..., k, (1 < k; < k; <... <k, < r) such that for all k;,
1<i<s, '

Vi, (RS (ky)
RA A B k. ,
(15) logN(k,-) — o0 as N(k)— o
where {R®(k)},1 < i < s, are arbitrary increasing sequences of real num-

bers, indexed by N(k,) such that R{’(k)— o and R{P(k)/N k)~ 0 as
N(k)— o for i=1,2,...,5, while Kz(vl)(k)’ k=1,2,...,r, is defined as
previously, ie. '
K (k) = [RP (k)/4M], 1<is<s,
KW (k) = [y (2472 At log N(K))/AD]  for k # k,i=1,2,...s
Write

N' = (N(k)), N(kp), ..., N(k)), N"= (N(J' ), N(a), - ,,N(i,-;)),
where 1<j, <. <jy St jn#k,1<n<s,1<m<r-s.
-Now we can prove the following result

THEOREM 3. Let {X;,E €K,} be a random field of independent random
variables with mean zero satisfying (9)-(11) and let y;,1 < j<r, be real
Jfunctions satisfying (1)-(4). Furthermore, suppose that condition (15) is satisfied.

Then, for an arbitrary A> 0 and 0 < AV < A, and Jor_ N- oo in
such a way that {K"}e Wy, (12) is true and, moreover, for N' — oo with
IN"| bounded in such a way that {K} e W, we have

(16) limY (N, K{) = 0 as.
CoroLLARrY 4. If r =1 and Y (Ky)/log N > o© as N — oo, then
. m
]31_{1302(N,K,\,) - 0 as.

This is Theorem 4.1 of [2].
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Let us consider now the case where (15) is replaced by the following
condition: :
There exist ky,k,,....k; (1 < k; <... <k, <r) such that for all k&,

1<i<s,
Wy, (R (k)
a7n YN W ;
logN(ki) -0 as Nk;) — o,
where {R‘z’ (k)}, 1 < i < s, are arbitrary increasing sequences of real num-

bers, mdexed by N (k) such that RP(k)—> o as N(k)—> oo for
i=1,2,...,s and, as previously,

KQ (k) = [RP k)/4*], - 1<i<s,
K@) = [y (A2 P log N@)AD]  for k # ki, i=1,2,...,5

THEOREM 4. Let {X;,ke K.} be a random field of independent random

variables with mean zero satisfying (9)-(11) and let y;,1 <j<r, be real .-

Sunctions satisfying (1)<4). Furthermore, suppose that condition (17) holds.

Then, for an arbitrary A > 0 and A® > A", and for N — co in such
a way that {KP}e W,., (13) is true and, moreover, for N' — co with |N"|
bounded in such a way that {K®} e Wy, we have

(18) lim ¥ (N, K®) = w as.
CorOLLARY 5. If r =1 and Yy (Ky)/log N - 0 as N — oo, then
Jim ¥ (N, KP) = 0 as.
This is Theorem 4.2 of [2].

3. Proofs. In what follows C will denote positive constants, in general

different.

Proof of Theorem 2. Inequallty (14) can be proved by the same
arguments as in [4], p. 271, applied to the random ﬁeld {X3 ,,,keK}

‘To prove (12) let us put o
(19) . m;(k) = min {me.A": j(k) < ¥ @A"Y log my/aW},
(200 M;(k) = max {me A" Y7 A2 4 log my/A® < jk)+1},
where je K,. We need only to consider such je K, for which m;(k) < M; (k),
k=1,2,...r, since if mj(k) > M;(k), then K cannot take the value ]
Note that for all NeK, such that m;(k) < N k) < M), k=1,2,.
the numbers .

ES?(n, a+KQ) Y ¥ (e(@, KY) = BS* (@, i+1> X (e (7, J))

depend only on 7 and j.
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Put
S(#n, n+K(”)

max .
0<h< My &) VES? (7, n+K‘”>Z'/’(Q(" Km))

It is easy to see that for all NeKk, such that m;(k) < N (k) < M;(k),
k=1,2,..,r, the inequality Y (N,K{) < Z(Mj) is true. Hence, for any
given ¢ > 0

@)  zZ@1)=

(22) P{ U [X(N.K)>i+e]} < P[Z(M;) > A+e].
. K(l)—KJeK '
By Theorem 1 we have
(23) - P[Z(M;) > A.+8]

< P[ S(, i+ K;» , ]
h os.;.sz%— S0 [ES? (4, n+K‘”)Z:/1(g(n K(ll))]l/z > AteE
J

GS.EQM]-—K

+

(A+ePL Y vle@, KPNI? [X v(e@, K1 :
J 7 g1 ( J 11+8)>}

KT KT

1
“OHILT ¥ e, KD

for sufficiently large |j|. ‘Taking into account assumption (4) and inequality
(14), we get

LU RD) ¥ w(a KD0)
ORGSR

-0 as [Mj] > .

But series g, x» () are umformly convergent with respect to K% and
M .l

nekK, for all suﬂic1ently small t >0, so we can write (23) in the form

Aoy ol
@4 PIZ(T) > i+sl < C > exp{ —;—(;r:)é) zw(g(ﬁ,-Kg_;;))},

where J is a positive number such that 0 < & < ¢fa.
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Now, by assumption (11) and condition (2), we can choose N 1= N,(6)
such that, for N > N,, :

25) 5 (otey Ly zz;_;»)

”2 =1 Y(APKPG)+i)

x wj_(A“’Kfv"(i)-[-A‘1’])}

1 2‘ P 2{ r th[ a(1) _
=z — A 1+— Yy ——— Y, (RV())¢ = (1+0) log |N|.
32 (1+2) P WRPG)] > 145 tog )

=1

By similar considerations we get

_ 2 _ o
26) Y ¥(e(m, KM) = mlog [N} for N > N, = N, ().

Moreover, for all values of N e K, such that K’ = jeK,, we have
(V) < 227274 M log N(B) < ¥, (DGR +1)), k= 1,2,...,7

Hence one can obtain

@7)  exp {—? % el-at wk(A“’j(k))}-s Il

k=1

< exp {iz_ i c—[—A(l)],/, (A(l)(i(k)+1))}_

Noting that by (11), for sufficiently large j the inequality m, (7, K‘”)-
> ADj(k) holds, and using (27) with (24) we get

A+e)? <& .
2079 . Z P (4" )J(k))}

8 PLZ() > 3+ < CIM}-Iexp{

k=1

< Cexp {—A;-[ z ¢ t-4™M nﬁ,,(A‘”(j(k)+1))—(1+5)n/1,,(A(1)j(k))}}.
But, by (2), |

o —[-4() .1 "y ]

| | Wk(A()(I(k)+1)—l'+l)

W(@OGw+)= I1 Ve (AP (i) + 1))
1,

< R U (AVj (),

Vi (4D ( () + 1)+ [ — 497])
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where #, > 0 can be arbltranly small for sufficiently large j(k), k = 1,2,...,r.
Therefore, we can find 7 > 0 such that, for sufficiently large j,

(29) P[Z(M;) > A+€] < Cexp {—1 Z Y (4D (K))}
‘k=1
Taking into account (3) we conclude that
30) Y PLZ(M ;) > A+¢€] < .
’ jeK,

Hence, the Borel-Cantelli lemma and (22) allow us to write
limsup Y. (N, K{) < A+e as.
) Now
Thus (12) is proved since we can take & — 0.

, To prove (13) we take & > 0 such that A—e > 0 and we set 6 > 0
! ~ such that —d— (1——3/;1)2(1+5)2 > —(1-26,) for some §; > 0. One can

note that
31) P[Y(N, R?) < i—e]
(2) 2)
<p{ S(RKQ, A+ DKEY
JES R, i+ DKDy 3 ¥ (e KD, KD)

N k) |

P
.Osm(k)sfl—m'i] {\/ESZ(MK(Z) m+DRP> Y v (emKP , KY)

@)
K@)

By Theorem 1, we get

S(mK2, (m+ 1) K¢ : .
B2 P [[E.S'Zgzi(z) 221 1; K(z)i]uz z (- 8)[Z¢(Q(mK(2) K(Z)))]l/z:l

1 1
T @0 G0 > ¥ (e(mKD, RD)7

X exXp { —1(1——8)22111(@ (rﬁﬁ%,z’!, ng)))+

(A—2)®
TZEE

2 2 1/2
x[Y l[’(Q(mK(ZJ K(z)))]a/z P ((%—s) [Y ¥ (e(mKY, K @] )}x

IK(ZJII,’Z
x [1 + 0( (- 3)[ Y ¥ (oK ®, R2))]H2 )]

K(Z)llll

(mK®@, (m+1)K<2>\ _} |
) -&p.
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Inequality (14) and assumption (4) imply that

(=&)Y ¥ (KD, KP)
K|

-0 as [N|—-» o

uniformly with respect to m. Moreover, the series g. &K@ K-(Z)(t) converge

- uniformly with respect to K@ and #i for sufficiently small t 2 0. Thus,

for sufficiently large NeK,, equallty (32) can be replaced by

S(mKP, (m+1)RP) -
) PI:\/ES(‘z (KD, i+ DKDY > 69 ‘/Z'/’ QK. K )]

~ VS VewRp K

Furthermore, for sufficiently large NeK, we have

Pl a—a)zma)zw(mk;snﬁy)»}.

T¥(emRP, RP) < ¥, vy (ADKD(0)+[ - 47)

k=1 .

r . 2(1+5)
< 3 @rn) 4 (k) < 2510
k=

as m, can be arbitrarily ‘small for sufficiently large K@ k), 1<k <r.

Therefore, the term on the right-hand side of (33) for sufﬁc1ent1y large
NeK, can be estimated from below by

2 .
C { (“‘) (1+6)Zlog|Nl}>lNré-u-EMﬂu“ﬂ.
log |N| . .

Hence, on account of (31), for sufficiently large N e K, we obtain

log |N|,

(34)

P[Z(N K(z)) < A— s] exp {kljl Ii_%%} In( __INI—a—(1—a/,1)2(1 +5)2)}

I 2 [ NG
< —|IN|-¢-« e/A)2(1+0)2 % L
€Xp { l I . kl:[l K;vz)(k)

Moreover, condition (3) implies that, for sufficiently large N,

- Nk
[—K?%} > (V) 1 <k<r

Therefore, basing on (33), we have

35) - P[Y(N,R¥) < Ai—¢] < exp {~|NI'}},
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which by the Borel-Cantelli lemma proves that
lim inf } (N, K@) > 1—¢ as.

N-=wo

Letting ¢ —» 0 we get assertion (13), completing the proof of Theorem 2.

Proof of Theorem 3. Let ¢ > 0 be an arbitrarily fixed real number.
Using Theorem 1 and choosing sufficiently large N', we get

69 PITE.RM>

s¢ ' —g? 7, KW
s N Dsﬁsg_fg) E[Zﬂ’(g(ﬁ, K%})))]IIZ exp{ D) £ Z'/’(Q(n ® ))+

R, (e ROy )

UL UL
KRl KR!

Moreover, under assumption (4) and by (14) we have

. ) o r ) . (_1) .

SulemRY) _ & HEKCE)
K| h KD

Taking into account the fact that g. i(l)(t) converges uniformly with
KN

-0 as N'- .

(37

- respect to 7 and K{ for sufficiently small ¢ > 0 and using (37), we conclude

that _ :
£ Ly (e@ R ( s[ X v (e K™ )
mED,
N

= -
IK}V )|1/2 iK)(vl)lllz

(38)
1 _ =
< y e* Y Y (e(n, K$).
We note now that, by (11), (3) and (15),

1 . 1,¢ e
(9 L@ KP) > 3¢ ¥ o'~ (RP®) > 3log I

'Using (38) and (39) we obtain

)

asasﬁ-kg )

< C|Njexp {—3log [N} = C|N"||N'|"2.
But |N”| is bounded, so ’
YP[Y(N,RP) > ] < Y CININY™2 < w0,
N N
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which, by the Borel-Cantelli lemma and the fact that & > 0 is arbitrary,
implies

(41) lim sup (N, K{) <0 as.

as N'— oo and |N”| remains bounded.

Now one can note that the random variables {— X3, keK} satisfy -all
the assumptions of Theorem 3. Therefore, by (41), we have

. ) KD L '
limsup  max (0, it > <0 as,

0<n<N- Km VES (1, 1+ KDY Y y (e (@, K“’))

ie.
SRR , S@, i+ KP)
liminf min

_ . 2 1) (1) >0 as
ea<i \/ES 1, 1+ KD Y ¥ (o(r, KP))

as N’ - oo and [N”| is bounded. The last inequality implies that
lim inf )" (N, K¥) > 0 as.

as N’ - oo and |N”| is bounded, which together with (41) gives (16).
-The proof of (12) is similar to the proof of the same assertion in
Theorem 2, so we omit details.

Pr_oof of Theorem 4. Let us fix 7> 0 and assume that N' - o
and |N”| is bounded. In add_ition, assume that

(T N :

Taking into account (14) and assumption (4), we note that

' mK2, K2 _

(42) ZW(Q(HE(Z;:I ¥) -0 as N -
N

uniformly in m.

Hence, following considerations leading us to (32) and (33), by Theorem 1,
we obtain

@) P[ S(mKP, (m+1DKP>
VES*(mK®, (n+1)K?)

T/ TV (e kD, KD) ]

C 1 : o =
E ¥ (o MKD, KP) exp {_? T2 (1+8) ¥ ¥ (e (MK, K(N%)))},
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r.

where 6 > 0 is an arbitrary constant and N’ > N'(5). Moreover, by (14)
and under assumption (17), for sufficiently large N' we have

YU (@RP,KP) < ¥ v (4" K@ k) +C Y 24724 log N (k)
: ' i=1 k¥ k;
1Si€g

~

1 _ _
m IOg lN’I +C lOg IN"l .

Hence (43) is bounded from below by
. c . i
_ Nl—~1,12 > —-8—1/2

Gogiyz N1 2 N

for sufficiently large N’ > N'(8).

We note now that condition (3) implies the inequality ¥, (x) > (1/0) log x
for an arbitrary § > 0 and sufficiently large x. Therefore, from (17) it follows
that '

K (k)

—[ma——ro as N(ki)—roo,ir-_l,Z,...,s,

r N
D[‘%J/'r{

Using (31) and estimates given above, we get the inequality

P[Z(N KP) < T] < exp{f[[ N () ]ln(l !er—aﬂ/z)} '

K@ (j)
< exp {_INI|1/2 25}.
But |N”| is bounded, so for 0 < § < 1/4 we obtain
Y exp {—|N"37%%} < o0,
N

SO

which by the Borel-Cantelli lemma implies that
liminf} (N, K@) > T as.

as N' - oo and |N”| is bounded. Letting T — o0 we get (18).
The proof of (13) is essentially the same as in Theorem 2.
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