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Abstract. The theory of stable probability distributions and their
domains of attraction is derived in a direct way (avoiding the usual
route via infinitely divisible distributions) using Fourier transforms.
Repgularly varying functions play an important role in the exposition.
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1. INTRODUCTION AND MAIN RESULTS

Let X, X4, X5, ... be independent random variables all of them from the
same probability distribution with distribution function F. Consider the se-
quence S, :=X;+X,+ ... +X,, n=1,2,..., and suppose that for some
sequences of norming constants a,>0 and b, (n=1, 2,...) the sequence
S./a,—b, has a non-degenerate limit distribution. '

In this note we shall find the general form of all the possible limit dis-
tributions and for each of these limit distributions we shall give necessary and
sufficient conditions for the distribution function F in order that S,/a,—b,
converges to that particular distribution function.

-The limit distributions are called stable distributions and .the set of
distribution functions F such that S »/a,— b, converges to a partlcular stable
distribution is called its domain of attraction. Thus we shall identify all stable
distributions and their domains of attraction.

The indicated results have been developed more than sixty years ago. One
of the earliest systematic treatments is in Paul Leévy’s famous book Théorie de
Paddition des variables aléatoires [13]. A well-known complete description of
the theory is the book by Gnedenko and Kolmogorov [8]. Various standard
texts in probability theory offer an exposition of the subject, for example Brei-
man [2], Feller [6], Dudley [4]. In these texts the theory of stable distributions
is treated as part of the (more general and more involved) theory of infinitely
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divisible distributions. Although infinitely divisible distributions form an
interesting and useful subject of probability theory, the stable distributions
have attracted far more attention, both in theoretical research (see e.g. the books
by Zolotarev [19] and Samorodnitsky and Taqqu [16]) as well as in applied
research (see e.g. Fama [5], Kunst [12], Mandelbrot [14], Samuelson [17]).

In contrast to the mentioned references, in this note the theory is devel-
oped ab initio, independent of results from the theory of infinitely divisible
distributions, which is too complicated to be included in a standard course of
probability theory. We have tried to present the theory of stable distributions
in a sufficiently streamlined form for presentation in such a course.

We now set out to develop some preliminary results that allow us to
formulate the two main theorems. We start from the limit relation:

Sufan—b, 5 Y
or, equivalently,
(1) lim P(S,/a,—b, < x) = G(x)

n—~+w
for all continuity points x of G, the distribution function of the non-degenerate
random variable Y. The first question is if it is possible to have different limit
distributions for different choices of a, and b,. Khinchine’s convergence to
types theorem (Feller [6], Chapter VIIL.2, Lemma 1) states that a different
choice of the norming constants can only result in a limit distribution function
of the form G (Ax+ B) with A > 0 and B real. The set of all such transforms of
G will be called the type of G. From now on when we talk about a limit
distribution we shall mean the entire type so that no confusion is possible.

DErFINITION 1. Any probability distribution G that can be obtained as
a limit in (1) is called a stable distribution.

First of all we are going to reformulate the limit relation (1) in terms of the
characteristic functions (or Fourier transforms). Define for se R the charac-
teristic functions

‘ @ (s) := EeP¥ = ]'D e*dF(x) and Y (5) = B = TA"ér"”dG )

or, what is more convenient in the present setup,
At):=¢1/1) and g(t):=y (/1)

for te[— o0, 0]\{0}. By Lévy’s continuity theorem for characteristic functions
(Feller [6], Chapter XV.3) relation (1) is equivalent to

) lim exp(—ib,/t) 2" (ant) = g(t), te[—o, o1\{0},

uniformly on neighborhoods of + co. Note that for t = + oo both sides equal 1.

We start with a definition and a preliminary result.
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DEFINITION 2. A positive measurable function f is regularly varying if there
exists a constant yeR, the index (or order) such that

f(x)
3 lim = x7
® o f(t)
In this case we will use the notation feRV,. A function in RV is called

slowly varying. For positive measurable f the limit in (3) is either identically
0 or of the form given above.

PrOPOSITION. If (1) holds, then |g (t)|2 = exp (—c|t|~®) for some a.(0, 2] and
¢ > 0. Moreover, R

for all x > 0.

@ i 10814 ()]

lim e < fr x>0

ie. —log|A| is regularly varying with index —o.
Proof. From (2) we have
lim [2(a, 0" =19 0)

locally uniformly near +co. It follows that

&) lim —nlog|A(a, 1)l = —loglg (¢)]

for each teR, t#0, for which g(f) #0. For such t it follows that
log|A(a,t)| = 0; hence a, - + co (note that g, > 0 by assumption). Moreover,

replacing n with n+41 gives
1 (a’n +1 a, t)
aﬂ

which in combination with (5) implies a,,/a, — 1 as n — oo since convergence
in (5) is uniform on neighborhoods of infinity. Application of Lemma 9 below
then shows that the function —log|i| is regularly varying and its order, say
—o; has-to be non-positive since lim,, , —log|i(¢)] = 0 by (5). D1v1d1ng (5) by
its counterpart for t =1 we find

—log|A(ant)l _ loglg (1)
o —logli(a,)l loglg ()’

whence log|g(t)/logig (1)] = t~* for ¢t > 0. Since |g(t)*> = g(t)g(—1) is an even
function, we have loglg(t)//loglg(1)| = [¢|~* for t # 0. Note that [g(t)* is a
characteristic function as a product of two characteristic functions.

The restriction « > 0 stems from the fact that Y is non-degenerate. Next
we show that necessarily o < 2: the assumption « >2 would lead to
a non-constant characteristic function with a vanishing second order derivative
at 0, which is a contradiction.

lim —(n+1)log

n—+o

= —log|g (@)l
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The proposition provides a partition of the class of stable distributions
into subclasses indexed by the parameter o.

DermniTION 3. Fix ae(0, 2]. Any probability distribution function G ob-
tained as a limit in (1) and with characteristic function g satisfying
(6) lg (&))> = exp(—ct| ™%
is called a stable distribution with index « or an a-stable distribution.

DEFINITION 4. The class of distribution functions F for which (1) holds with
a limit distribution G satisfying (6) is called the o-stable domain of attraction.

Notation: FeD,.

The classes of distributions introduced above are useful for the rest of this
note. However, the a-stable distributions do not form one type. We shall see
that we need another (skewness) parameter to describe the full class of all stable
distributions. Note that the characteristic functions |g (¢)|*> from (6) represent
probability distributions that are symmetric about zero.

We are now in a position to formulate the main results. Define

U@):=Rei(®) and V({):=Imi()
“and for 0 <a <2

x~ %sin xdx

Sg =

St 8

and .

¢ = | x *cosxdx+ | x~*(cos x—1)dx.
1 V]
The constants s, and c, can also be written in terms of the gamma func-
tion. We have for 0 <a <2, o # 1,
) 1
S = F(l—a)cos% and ¢, = F(l—a)sm%’f—l—_;.
In the case « = 1 one should replace the formulas with the corresponding limit
-as a—1: s; =m/2 and ¢, =I"(1). (—I"(1) is Euler’s constant.)

Further we adopt the convention that the function (t*—1)/a is defined. for
all t > 0, aeR and reads as logt for a = 0 (by continuity). Also the function
Y4,p(t) in formula (7) below is defined to be 1 at t = 0 and (1 —a)tan (r/2) is
defined to be 2/n at « =1 (by continuity).

THEOREM 1. Suppose 0 < o < 2. Every a-stable distribution (or rather a dis-
tribution type) has a characteristic function of the following form:

@ Vap(s) = exp (— {|S|“ +is (2p—1) {(1 — o) tan (xm/2)} Bj-_li})

a—1
with 0 <p< 1l
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The following statements are equivalent:
(i) FeD,. _
(i) 1—F(t)+F(—t)eRV_, and there exists a constant pe [0, 1] such that
the following tail balance condition holds:

1 1-F() _
A FOLF (< ”

(i) 1— U (f)eRV_, and there exists a constant pe[0, 1] such that

txV (tx)—tV (t) - am) |x|*7*—1 -
:lrg_m=(2p_l){(l_a)tan7}ﬁ’ x e R\{0}.

Further, if any of (i), (ii) or (iii) holds, then
1-U(®)

®)

©) T FOTrF (=) "
and
P B O _ _
o L VOt [ (1= F(9—F( S))ds=(2p——1)ca.

t—+ o0 1-F({)+F(—1)

Remark 1. The parameter « is the same in the three equivalent state-
ments of Theorem 1. The theorem is also true if one keeps « and p fixed in the
three statements. Statement (i) then reads: (1) holds with G such that its charac-
teristic function y is as in (7). ‘

Remark 2. Unlike in other texts here and in the'proof we do not treat the
case a = 1 separately. However, for o # 1 the statements of the theorem can be
simplified: line (7) reads (remember we need only one member of the type):

Va.p (5) = exp(—{|s|*—is2p— 1) tan (eem/2) s|*~1}).
From Lemma 1 below it follows that in the case 0 < a < 1 (iii) is equivalent to
1-U@®)eRV_, and V(@) ~Q2p—tan(en/2)(1-U(¥) ast~ oo,

If I'< a < 2, then (iii) is equivalent to '
1-U(t)eRV_,, tV(t)— u for some constant u
and
p—tV () ~ —Q2p—tan(oan/2)t(1—-U @) as t— co.

In view of (10) we must have u= EX, which is finite in this case.

Remark 3. Suppose any of (i), (ii) or (iii) holds. We now indicate how to
choose the normalizing constants a,>0 and b, in terms of either the
distribution function F or the characteristic function ¢ (ie. in terms of the
functions U and V).




174 J. L. Geluk and L. de Haan

The relation (1) holds with G such that the function  is exactly as in (7)
(i.e. this distribution and not another one of the same type) if we choose a, and
b, such that
lim ns,(1—F(a)+F(—a,) =1
and

by, = af}'(l—F(s)_F(ms))derz”“1

n Q %

Cq-

See (9) and- part (iiiy= (i) of the proof. Note that the above choice of the
sequence-a, is always possible since 1—F (x)+ F (—x) is regularly varying. By
Lemma 1 again, it follows that the above choice of a, and b, implies

b,—»(2p—tan(on/2) for O <a <1
and
b,—ny/a, —» (2p—1tan(ex/2) for 1 <a<2.

It follows from relations (9) and (10) that the same limit distribution is
obtained with the alternative choices of a, and b,:

limn(l-U@,))=1 and b,=nV(a,).

Remark 4. The behavior of U and V at — oo follows from (9) and (10)
since U is an even function and V is an odd one.

The case o =2 is covered by the following result:

THEOREM 2. Every 2-stable distribution (or rather a distribution type) has
a characteristic function of the following form:

(11) Y2 (s) = exp(—s?),
corresponding to the normal distribution.
The following statements are equivalent:
(@) FeD,.
(i) The function H(t):= rou(l—F (u)+F(—w)du is slowly varying.
(i) 1-U(t)eRV-, and
potve 0
t(1-U@)
If (i) holds, then as t - ©
13) 1-U(¥) ~ H @)/t

and

(12)

(14 V()—u/t = o(H, (0)/%),
where p = EX.
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Remark. The behavior of U and V at —oo follows from (13) and (14)
since U is an even function and V is an odd one.

Using the results of Theorems 1 and 2 one verifies easily that the stable
distribution functions are precisely those distribution functions G such that if
Y, Y1, Y;, ... are iid. G, then there exist constants 4, > 0 and B, such that, for
n=1, (Y1+ Y+ ... +Y)/A,~B, has the same distribution as Y.

2. AUXILIARY RESULTS

x5 .
Before we prove the theorems we collect some basic facts about regularly
varying functions in a sequence of lemmas. Lemmas 1-7 are standard results
that are useful in other contexts as well. Lemma 8 (preparing for the use of
Lebesgue’s theorem on dominated convergence) and Lemma 9 (on replacing
a sequence by a continuous variable in the limit relation) are specific for the
present setup.

LemMMA 1 (see [7], Theorems 1.9 and 1.10). Suppose f is a measurable
function and there is a positive function a such that for all x >0

. fex)—=f@t) x"—1
(15) :lgg va(»t) oy

where y is a real parameter. (The right-hand side is interpreted as log x for y = 0.)
If (15) holds with y > 0, then a(t) ~yf (t) as t — o0, both functions tend to
infinity, and hence f e RV,
If (15) holds with y <0, then lim,., ., f(t) =: f(c0) exists and

a(t) ~ =y(f(0)—f®) >0 (t— o).

Hence f(o0)—f (t) is regularly varying of order y.

If (15) holds with y =0, then a(t) = o(f(®)) (t > ) and a is regularly
varying of order 0, i.e. slowly varying. Also lim,_,, f (t) =: f (00) exists ( finite or
+ ). If-f (00) = 0, then f € RV,. If f (0) < 00, then f (o0)—f () is slowly vary-
ing and a(t) = o(f (c0)—f (t)) as t— 0. -

Remark 1. For f measurable the limit in (15), if not identically zero, is
necessarily of the given form. :

Remark 2. If the limit in (15) exists and is identically 0 for x > 0 with
a€RYV,, then

for y >0, f(t) =ofa(?)) as t— oo,

for y <0, f(oo0) exists and f(oc0)—f (t)= o(a(t)) as t — co.

LemMaA 2 (see [7], Theorem 1.20). Suppose that the function f is integrable
over finite intervals and that (15) holds with y = 0.
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(i) Let k: R* — R be a function which is bounded on [0, A] for some A > 0.
Then as t —

‘f (ts)—f (2)
o a()

(i) Let k: R* > R be a function such that j: s°k(s)ds < 0 for some
A,e>0. Then

A
k(s)ds — [logsk(s)ds.
- 0

Tf (ts)—f (1)
~q  a()

LeMMA 3 (cf. Bingham et al. [1], Chapter 4). Suppose that the function g is
integrable over finite intervals and that (3) holds with f positive. Assume
g/f®)»c=>0as t—> 0.

(i) Suppose y > —1 in (3). Let k: R* — R be a function which is bounded
on [0, A] for some A >0. Then as t — oo

k(s)ds — | logsk(s)ds.
A

Ig(tx)

o S(®)

(ii) Let k: R™ — R be a function such that §7x""e |k(x) dx < oo for some
A,e>0. Then

k(x )dx——wjxyk(x)dx

T g(tx)
AC)

Remark. If the limit in (15) is identically zero, then the limit in Lem-
ma 2 is also identically zero.

—k(x)dx—>c j x'k(x)dx.

LeEMMA 4 (see e.g. Ibragimov and Linnik [10], the proof of Lemma 2.6.1).
Suppose g is a non-increasing function and g(t)/f (t) - c€[0, ) as t — o for
some function fe RV_, (0 < o < 2). For any ¢ > O there exist constants A, and

‘to such that for all t >ty and A > A,

7 g(tx) 2 g(tx)
,I;f() ;[f()

Proof By the second mean value theorem for all B >”A

sinxdx| <& and cos xdx| < e.

?Msinx _ 9t

{sinxdx for some £e[A, B],

a4 (@) f® 4
and hence
Rg(tx ) g(tA) 1 (tA) —a
jf() f(tA) 70 —2¢cA as t— 0.

The proof of the first statement is complete since the right-hand side tends to
zero as A —» oo. The proof of the second statement is similar.
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Next we give a version of the monotone density theorem (see e.g. Bingham
et al. [1], Chapter 1.7.3).

LemMMA 5. If f (t) := ﬁ) W (s)ds is regularly varying with index o. > 0 and ) is
monotone, then Yy eRV,_,.

In the sequel we need a modification of the above lemma.

LEMMA 6. Suppose f is non-decreasing. If there exists B > 0 and a positive
function a such that the function f defined by f(t):=1t"" ﬁ) f(s)ds satisfies

T TE9-f@_ -1

(16 a0 ;

for x >0,t— o0,

then
fE)=f @) ¥—1
a(t) B

Proof. Define the function ¥ by

Jor x>0,t— co.

@17 Y@ :=tf@O—ff(&ds (t>0).
' 1]
It is easy to see that this definition implies
— ! d
FO=1veg.

Hence we have for x>0 and t— o

}l//(tS) ds _fex)-f@ x-1

Y@ s> a() B

Since ¥ is non-decreasing, for x > 1 the left-hand side is at least

Yy (t) _ .

T Q=x"1 B o

| ap T
and hence
b_1
lim sup (40, <=

- ta(t)  Pfl—x"1Y)

This shows that limsup,., ¥ (t)/ta(f) <1 by letting x| 1. Starting with
0 < x < 1 and applying a similar inequality we get liminf, ., ¥ (t)/ta(t) > 1. It
follows that y(f) ~ ta(t) (t » o), which combined with (17) gives

L SO-TO_

t—+ o0 a(t)

12 — PAMS 20.1
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Hence as t - o©

fex)=f @) fex)=f (@) x*—1
P = ) +0(1)—>——ﬂ .

Remark. If the limit in (16) is identically zero, the corresponding limit for
f is also identically zero.
The next lemma is a special case of Feller [6], Chapter VIIL9, Theorem 2.
LEMMA 7. Suppose F is a distribution function on [0, o). The function U,
is defined by U, (t):= [, s*dFo(s). Then UyeRV, if and only if.
= 2(1—F, (1)) ‘
0, (1)

Remark. An integration by parts shows that the above statements are
also equivalent to

-0 (t- o).

t2(1—Fo (2)
ﬁ)s(l —Fy(s))ds ”

The following result is a modification of a result in Pitman [15].

(t — o0).

LEMMA 8. Assume the conditions of Theorem 1 (iii) (or Theorem 2 (iii)) are
satisfied. For every y > 0 there is a constant c such that for every T >0 and
0<x<y

v tvan

f costxdt| <¢, |[—5—sintxdt|<c
0 o ¢
and
T1—-UQ/t
j'——tm(ﬁxsintxdt <ec.
)

Proof. Since the other statements can be proved similarly, we only prove
the first statement. Note that if (8) holds with 0 < & < 1, there exists t, such

that |V (1/f)] <t¥* for 0 <t <ty < 1. Define - -

Ty (1))

]

0

(18) . cos txdt

= L1+L25

where L, and L, are the integrals over (0, t,) and (o, T), respectively. It follows
that L, is bounded if 0 <a < 1. For 1 <a< 2 it follows from (8) that
lim,., , tV (t) =: u exists, in the case o = 2 this follows from (13). Hence L, is
bounded. Next we estimate L,. Integration by parts gives

V(1/t) = T sintxdF (x) = ? sin txdF (x)+ Qj? sin txd (F (x)—1)
— 0

=t [ K(y)costydy,
0




Stable probability distributions 179
where K(y) :=1—F(y)—F(—y). Hence

T
(19) L, = | | K(y)costycostxdydt.

to O

Using the second mean value theorem for each M > 0 we infer that there exists
£e[0, M] such that

M
|§ (1—F (y))costycos txdy|
0 - .-

- é :
* =(1—F(0)|costx [costydy| <2/t <2/ty for to,<t<T
| |

Note that a similar argument holds for the integral containing F (—y). Hence
we may reverse the order of integration in (19) to find

w T
L, = [ [ K(y)costycostxdtdy
0 1o
1® cos T'(x+ os T (x— 0Sto(x+ to(x—
- L (L) T costol)_smvate—),
0 x+y xX—y xX+y x—y

The latter integral is bounded since

® cosT(x+y)—cost0(x+y)dy_ ]‘3 cos Ty—costyy

]

“w x+y “ y

dy

exists as a finite (semiconvergent) integral for all real x.

LEMMA 9 (the extension of Kendall [11], cf. Bingham et al. [1], Chap-
ter 1.9). Suppose

limsupx, = c0, Lmsupx,,/x,=1
n—+w n—>w
and f is a continuous function.
1. Suppose 0 <b <c < o0 and for some sequence a, T

g

4, f(Ax) > W (De(©, o)  for all Ae(b,¢) as n— oo

then f varies regularly.
2. Suppose 0 < b < ¢ < o0, the function a is regularly varying and

o LOx0—1 G5
no a(x,)

Y(4) for all Ae(b, c);

then there exist constants c, yeR such that

fE9)~f @), ¥—1

as t— oo, x>0.

a(?) Y
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Proof. The continuity of f is the key assumption.
1. With ¥V = (b, ¢) there exists a non-empty interval K such that
Vou~ 1V #£0 for all ueK. If t, uteV, we have

S Cout) _ r ut)
fed) U0

Hence if we write f*(t) = f(ue")/f (¢") for u > 0 fixed and x} =logx,, then
f*(t+x¥) converges as n — oo for all t in a non-empty open interval J. Choose
¢ >0 and define for ke Z, me N the closed sets .

w Cim:= ) {teR; f*(t+x}) elke—e, ke+£]}.

as n— 0.

nzm

By Baire’s category theorem (see Hewitt and Stromberg [9]), since J is
non-empty and open, one of the sets C,, contains an open interval I. This
means that

ke—e< f*¥(t+x¥)y<ket+e fornzm,tel.

Since by assumption x¥ — 00, x¥,; —x¥ — 0, it follows that | J,>.x¥+1I con-
tains an interval of the form [t,, co]; hence

ke—e< f*(t) < ket+e for all t = t,.
Hence lim,., ., f*(¢) exists and is finite and positive for all uek, ie.
lim f(ue')/ f (€'
=0
exists and is finite for all ue K. It follows that the function f is regularly
varying.

2. In a similar way as above, using the fact that a is regularly varying we
obtain for u > 0 fixed and all ¢ in a non-empty open interval

i 4 Cnti) =1 (5019

n—oo a(x,u)

= Y* ().
Define for u > 0 fixed the function S

frea) = LG ’Zfi'if)(x" ¢)

(with x* = log x, as before). Then in a similar way as above we can show that
lim,, ,, f*(t) exists and is finite,

3. PROOF OF THE MAIN THEOREMS

Proof of Theorem 1. We first prove the equivalence of (i), (i) and (iii). In the
part (iii) = (i) of the proof we obtain the characterization (7) (see (45)).
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(i) = (iii). It follows from (2) that for all real t # 0

(20 '}lm nlogA(a, t)—ib,/t = logg(t),
and hence .

(21) lim nR(a,t) = —Re(logg (1),
and o

(22) N ,}EI; nl (a,t)—b,/t = Im(logg (1)),

where R(f) = —RelogA(f) and I(f) = Imlog A(f) (Re and Im denote the real
and the imaginary part, respectively). Note that there exists a unique version of
log A (logg) satisfying logA(t) > 1 (logg(t) = 1) as t > oo (see e.g. Feller [6],
Chapter XV).

Application of Lemma 9 (note that a, —» o0, a,+/a, = 1 (n > c0) as in the
proof of the Proposition) shows that the function R is regularly varying and
—Re(logg @) = [t]* for ¢t £ 0.

Next we focus on (22). By setting t = 1 we get

lim nl (a,)—b, = Imlogg(1),
and hence
limn[I(a,t)—t~'1(a,)] = Imlogg(t)—t~ ! Imlogg(1).

n—ao

Combining this with (21) for t = 1, we get for all real t # 0

antl(a.t)—a,1(a,) tImlogg()—Imlogg(l) |

23 b .
@3) ,.ini a, R (a,) —Relogg(1) ()
In a similar way, by Lemma 9 this implies

txI (tx)— T—1
). | X (xxl){ (xa)cl () - Ct = Xx—00, t>0, - ‘W

where ceR is a constant. Since Re RV_,, it follows from Lemma 1 that ¢ = 0
or, if ¢ # 0, then y = 1—o. Using the fact that I is an odd function we now have

txI (¢x)— xI (x) e [t —1

) R 7

x — o0, te R\{0}.

We have now (iii) with 1—U replaced with R and V replaced with I
Since for complex z, |z| < 1/2,

le*— 1~z < [2I%,
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we have
A () —1—log A(a,)| < |logA(a,)?

for n sufficiently large. From (21) and (22) we obtain
(26) nllogA(a,)* =n(R(a)+1 (a,,))2 < 2n(R(a)*+1(a,)?) >0 (n— o).

It follows that
(27) lim n|—logi(a,)—1+A(a,)| =0

n2w

hence we-may repléce —log 4 in (20) with 1— A. Consequently, we can repeat
the above argument with —Relog 4 replaced with 1—U and Imlog A replaced
with ¥V to obtain (iii).

(ii) = (iii). Define the functions H and K by
Ht):=1-F@t)+F(—t) and K({):=1—-F(@)—F(—1.

First we prove that
A@O—1—it™* [ K(s)ds

= —5,+i(2p—1)cq.
lim T se+i2p—1)c,

(28)

Now for any 4 >0
A —1—it™1 [ K (s)ds

H{)
__fsan(())dx 4(1 005 x) (())d +i jK(t’;)
H (tx) LK) ®
—js1an()d+j'o H(t)dx

Take ¢ > 0. By Lemma 4 the last two integrals are less than ¢ for ¢t > ¢, and

A > A,. For fixed 4 >0 the first three integrals converge. by Lemma 3 to

—jslnxd——t(Zp l)j(l COSx)d—+!(2p 1)]1d_x

Now (28) follows if we take A4 — co. By separating the real and imaginary parts
in (28) we get the limiting behavior as t - + oo in (9) and (10). The limiting
behavior as t » — oo follows since U is an even function and V an odd one.
Obviously, (9) implies that 1— U eRV_, (since He RV_,). Note that s, # 0 for
0 <a < 2. Now (10) implies that for x > 0

txV (tx)— _f;xK (s)ds
lim
t— o tH (t)

=Q2p—1cx'”
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(use HeRV_,). Combination with (10) gives
ixV(x)—tV () FK(ts)

29 i — — 2p—1)e. (x!*—1).
29) hm o I Hg &= @ Dab=D
Note that the integral on the left-hand side converges to
xl—zz_
2p—-1) as t— o

by Lemma 3 Now (8) follows since 1—U satisfies (9). =

(iii) =(ii). “In this part of the proof ¢ denotes a constant which may take
different values at each occurrence. In order to prove the results in this part we
make use of Lévy’s inversion relation

© e—!{h

(30) F(x+h)—F(x)= j i

valid for all x, x+ A for which F is continuous. See e.g. Chow and Teicher [3].
Note that the above integral is to be understood as the limit as 4 — oo of the
integral over (—A, +4). A similar remark holds for the other inversion
integrals below. Using the relation (30), the equality ¢ (t) = A(1/1) = U(1/5)+
+iV(1/t) and the fact that

—i{x dc’

© gin x T
f—dx =7,
0 X 2

we obtain the following inversion formula for H:

(31) H(x) = 2 II__IL/)

o

sintxdt, x>70.

‘First we prove that H is regularly varying with order —ao. For ¢ > 0 define

T
H,(t)=[H,(x)dx, . = -
. 4] corm
where H, () = |. xH (x)dx = 4[> H(\/u)du as in Theorem 2 (ii). By (31) it
follows that

1- (/)

[ [oe}
H ()= f | ———xsinsxdsdx.
Moo

From Lemma 8§ it follows that we may reverse the order of integration, and so

Hl(t)——j {1 U 1/ )}smts tSCOStSdS.
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Since this integral is absolutely convergent, by Fubini’s theorem we have

sin xs — xs cos xs

(32) Hy(t) =2 j j{1 —U(1)s)} dxds

2(1—costs)—tssints

= 2T a-vam ) ds.
To

S

Hence

H,() 27 1—U(t/s)2(1—coss)—ssins»d-

| 5.

B(1-U@®) =o 1-U@ s*

Since 1—VU is regularly varying with index —a, in view of Lemma 3 (substitute
s = x~ 1) the right-hand side converges to

2%92(1—coss)—ssins
— e ds ast— .
Ty s .

As a consequence, H, € RV;_,. By the monotone density theorem (Lemma 5) it
follows that H; e RV,_,; then HeRV_,. In order to prove the tail balance
condition we need an inversion relation for K. As for the inversion relation for
H we obtain

6y K@-Kp) =]

(costx—costy)dt, x,y>0;
0

hence by Lemma 8 the function
2 =}
vK(x)—aj' cos txdt
0

is constant for x > 0. The constant is necessarily 0. This follows by taking the
limit as x — oo and applying the Riemann-Lebesgue lemma in (18). See e.g.
Feller [6], Chapter XV.4. For y >0 we have

(34) Ki(y):= }K(x)d =—_” V(l/)costxdtdx
0
ET i V(l/t) cos txdxdt = 2 Y{/9sin tyd .

Interchanging the order of integration is justified by Lemma 8. Now we inte-
grate once more, use (34) and Lemma 8 to find for ¢ >0

K 1/s)y(1—
Ri@):= —_[Kl( )dy 2t£ V (1/s)( h cosst)

S
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It follows that for b,t >0
K, (bt)—K(t) 2T btsV (bts)—tsV (ts)a(ts)

a(?) T £ a(ts) a(d)
where a(t) :=t(1—U ().

Taking the limit as ¢t — oo, using (8) and Lemmas 1, 2 and 3 we find for
x>0

(3% {1—cos(s™ ")} ds,

R K.-l(tx)_K-l(t)__ xlAl—].
(36) L I T

Application of Lemma 6 then shows that

. Ki(tx)-K(t)  x'7*—1
(37) T S

, x>0.

It follows from (9), since HeRV_,, that as t > oo for x >0

§o H(s)ds— [, H(s)ds tH(t) *H(ts) x17%—1
a(®) Tl—v@ HO O .

Adding both sides of (36) and (38) we obtain for x >0, as t — oo,

T1—F(ts) xt7e—1
t d .
{ a) T 1=y
In view of (9) this implies

x 1 _F(ts) xt7e—1
39

39) {1—F(t)+F(—t) ST
For x > 1 the left-hand side is at most

(x—1)(1—F @)/(1—F ()+ F (—1).

(38)

, t—w, x>0.

Hence

. 1—F () Xt -
bl T F (=0 > U0 x—1) ‘

Letting x | 1 then gives

.. 1-F(@®)
(“40) I I O+ F (=9 >

Starting with 0 < x <1 in (39) and applying similar inequalities we obtain
limsup(1-F@)/(1-F@®)+F(—1) <c,
t— o0

where ¢ equals the constant in (40).
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(iif) = (i). Define the sequence a,, n=1, 2, ..., such that
41) lim s,n(1—F (a,)+ F(—a,) = 1.
Note that this is possible since 1— F (t}+ F (—t) is regularly varying. Moreover,
a,— o0 as n— 0. By (9) we have, since 1—UeRV_,,
42) lim n(1—-U(a,t) =™ for all teR, t#0.

Define the sequence b,, n=1,2,..., by

P

an 2 —
by=— | K(s)ds+Z—¢
Ay o

-4

Then as n— oo for all teR, ¢t #0, by (9) and (42)

nv (a, t)—% =—(a,tV (a, t)—a,,V(an))+E(V(an)_5>_2p— 1 .

n
a,t £S,

16,V (a,)—a,V(a,) 1 V(@)—a; ' [;'K(s)ds _2p—1
t a,(1-U(a,) ts, H(a,) £,
Substituting relations (8) and (10) on the right-hand side we find

43) lim {nV(a,,t)—bT} - 1{[1+(1— ) JI 1}

o

ts
Combining (42) and (43) we get

(44). lim n(1—2(a,0) +ib, e = "2 1){[1+(1— el == 1}.

n—ow Sa —a
We want to prove that
45) lim A"(a,t)exp(—ib,/t)

=exp<—[|t|-“—i(2fs_1){[1'+(1— ) ,,,]"1 - H)

Now for |z| < 1/2 we have |e"—1—z| < |z|. In particular, for fixed teR, t # 0,
there exists ny such that for n > n,

Jexp (= 1+ 4(ay )~ 4(a 0] < [1—A(a, ),

and hence

exp {—n(l (a0} exp(—ib, /1) = 2" (ay 1) exp(—ibn/t){1 +0 (%%)} -

So it is sufficient to prove that n|1 —4(a,t)|> - 0 as n —co. This follows from
(42) and (43).
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Proof of Theorem 2

(i) = (iii). Following the reasoning of the proof of Theorem 1, part (i) =
(iii), we find that 1—U e RV_,. Since (24) now holds with y = —1, application
of Lemma 1 (or its extended form from Remark 2 following the lemma) shows
that lim,.,, tI(t) =: ¢, exists. Hence (25) holds with ¢ possibly 0 and the
right-hand side equals

7(t) =tImlogg()—Imlogg (1) = —c(jt| ' —1).
Since —Relogg(t) = t™2, t #0, we have
e g =exp{—t"2+it" (cs+cald Y}
where c; and c, are constants. Since any bounded continuous function @ with

w(0) =1 is a characteristic function only if for all x and ¢ >0

[0

[ e w)exp(—&l2)dl >0

(see Feller [6], Chapter XIX.2), we must have ¢, = 0 (see Steutel [18]). Hence
¥ (t) = g (¢t~ ') = exp (—t?) and (24) holds with ¢ = 0. Remark 2 following Lem-
ma 1 now shows that lim,_ .tV (f) =: u exists and (12) holds.
(ii) = (iii). By Lemma 7 (take Fo(t) = 1—H (t), t > 0), t* H(t)/H(t) - 0 as
t - c0. Note that
At)— 1 —iu/t+ H, (t)/t?
H, 1)/t

1(tx)® H (tx)sinx —x © (tx)i H (tx)sin x
-] T dx— | ——
o Hi() x 1 Hi(®)  x
A(@Ex)* K(tx)cosx—1 2 (tx)® K (tx)cos x—1
| Tho = “Tme w2
- Application of Lemma 3 shows that the integrals on the right-hand side all

tend to.zero as ¢t — 0o. Now (13) and (14) follow by taking the real.and imagina-
ry part and (iii) follows from (ii), (13) and (14).

dx

dx.

(iii) = (ii). Compared to the corresponding part in the proof of Theo-
rem 1 we have to integrate once more in order to get an absolutely convergent
integral. For the function H; defined by H; (t) = j:) H,(s)ds an expression simi- .
lar to (32) can be given. A similar calculation shows that H, is slowly varying.

(iii) = (i). With the sequences a, and b,, n=1, 2, ..., defined by

nH; (@) —»1asn—->o and b,=ny/a,

the proof is similar to the proof of the corresponding part of Theorem 1. We
omit the details.
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