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LIMITING DISTRIBUTIONS OF DIFFERENCES AND QUOTIENTS
OF SUCCESSIVE k-TH UPPER AND LOWER RECORD VALUES

BY
o
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Abstract. Following the method of Gajek [3] we investigate the
limiting properties of differences and quotients of successive k-th upper
and lower record values.

1. Introduction. Let {X;, i > 1} be a sequence of iid. random variables
with common distribution function (df) F and probability density function

(pdf) f. Let
Xl:n <X2:n < <Xn:n

denote the order statistics of a saniple X4, X,
For a fixed k > 1 we define (cf. [2]) the k-th upper record times U,(n),
n> 1, of the sequence {X,,i> 1} as follows:

U(1) =1,
U(n+1) =min {j > Uy (n): Xjjox—1 > Xvamvem+k-15> n=1,

and the k-th upper record values as
7 Y¥ = Xy pvnm+i-1, B2 1

Note that for k = 1 we have Y = X0, := Xuws 1 = 1, (upper) record
values of the sequence {X;, i> 1}, and that Y{ = X, = min(X,4, ..., X}).

Similarly, for a fixed k > 1 we define (cf. [6]) the k-th lower record times
L,(n), n=1, as

Lk(l) = 13
Ly(n+1) =min {j > L,(n): Xupm+k-1> Xigjre-1)> 1= 1,

and the k-th lower record values as
ZP = Xppm+x-1, n= 1.

Note that for k = 1 we have Z" = X,.1,m 1= X1 1 = 1, (lower) record
values of the sequence {X;,i> 1}, and that ZP = X, = max (X4, ..., X))
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Let us put for k=1, n>1,
AP =Y, —-YP, DP=2zP-ZH,,
U® = Y® /Y®, —T® = z0/z6
and define
W = ka®, V= kDY,
R® = p(UP—-1), Q¥ =n(TW-1).

Gajek [3] has shown that if a df F, concentrated on the mterval S<Ris
absolutely continuous with a pdf f and if

f(x)
—F(x)

r(x)=1

is a differentiable function with a bounded first derivative, then
w®EW, as k-

(D—in distribution), where W, is exponentially distributed with a df
F}(x) = 1—exp(—4ix),

and where 4 = r(xg) (the right limit of r(x) at the point x,), xo = inf§, and F},
F¥ denote the distribution concentrated at zero and the improper distribution
concentrated at infinity, respectively.

In this paper we extend the class of sequences of df’s described in [3]
weakly convergent to an exponential distribution, using lower record values, to
construct a sequence {V'¥, k > 1}. Moreover, we study limiting properties of

the sequences {R®, n > 1} and {Q®, n > 1}. The results are illustrated by

examples.

- 2. Probability distributions of U®, D® and T®. It is well known that if a df

" F has pdf £, then Y® has pdf (cf. [2])

k"
1) Sy (x) = n 1)1 (1 F(x))]" TM-FEI*f(x)
and the joint pdf of the vector (Y¥, Y®) is of the form

k"
i —m—niL o= F ™

6 (. 1-F()
1_F(x)(1°g1_p(y)

(k?fm,n (x’ _V) =

X

)m_ [1—FG)T'f )
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for x < y, and ®f,, . (x, y) = O for x > y (see [4]). The joint pdf of (Y$, Y. ) is
therefore

kn+1 e f(x)
m[—log(l—F(x))] 1 FD

Similarly, the random variable Z® has pdf

[1 ~FO)I )

2) Bfpnr1(x, y) =

kll
(n 1)'(
and the joirt pdf of (Z"" Z®) is

n

C) fago (x) = log F (x))" ™ (F ()} 7' f (%)

) fin(x, y) = (~log F ()"~

m—1)(n—m—1)!
et} o

for x > y, and f®, (x, y) = 0 for x < y (see [6]), and the joint pdf of (ZI, Z&. )
is of the form

kn+1 1f( )
®) fEax, Y)=m(—108F(x)) F)

=FONFfO)
for x > y.

In what follows we need the following statements concerning the dis-
tributions of the r.v’s D®, T® and UP.

PROPOSITION 1. The pdf of D¥ is of the form

kn+1 0 n_lf(u'l'v)

(6) | Sogo (u) = P _j’m (—log F (u+v)) (F) 1f v)dv

Fu+v)
for u>0 and fpeo(u) =0 for u<0, and its df is
P k" o0 o
(7) . FDgc)(Z) = l—m _j'w(_logF(S))n—l [F(S Hk;t ;
for z=0.

Proof. Let us put X = Z® and Y=2Z®,, where n>1, k> 1. Let
g: R* - R? be given by
g(xs y) = (x_ys y)

Then g maps the region D = {(x, y): x >y} onto G = {(u, v): u > 0}
Moreover, for (u, v)eG

g t(u, v) = (u+v, v)
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and

0y . (1 1)_
6(u,v)_det(0 1)_1'

Thus the pdf of the vector (U, V) =g(X, Y)=(D®, Z® ) is
Ym,v), u>0, veR,
Jov(u, v) = {fxy( ))

u<0, veR,

where fxx(x', ) =f®_.,(x,y) is given by (5). Then
oo @) =fo @) = [ for G, 0)do.

Thus for u >0, veR,

knti ne1 S @+0)
(n_l)!(—log(u+v)) Flato)

and fyy (u, v) = 0, u < 0, which implies (6). Furthermore,

Jov (u, v) = (F@Y f)

Fpga(z) = f Jpgo (u) du
kn+1 z + 0 : - f(u+U)
(n 1)'j'du { (—~logF (u+v)) 1F( ot o)

kn+1 z + o0 1f() - B
(n 1)'.‘.du Iw(—logF()) F()( (S u)) f(S u)ds

—?ijw(—iogF(s)) 1£8d f(F(s—wf~* f(s—u)ds

n+1 +o F(s)
LA "‘1&ds | ¢ tar
(n—=1) F(s) F(s—2)

Eo T (ClogF oy 11{,8{@()) —(Fs—2)ds
kn +

— ._j (—log F(s)" Y (F(s)f "1 f (s)ds

Kkt f()
—m—jw(—logF(s)) LF(s— z))"F()

kn + o
= 1_(n—1)! _j (—log F(s))" *(F(s— z))"gg

which completes the proof. =

(F@)~ f (v)dv
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The next two propositions can be proved similarly.

PROPOSITION 2. Assume that F(x) =0 for x < 0. Then the pdf of the r.v.
U® s

kn+1 o0
(8) Soga (u) = = 1)']' 2[ log(l F(v/u))]" 1
f (v/w) 1
< LS (= F O () ds

for uz1l and Jow (W) =0 for u<1, and its df is of the form

n+1 o

©) Fyoa(z) = 1— kn' i [—log(1—F w/2)]"(1—F @)}~ f(v)dv

for z=1 and Fyw =0 for z < 1.

PROPOSITION 3. Assume that F(x) = 0 for x < 0. Then the pdf of the r.v.
T® is

kn+1 0o
10 fuot) =g | o(—logF Gy £

for uz1 and freo =0 for u <1, and its df is of the form

(F )~ f () dv

n+l oo -

(11) Froo(z) = l_knr [ (—log F (vz))*(F ()"~ ' f (0} dv

for z=1 and Fqyeo =0 for z < 1.

Remark. Analogous propositions may be proved in the case when F has
the support ScR.

3. Examples. We now give some examples illustrating the limit theorems
formulated in Sections 4, 5 and 6.

EXAMPLE 1. Generalized extreme value distributions [1]. _ .
" Generalized extreme value distributions are defined by o

exp{—(1—yx)""}, x<1/y,y>0,
(12) F(x)=<exp{—(1—yx)'"}, x>1/y,y<0,
exp(—e™™), xeR,y=0,
and for such distributions
fx) ==y Texp{—(1—yx)'"},
S)/F(x) = (1—p)tM7L,  —logF (x) = (1—yx)'".

13 — PAMS 20.1
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If y > 0, then x < 1/p, and changing the variables in (6) to t = 1 —y(u+v) we
obtain
kn+1 1%
=1, j t"M=Lexp { —k (t+yu)*"} ¢ +yu) M1 dt.
Putting y = 1 we easily obtain
stlk) (u) = ke™™, u>0.

Thus D¥ is exponentially distributed with df

. FOuw)=1—e™,
and V¥ = kD® has the df

Fx)=1—e"* x=>0.

Jogo (u) =

Then of course the limiting distribution of V%, as k — oo, is exponential.
Now consider the distribution given by (12) with y =0. This is the
so-called Gumbel distribution. Now we have

f(x)=exp(—e ¥e ™, xeR,
fx)/F(x)=e">, —logF({x)=e"".
Thus from (6) we obtain (after changing the variables to t =e™?)
fowo () = ne™™,
and D® has the df
Fpoa(z) =1—e™, 220,

while ¥ has the df

F,e)=1—e"*50, k- .

Therefore in this case the limit of the sequence {F,, k > 1} is not a proper
probability distribution; it may be conmdered as an 1mproper distribution
concentrated at infinity. :

g

EXAMPLE 2. The Fréchet distribution.
Let us consider now the Fréchet distribution with df

_ Jexp(—1/x%), x=0,
Flo= {o, x <0,

where o > 0. Then
fx)= exp( 1/x%),

f(x)/F(x)= oc/x““, —log F(x) = 1/x~.
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Thus, using (11) and making the substitution ¢ = 1/x* we obtain for x > 1
Froa(x) = 1—x"",

It follows that Q% = n(T® —1) has the df

1
- 31— ,
(1+x/n)’"‘_) e ™, n-ow

and the limit distribution of %, n— oo, is again exponential.

F oo (x) = FT;k)(I +x/m)=1—

EXAMPLE 3. " Exponential distribution.
Assume that X; are iid. r.v.’s with df

_ l_exp{_(u_ﬂ)lﬂ‘}s Uz,
Fuy= {0, u<pu.
Then

—log(1—F ()= @—p/4, S =[1—~F@JA

Then Proposition 2 implies that for z > 1

e v

Fyw(z) =1—

" 1
m 7 ) exp(—k(v—,u)/l)zdv,

I

which after the change of variables t = A7 !(v/z—p) gives
Fygo(z) = 1—z7"exp(—ku(z—1)/4).
Thus, for z > 0,

Fgroo(z) = Fygo (1+2/n)

1 kuz
=1 ——— > 1—e77 - .
(1 -l-z/n)"exP( ml) ¢ ne®

4. Limiting distributions of the random variables V¥, k — co. The theorems
in this section, concerning the k-th lower record values Z%), are counterparts of
theorems formulated in [3].

THEOREM 1. Suppose that X; have df F and pdf f, with the interval S — R as
the support, and that q(x) = f (x)/F (x) is a differentiable function with bounded
first derivative. Moreover, assume that {Fy, k > 1} is a sequence of distribution
Junctions of the form

F(v—z/k))"
1—{(Ee=ZRY, o
(13) Fi@) = £< Foy ) dox@  Jor 220

0 Jor z <0,
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where {Gy, k > 1} is a sequence of distribution functions such that
(14) G- G, k-,
and G is a distribution concentrated at a point xo€0S. Then

Fy—=F,, k- o,

where
F,(z)=1—exp(—uz) for z>0,
and -
q(xo) if xo=supS,
15 =
(13) 2 {q(xa') if xo =infS$.

Proof. Put g(x) = log F (x). Then using Taylor’s formula and the diffe-
rentiability of g we obtain for z > 0

k,gM = log F (v—z/k)—log F () = g (v —z/k)— g (v)

F(v)
. z\ 1, 0z z\? z 0z\ 22
=s0(~3)+39 (=) (~5) = —a0gra () 2

where 0 < 6 < 1. Thus

0z\ 22
(16) 1—Fy(2) = fexp {q’ <v—?)EE}exp(—q(x)z)de(v).
5

Define

17 Hy(z) = [ exp(—q(v) 2) dG, (v).

. S

Now the assumption |¢'(x)] < M for xeS§ and (16) together imply that
e - Mz2 o Mz2 B —‘m
(18) - Hk(z)exp{— 2; } < 1-F,(z) < exp {E—C—}Hk(z).
From (14) and (17) we get _

(19) Hy(2) = Eexp(—q(Y)z) > exp(—q(xo)z), k— oo,

where the random variable Y; has the df G,. Thus (18) and (19) imply that
Fy(z) > 1—exp(—pz), k- oo,

where p is given by (15). From (13) it follows that F,(z) - 0 if z < 0, which
completes the proof. =



Limiting distributions for record values 197

THEOREM 2. Suppose that F, f and q are as in Theorem 1. Then
(20) VP 3V, koo,
where V, has the exponential distribution with df
Fy(x) = 1—exp(—pux),
and p=q(xy) and xo =supS.
Proof. By Proposition 1, the distribution function of DY may be rewrit-

ten as
x5

B F(v—2)\*
Fpga(2) = 1—£( F) ) dGy (v),
where
k'l X
Gy (x) = =1 _jm(—logF(y))"‘l(F(y))""l S(dy

is the df of Z®. Therefore V® has the df

Fyo(z) = 1—| (F—(’I’;@g@y dG,(v).
Since

1 [o.2]
G — n—1_—u
«() (n—1)! —klong(x) * e tdu,

condition (14) is valid with x, = sup S. Thus Theorem 1 implies that
Fvs,") —-F,, k- oo,
where
F,(x)=1—exp(—ux), x=0,
which i equivalent to (20). = ’

5. Limiting distributions of the random variables R®, n — co.

THEOREM 3. Suppose that X; have df F and pdf f, with the interval
S < [0, o0) as the support, and that

_ 1 S (x)
10 = o (1—F ) 1-F ()

is a differentiable function satisfying the condition
(21) ' x*q (x) <M  for xeS.
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Moreover, assume that {F,, n > 1} is a sequence of distribution functions of the
Jorm

- (log(l —F (v/(1+z/n)))
(22) F,(z) = 5 log(1—F (v))

0, z<1,

) dG,(w), z31,

where {G,, n> 1} is a sequence of distribution functions such that
T N

(23) G,—» G, n— o0,

and G is a distribution concentrated at a point x,€dS. Then

F,-»F,, n- oo,

where

F,(z2)=1—exp(—puz) forz>0
and

_ Jlim s xq(x)  if xo =sup$§,
@4 h= {limxﬁxg xq(x}) if xo =infS.

Proof Let g(x) = log[ —log(1—F(x))]. Then using Taylor’s formula
and the differentiability of g we obtain for z >0

10g(1—F(v/(1+z/n)))_ vz v vz \?
©8 log(1—F (v)) _—q(v)n+z+q 140z/n)\n+z)’

‘where 0 < 0 < 1. Thus

_ , v n(wz)?] [ nvz-
(25) - | 1—-F,(z) = gexp {q (1 " Oz/n> (n+z)2} exp <—q(v)n—_|_z>l\dG,!(v). |
Define
(26) H,() = fexp( ~q() :—fz) 4G, (v).
S

From assumption (21) we obtain

v’ q v
1 1+ 6z/n

2
<M(1+%) )
n
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which together with (25) implies

Q7)) H.() exp{ 124: ("H:GZZ)} < 1—F,(u) < exp {% ("ni(’;)} H,().

Note that

H,(z) = Eexp(—Z,), where Z, = Y,,q(n)—"z—

and {Y,, n > 1} is a sequence of random variables such that Y, has the df G,.
The convergence Y, 2 xp, as n — o0, and (one sided) continuity of the function
v g (v) at x, together imply that Z, 2 uz, n— oo, and we obtain

(28) Hn(z)—’eXP(—ﬂZ)a h— 0.
Thus (27) and (28) imply that
Fn(z)_)l_exp("'ﬂz)a n— 00,

where p is given by (24). It follows that F, (z) — 0 for z < 0, which completes the
proof of the theorem. m

THEOREM 4. Suppose that F, f and q are as in Theorem 3. Then
(29 R® 5 R®,  n- oo,
where R™ has an exponential distribution
F,(x) = 1—exp(—px)
and p = lim,..- xq(x) and xo =supS.

Proof. Using Proposition 2 we may write the df of U¥ as

_ log(1—F (v/2))\"
FUf.k) (Z) =1 —g( Iog(l—F(v)) ) dGn(U):

wherg o i
o nt+lx ’ o
- g [—log(1-FO)I'"(1—FO) " fOdy
is the df of Y® ,. Therefore R® has the df |
B log(1—F (v/(1 +z/m))\"
Fgoo(2) = 1—£< log(1—F (v) dG,(v).

To prove that (23) is satisfied, we use the formula (cf. [5])

Gu(x) =

n—1 1
(30 Fygo (x) = 1—(1—-F (x)}* Z [ In(1-F )]
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If xo =sup$, then for x < x,

oo}

lim G,(x) = lim Fys,(x) = 1—=(1—F ()} ¥’ i_{—:[—-ln (1—F )]

n— oo i=0
=1-(1-F(x)texp{—kIn(1—F(x))} =0,
and G,(x) =1 for x = xy. Theorem 3 implies now that
Fgoo - F,, n— o0,
where
v Fy(x) =1—exp(—px), x2=0,
which is equivalent to (29). =

6. Limiting distributions of the random variables 0%, n — oo.

THEOREM 5. Suppose that X; have df F and pdf f, with the interval
S < [0, o) as the support, and that

_ f(x)
P = ~F D logF ()
is a differentiable function such that

(1) Ix?p' ()l < M

for xeS. Moreover, assume that {F,, k > 1} is a sequence of distribution func-
tions of the form

1 ® (log F(v(1+z/n))
g log F (v)

0, z<0,

)dG,,(v), z=0,
(32 F,(2) =

where {G,, n> 1} is a sequence of distribution functions such that

(33) - G,—»G, n-— oo, -
and G is a distribution concentrated at a point xq,€0S. Then
(34 F,»F,, n- oo,

where

F,(2) =1—exp(—pz) for z>0
and

(35) -~ flimen xp(x)  if xo = supS,
 limy .,y xp(x) i xo = infS.
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Proof Put g(v) = log(—logF(v)). Then

ey f(x) _
90 = Flog F) p()

and, by Taylor’s formula,

log F (v (1 1
= 1!2(1?;;)2/'1)) =P (v)%z_i"z P’ (v(1+0z/n))(z/n)*.

Therefore, using (32) we. obtain
(36) 1 —F,iz) = uj? exp {—vp(v) z} exp { v p' (v(1+0z/n)) 2}dG (v)
and, by (31),

(37 0% p’ (v (14 0z/n))| = v? (14 6z/n)* p' (v (1 + 0z/n))

1
.(1 +0z/n)?

a \2
< M(n+92) ’

H,() = | exp{ =00 ()2} 4G, (0.

Define

Then from (36) and (37) it follows that

Mnz?
2(n+ 02

Since from (33} and (35) we get

}H,.(Z) < 1-F,(z) <exp {5(24_:_1—222)2}%(2)-

(38) exp{—
H,(z) »exp(—pz), n-— oo,

1nequa11ty (38) implies (34). m

~THEOREM 6. Suppose that F, f and p are as in Theorem 5. Then
(39) oW 50", k- oo,
where Q, has an exponential distribution

F,(x)=1—exp(—ux), x>0,

and p =lim, .+ xp(x) and x, = infS.

Proof. Using Proposition 3 we may write the df of T® as

_ log F (vz) \"
FTs.k) (Z) - 1—£<10gF(U)> dGn (U)a
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where
n+1x

f(—log F)"(FO) ' f () dy
o
is the df of Z¥) ,. Therefore 0% has the df

i) = 1 logF('u(I+z/n))>
Fom(@) =1 i( g7 ) 460

G, (X) =

Analogously to (30) we show that

e n=1pi )
= Fzg0(x) = (F (x))* ; H(—lnF ).

Thus for x = xq

4»

lim G, (x) = lim Fpp, (x) = (F ()t Z

n— o N i=o!
= (F(x)) exp{—kInF(x)} =1
and condition (33) is valid with x, = infS. Theorem 5 implies that

( In F(x))f

Fgoo > F,, n— o0,
where
Fk(x)= l_exp(_y‘x)s x>0:

which is equivalent to (39). m
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