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Abstract. We prove the Marcinkiewicz-Zygmund SLLN (MZ- 
-SLLN) of order p, ~ € 1 1 ,  2[, br associated sequences, not necessarily 
stationary. Our assumption on the moment of the random variables is 
minimal. We present an example of an associated and strongly mixing 
sequence, with infinite variance, to which our results apply. The con- 
ditions yielding such results for this example are discussed. 

1. INTRODUCTION AND NOTATION 

Let (X,),,, be a sequence of associated random variables (r.v.'s) (as defined 
by Esary et al. [7]), i.e. for every finite subcollection Xi,, . . ., Xi" and every pair 
of coordinatewise non-decreasing functions h, k: Rn + R 

Cov(h(Xi,, ., Xi,)> k(X,,, . . ., X,)) 2 0 

whenever the covariance is defined. Define S, = C:=, (Xi- EX,) with the con- 
vention that So = 0. Let p be a fixed real number in [I, 2[. 

Our main purpose in the present note is to study the problem of the 
almost sure convergence of n-'IPS,,. This problem is known as the Marcin- 
kiewicz-Zygmund Strong Law of Large Numbers (MZ-SLLN). Th_e case p = 1 
is known as the Strong Law of Large Numbers (SLLN). An extreme case of 
association is the independence (cf. (g4) of Esary et al. [7]). When the as- 
sociated sequence (X,),, consists of i.i.d. r.v.'s, Baum and Katz [I] showed 
that the relations 

(1) E IX,IJ' < co and lim n-'Ip S, = 0 almost surely 
n+m 

are equivalent. 
As far as we know, for dependent sequences of associated r.v.'s there are 

two results that concern only the SLLN. Let us recall them briefly. 
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SLLN for associated sequences. The first result about this problem is in 
Newman [lOf: 

For a strictly stationary and associated sequence (X,),,, with$nite variance, 
the SLLN follows from the ergadic theorem 

Next Birkel [2] obtained an SLLN for associated (not necessarily sta- 
tionary) sequences under a condition close to that of Kolmogorov's classical 
SLLN f ~ r  independent r.v.'s. He assumed that the associated sequence (X,JnEN 
which has finite variance fulfills 

2 n - 2 ~ o v ( ~ , ,  S,) < a. 
n= 1 

According to those results, the SLLN for associated sequences requires the 
existence of second moments, since the covariance structure is used to describe 
the asymptotic properties of the process. However, in some cases, the second 
moments do not exist, especially for the case of stable sequences. 

A natural question in this context is then whether the (MZ-)SLLN holds 
for associated sequences for which the second moment. is not assumed to beJinite 
but rather the moment of order p ip G [ I ,  20. The main goal of this paper is to 
provide such a result for associated sequences. So, as in Dabrowski and Jaku- 
bowski [5 ] ,  a principal task is to find a suitable weak dependence coefficient 
defined for associated sequences with infinite variance. 

There have been a great number of papers concerning the rates of conver- 
gence in the SLLN for weakly dependent r.v.'s (cf., for example, Chandra and 
Ghosal [4], Shao [16] and the references therein). For strongly mixing se- 
quences, the above problem is completely solved (cf. Rio 1131). Strongly mixing 
coefficients (as defined by Rosenblatt [14]) refer more to a-algebra than to 
random variables. Strongly mixing coefficients have explicit upper bounds for 
Markov chains or linear processes (cf. Doukhan 161 and the references there- 
in). By contrast, the dependence structure for associated sequences appears 
only through the covariance quantities which are much easier t6"compute than 
the mixing coefficients. 

Examples in Wood [17] and in Louhichi 191 prove that mixing and as- 
sociation define two different classes of processes. Thus one may expect that the 
technical difficulties that arise during manipulating association are different 
from those that concern strongly mixing sequences. 

Let us now describe the methods and the contents of the paper. Recall that 
our main task is to find a suitable covariance quantity for associated sequences, 
with infinite variance, for which the MZ-SLLN holds. For this, let 
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It follows from the association property that di,i,,(x, y) 2 0 for all x, y in R. 
For fixed v in R + ,  we define the non-decreasing real-valued function g, by 

Finally, let Gi,i,,(v) denote the following covariance quantity: 

Let us note that GiYi+ , (v )  is well defined, bounded by v2 and positive (this 
follows from association). Moreover, if the r.v.'s (Xi)i have finite variance, then 

T- Gi,i+r(m) = CovCXi, Xi+r), 

as can be seen from the equality 

In Section 2, we prove [cf. Theorem 1) that (1) holds for associated sequences 
having a finite moment of order p under the summability condition 

Note that the above integral expression is finite as soon as the r.v.'s have 
a finite moment of order p (cf. Lemma 5). 

AU the involved assumptions are stated in terms of the covariance quan- 
tity Gi,j (v). Those coefficients Gi,j(v) are explicitly evaluated for moving average 
with innovations having a stable distribution. We check the mixing property 
for those linear processes (cf. Appendix). In particular, we compare the con- 
ditions yielding the MZ-SLLN for those linear processes using first their as- 
sociation properties and next their mixing ones (cf. Section 3). The proofs are 
given in Section 4. 

2. RESULTS: MARCINKIEWICZZYGMUND STRONG LAW OF LARGE NUMBERS 
. - 

The following theorem gives rate of convergence in the SLLN for as- 
sociated sequences. The moments of order two of the r.v.'s are not assumed to 
be finite. 

THEOREM 1 .  Let p be a $xed real number in [I, 21. Let (X,),, be a se- 
quence of associated r.v.S. Suppose that there exists a positive r.0. X such that 
EXP < or, and that sup, P (IXiI > x) < P (X > x) for any positive x. If 

- then Em,, , n lip S,, = 0 almost surely. 
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R em ar  k. For pairwisely identically distributed and associated sequences, 
condition (5) holds as soon as 

f 'r up-' Go,r (v) dv < m. 
r = l  [ r + l ) l / ~  

For random variables with finite variance, Theorem 1 yields the following 
result, providing rate of convergence in the SLLN of Birkel [2]. 

COROLLARY 1. Let (X,),, be a sequence of associated r.v.'s that fu&lls 
the requ$eimt of Theorem 1 .  Suppose moreover that (XnInEN has finite vmi- 
ance. If 

OD 

j - 2 t P C ~ ~ ( X j , S j - l ) < ~  for some p ~ [ l , 2 t ,  
j= 1 

then lim,, , n- 'IPSn = 0 aln~ost surely. 

3. EXAMPLE: LINEAR SEQUENCES WITH STABLE INNOVATIONS 

We shall derive here the almost sure limiting behavior of n-'!PS, of a 
moving average process, with infinite variance, defined by 

where the E,'S are independent and stable (a, a, 0) with a €11, 2[. The constants 
ai defined by (7) are assumed to satisfy 

Recall that a random variable is stable (a, a, 0) if it has the characteristic 
function # (u) = exp ( - fl lula) with a 2 0, ~ ~ 1 0 ,  2[. Recall d so  that a stable 
(a, a, 0) r.v. X fulfills E /XIP < KC for any ~ € 1 0 ,  a[ and E ]XIP =""a if p 2 or (cf. 
Property 1.2.16 in 1151). The stationary sequence (Xn)n,Z (cf. (7)) is defined if 
and only if (8) holds (cf. Leadbetter et al. [8]). Moreover, X, is stable 
("(Ciao IaiIa)lia, a ,  0). Hence X,, has a finite moment of order p if and only if 
p < a. We note, in particular, that the moment of order two of Xo does not 
exist. 

Under some additional conditions on the weights the requirements 
of Theorem 1 are fulfilled. 

COROLLARY 2. Let a > 0, a €11, 2[ and p E 11, a[ be fixed. Let (E,),,,, be 
a sequence of i.i.d. random variables with a stable (g, a, 0) marginal distribution. 
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Let (aili, be a sequence of real numbers fu&lling (8). if 

6) nl-zip+Bip yn < OC) for some /3~]2--a,  2-p[, 
n> 0 

then the assumptions of Theorem 1 hold and, in particular, MZ-SLLN holds for 
the sequence (X,),,, defined by (7). 

Remark. Let (X,),, be the linear process defined as in (7). Suppose that 

(10) lail = 0 ti-*) for same a > 1 
m 

and ~ q Z # O f o r a l l z ~ C w i t h  l z l $ l .  

Then the following properties hold: 

1. According to Corollary 2, the sequence (X,)n,Z satisfies the MZ-SLLN 
as soon as (9) holds, i.e., if 

2 The sequence (X,),,, is strongly mixing (s.m.). In order to prove this 
property it suffices to check the conditions of Pham and Tran [12]: provided 
that (10) holds, the sequence (X,),, is s.m. if the density g of E ,  satisfies 

for some positive constant C and for all u E R+ (we check (12) in the Appendix). 
Hence Theorem 2.1 in Pham and Tran 1121 bounds the strong mixing 

coefficients an of this linear sequence as follows: 

where 6 is some real number in 10, a[. 
For s.m. sequences Rio [13] gives an optimal condition yielding the 

MZ-SLLN of order p E [I, 2 [ :  

where Q denotes the inverse of the tail function t + P(X 2 t) (the r.v. X is 
defined in Theorem 1). We recall that the stationary sequence defined as in (7) 
has a stable (o(~,,, laila)lim, a, 0) marginal distribution. It follows then from 
Property 1.2.15 in [15] that P(lXII $ t) = O(tCa). Hence 
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and condition (13) is satisfied as soon as 

(14) a > l+p (a! - l ) / (u -p )+p(oc -1 ) /6 (a -p )  for some 6 ~ 1 0 ,  EL. 
Clearly, condition (11) improves on (14). 

4 PROOFS 

4.1. Main tools. Let (X,),, be a sequence of associated r.v.'s. Let 
S: = s ~ p , , ~ , - , ~ , S ~ .  The following lemma is the main tool for the proofs: 

LE& 1. Let (XnlnE, be a sequence of associated r.v.5. Suppose that there 
exist a positive r.v. X such that for any positive x 

Then for any positive real numbers x and M 

The proof of Lemma 1 is based on the following lemmas well known in the 
literature. 

LEMMA 2 (Newman and Wright [Ill). If (X,) is a sequence of associated, 
mean zero, finite variance real-valued r.v.'s, then 

(15) E (S:)' < Var S,,. 

LEMMA 3 (Yu [IS]). Let (XI, X,) be a random vector. Let f and g be two 
absolutely continuous real-valued functions satisfying E f (XI) + EQ' (X,) < + ao . 
We have 

iCn 

f m + m  

Cov (f (XI), g (Xz)) = 1 j TI4 S' Q Cov(lxl ax, Ix, ay) dxdy. 
- m  - w  

Pro  of of Lemma 1. Define, for fixed M > 0, the random variables 
w - - 

X i : = X i , M = ( ~ i ~ ~ ) ~ ( - ~ )  and Xi:=Xi,M=Xi-Xi.  

Let % = x;=, ( % - a , )  and 3: = s ~ p , , ~ , , , ~  S,. Clearly, 
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Hence Markov's inequality yields 

In order to bound ~ 3 : ~  note that the sequence (Xi) i  is associated, since it is 
a non-decreasing function of the original associated sequence (Xi)i (cf, (9'4 in 
[7]). Hence the maximal inequality stated in (15) applied to the sequence 
( T , - E ~ ; ) ~ ,  together with (16), yields 

The above inequality yields Lemma 1, since 

In the following, we give a technical lemma that will be useful in the 
sequel. Define, for some p ~ [ 1 ,  2[, i, j 3 1 and s 2 0, the quantity 

The forthcoming lemma establishes the relation between A,(i, j, p) and the 
covariance quantity Gi, j (v)  whenever s 2 1. 

LEMMA 4. Let p E [I, 2[, i, j 2 1 and s 2 1 be fixed. Then 

Proof.  Let p E [I, 2[, s 1 be fixed. Clearly, 

The last equality, together with Fubini's theorem, yields 

and proves Lemma 4. 

From Lemma 4 we deduce that the integral expression in (5) is well defined 
as soon as the r.v.'s have finite moment of order p, as it is shown by the 
forthcoming lemma. 

14 - PAMS 20.1 



2 10 S. Louhichi  

LEMMA 5 .  Let (XJnEN be a sequence of associated r.u.'s. If sup, E IXiIP < co 
for some p in 11, 2[ ,  than for all positive integers i, j 

+a3 2 
v P 3  Gi,j (v) dv 6 syp E IXiJp. 

1 P 

P r o of. Define Sgn (x) : = lx , - Ix < O ,  Lemmas 4 and 3 and some elemen- 
tary bounds yield 

4 4 
= ,Cov (Sgn(xi) IXiIPi2, Sgn (Xj) IXjIPt2) < ,SUP E IXiIP. 

P P i > ~  

4.2. Strong Law d Large Numbers 

PROPOSITION 1. Let (XnjnEN be a sequence of associated r.u.'s. Suppose that 
aII the assumptions of Theorem 1 are juEfilkd for some p E [I, 21. Then for any 
E > O  

C n-'P(S,* > cnllP) < a. 
n>o 

Proof.  (i) First suppose that 1 < p < 2. Lemma 1, applied with x = cnltp 
and M = nlip, yields 

Using Fubini's theorem we deduce the existence of some positive constant 
cp such that 

Again Fubini's theorem yields 
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Now Lemma 4, together with Fubini's theorem, yields 

which is finite if the requirement of Theorem 1 holds. Now, taking the sum over 
n > 0 in (1 8) and using inequalities (19)-(21), we complete the proof of Proposi- 
tion 1 for ~ € 1 1 ,  2[. 

(ii) Suppose now that p = 1. For fixed positive integer n, define the se- 
quences (%Ji and (%Ai by 

Let T: = sup,~,.l zt=, (Y, - E  a. Clearly, 

E IXi- Yil G E (IXiI - n) Ilxil an 6 E (X- n) lx>. < ~ / 2  for n large enough. 

Hence inequality (3.12) of Rio [13f yields 

The first term on the right-hand side of the last inequality is h i t e  since 
EX < m. The second term is bounded, arguing exactly as in the proof of the 
first part of Proposition 1, by some constant times 

+ m  

which-is finite, by the assumption of Proposition 1. Hence Proposition 1 is 
proved. 3,- 

End  of the  proof  of Theorem 1. We first apply Proposition 1 to the 
sequences (Xi)i, and (-Xi),, (recall that if the sequence (Xi), is associated, 
then this property holds also for the sequence (-Xi),,). Then we obtain 

2 n-I P( max JSjJ > & n l / P )  < m . 
n>O lCjCn 

Let k be such that 2k < n < 2 k + 1 .  Then 

2 - k - 1  P( max lSjl > ~ 2 " +  l) /P) 6 n - I  P(max ISjl > m i / p ) .  
1 C jC Zk 1CjSn 
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Next we take the sums first over n: Zk < n < 2k+1, and next over  EN in the 
last inequality and we use (23) to deduce that 

C P (  max [sjJ > ~ 2 ( ~ ' ~ ~ ~ )  < +a. 
k > O  l < j 4 Z k  

The last summation together with the Borel-Cantelli lemma proves Theorem 1. 

43. Roof of Corollary 2. The linear sequence (X,),, can be written as 
a diffmence of two associated linear processes. This fact follows by writing ai as 
the difference a: -a: (where a' = rnax (a ,  0)  and a-  = rnax ( - a, 0)). Hence 
we may suppose i&hout loss of generality that the coefficients (a,) are 
ma-negartiue for each  EN. 

Let p be fixed in [I, a[, where ol is a fixed real number in ]1 ,2 [ .  
For any p E [I, a[ ,  E]Xo[P < co. This follows from the fact that X o  is 

a stable (era,,, a, O) r.v. 
The sequence (X,J is associated. This property follows from (P,), (B,), (9,) 

of Esary et al. [7] (recall that we have supposed: a; 2 0 for each i). 
Condition (6) is fulfilled. In order to check this property, write for nEN* 

Clearly, the previously defined r.v. Zn is independent of (X,, Y,). This property, 
together with the fact that the function g, defined as in (3) is 1-Lipschitz, yields: 

here and in the sequel we put G,, (v)  : = Go,, (v). 
Let j3 be a fixed real number in 12 -a, 2 - p [  and p' be fixed in 

Ja/(a+ P- I), u[. We deduce from (24) that 

Let us now bound Ilxllp.. Recall that = x,", ai E ~ - ~  and that ( E . ) , , ~  is a se- 
quence of i.i.d. r.v.'s with a stable (a, u, 0) marginal distribution. Hence Y ,  has 
the same law as e0 (xi,n a:)'/". This yields 

Inequality (25), together with (26), yields 
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where C is some positive constant. Since p' (1 -B)/(pf - 1) ~30, ol[ and p' ~ 1 1 ,  a[, 
we deduce that all the terms on the right-hand side of the last inequality are 
finite as soon as (9) holds. The proof of Corollary 2 is then complete. 

APPENDIX 

In this Appendix we check condition (12). When ~ E ] O ,  11, (12) is proved 
(cf. Chanda and Ruymgaart [3]). Here we suppose that a E ] l,2[. 

Let b > 1 be an arbitrary real number. It follows from Jensen's inequality 
and ParsevaXs identity (exactly as (4.22) and (4.23) in Chanda and Ruyrngaart 
[3]) that 

here and in the sequel C denotes a generic positive constant that may be 
different from line to line. Since 

m 

g (x) = (1/~) 1 cos ( tx )  exp (- t") dt, 
0 

we deduce, using integration by parts twice, that 

g l ( x )  = 0 ( 1 / x 2 )  for a11 x > 0. 

Hence the mean value theorem yields 

The last inequality, together with (27), yields 

m 

S lg(x+tr)--g(x)ldx G Cu. . -  

0 

The facts that g is a bounded and an even density yield 

Thus (12)  follows from (28). - 
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