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Abstract. A variational representation for positive functionals of
a Hilbert space valued Wiener process (W (-)) is proved. This represen-
tation is then used to prove a large deviations principle for the family
{#*(W()}e> 0, where ¥ is an appropriate family of measurable maps
from the Wiener space to some Polish space.
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1. Introduction. The theory of large deviations is one of the classical areas
in probability and statistics (see for example [23], [7], [6], [14], [11]). The book
[10] develops an approach to this topic that is based on proving the conver-
gence of solutions to variational problems. The starting point for this approach
is the fact that the large deviation principle (LDP) is equivalent to what is called -
a Laplace principle (see Definition 4.2 below) if the underlying space is Polish.
This is a consequence of Varadhan’s lemma [24] and Bryc’s converse to Varad-
han’s lemma [2]. We refer the reader to [10] for the elementary proof. A key
step in the approach is the representation of the pre-limit normalized expec-
tations in_the statement of the Laplace principle by value functions (minimal
cost functions) of certain stochastic optimal control problems. The large devia-
tion problem then reduces to verifying the convergence of these value functions
and identifying the limits. This latter problem is well suited to the application
of weak convergence methods.

The prototype of the representation is the following ([10], Proposi-
tion 1.4.2). Let (¥, «/) be a measurable space, k a bounded measurable function

* This research was supported in part by the National Science Foundation
(NSF-DM1-9812857) and the University of Notre Dame Faculty Research Program.

** This research was supported in part by the National Science Foundation
(NSF-DMS-9704426) and the Army Research Office (DAAD19-99-1-0223).




40 A. Budhiraja and P. Dupuis

mapping ¥ into R, and 6 a probability measure on ¥". Then

(1.1) _1ogje k4 = inf {R(y||9)+jkdy}

ve@ (V)

where 2 (¥") is the space of all probability measures on (¥, &), and R(-{|")
denotes the relative entropy function (see Section 3 for the definition of relative
entropy). For many interesting examples the right-hand side of the expression
above can be written as the value function of an appropriate stochastic control
problem (cf. [10] and [1]) For example, if ¥ is € ([0, T]: R") and @ is the
Wiener measure, then it is proved in [1] that

(1.2) —logje kd0 = inf j(z o) +f(W+fv(s)ds)) do,
ved ¥ 0 0

where «of is the space of square integrable predictable (with respect to the

Wiener filtration) processes.

Our main interest in the present paper is the study of large deviations for
infinite dimensional stochastic differential equations (SDEs). Such equations
arise in a wide range of applications (see [5], [25], [15], [17]). The problem of
proving Wentzell-Friedlin type large deviation estimates for such SDEs has
been studied by a number of authors, including [13], [5], [4], [21], [22], [17].
When the diffusion coefficient is constant, the proofs in these papers basically
follow from the contraction principle. In the general case where the diffusion
coefficient is not constant and the contraction principle cannot be applied,
discretization arguments as in the original work of Wentzell and Friedlin are
used. A feature that is common to all the different models considered is their
representation as a dynamical system driven by some type of infinite dimen-
sional Brownian motion. In this paper we will use the stochastic control and
weak convergence approach to obtain the LDP for the family {%*(W (-))}.>o0,
where %° is an appropriate family of measurable maps from the Wiener space
to some Polish space and W(-) is a Hilbert space valued Wiener process.
This is done in Theorem 4.4. The key assumption on the family {%*} is Assump-
tion 4.3. Assumptlon 4.3 (i) essentially says that the level sets of the rate
function are compact. Assumption 4.3 (i) is the crucial condition that needs
to be verified in various applications of this result and is a statement on
the weak convergence of a certain family of random variables. This condition
is at the core of the weak convergence approach to the study of large devia-
tions. Using the above result we are able to obtain Wentzell-Freidlin type
large deviation results for a wide class of stochastic dynamical systems
driven by a small noise, infinite dimensional Wiener process. We refer the
reader to [3], where Hilbert space valued small noise diffusions with quite
general coefficients and stochastic evolution equations with a multiplicative
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noise are studied in detail. In fact, the conditions imposed on the coefficients
are precisely the ones that are required for the existence of a unique strong
(resp. mild) solution. The proofs of these large deviation results, which are
essentially based on the verification of Assumption 4.3, are quite different from
the proofs in [13], [5], [4], [21], [22], [17]. Furthermore, the approach taken
in this paper gives a unified method for studying large deviations for a wide
range of stochastic dynamical systems driven by an infinite dimensional Brow-
nian motion.

The crucial step in the proof of the LDP mentioned above is a variational
representation for positive functionals of an infinite dimensional Brownian
motion, proved in Theorem 3.6 (see equation (3.14)). It may be worth observing
that in our representation we allow the class .« to consist of processes predic-
table with respect to a larger filtration than that generated by the Wiener
process. This relaxation is of importance in some control applications. The
starting point of the proof of the representation is (1.1). One of the main issues
can be described as follows. Suppose that (2, &, {#]}, ) is a probability space
with a filtration satisfying the usual hypothesis, H is a separable Hilbert space,
and (W;, #,) is an H-valued Wiener process (to be described precisely in Sec-
tion 2) on Q. Let ye £ (¥") be such that

d T i
?d% = exp {g ¢(s)eW(S)—% (j; Il ()13 ds}

for an appropriate predictable process ¥ (). Then the expression on the
right-hand side of (1.1), ie,

R 116)+ [ kdy,
Q
equals

T .
E Bg nn//(s)u%ds+k(W(-)+gnﬁ(s)ds)}
where E’ denotes the expectation on the space ¥~ with respect to the original
probability measure y. Thus, roughly speaking, in order to obtain the desired
representation we need to replace the expectation with respect to the original
probability measure y with the expectation with respect to the probability
measure 0. This key step is undertaken in Lemma 3.5.

The paper is organized as follows. In Section 2 we recall some facts about
Hilbert space valued Brownian motions and weak convergence criteria for
probability measures on Hilbert spaces. Section 3 is devoted to the proof of our
main representation theorem. In Section 4 we formulate and prove the general
large deviation result for the family {%*(W(-))}.
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2. Preliminaries. Let (Q, &, 0) be a probability space with an increasing
family of right continuous #-complete sigma fields {#;}o<,<r. We begin with
the definition of a Hilbert space valued Wiener process. Let (H, {-, ->) be a real
separable Hilbert space. Let Q be a strictly positive, symmetric, trace class
operator (cf. [9]) on H.

DEerFINITION 2.1. An H-valued stochastic process {W (t), 0 < t < T} is called
a Q-Wiener process with respect to {#} if the following conditions hold:

1. For every non-zero he H, {Qh, h) Y2 (W (i), h) is a one—d1mens1onal
standard Wiener process. o

2. Fér every heH, W(t, h) = {W(t), h) is an %-martingale.
Define Hy = Q' H. Clearly, H, is a Hilbert space with the inner product
hy ko =<Q Y2 h, Q" Y2k> for h, ke H,.

Denote the norms in H and H,, by ||-|| and |||, respectively. Since Q is a trace
class operator, the identity mapping from H, to H is Hilbert-Schmidt. This
Hilbert-Schmidt embedding of H, in H will play a central role in many of the
arguments to follow. One consequence of the embedding is that if v™ is a se-
quence in H, such that v™ — 0 weakly in Hy, then |[v™|| — 0. For an exposition
of stochastic calculus with respect to an H-valued Wiener process we refer the
reader to [5]. Other useful references are [19], [20], and [17].

The following two theorems are crucial ingredients to the proofs in this
paper. Although the first theorem is standard, the second requires some elemen-
tary modifications of standard arguments. A sketch of the proof is provided
for the sake of completeness.

Let {#%}o<:<r be the O-completion of the filtration generated by
{W(s): 0<s<t}o<i<r- We denote the space of square integrable random
variables on (Q, &%, 0) by I?(6) and the subspace of random variables which
are ¥r-measurable by L% (6). Also, define o/ to be the class of Hg-valued
F-predictable processes ¢ that satisfy

T . ’ -
@D - 0{flo@Igds <o} =1. .
(4]

Finally, let
V= {peod: ¢ is %-predictable}.

We refer the reader to Chapter 4 of [5] for the definition of stochastic integrals
of elements of &/ with respect to W.

THEOREM 2.2. Let e/ be such that

T 1 T
E(ﬁXP {g V() dW(s)—3 (f) Il ()11 ds» =
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Then the process
W) = W@o-fy()ds, te[0,T],
0

is a Q-Wiener process with respect to {%;} on (Q, &, y), where y is the probability
measure defined by

do
For the Ap-r;)of see Theorem 10.14 of [5]-

THEOREM 2.3. Let (M (t), g,) be a real-valued local martingale with right
continuous paths having left limits. Then there exists ¢ € " such that for all
0<t<gT

B _ exp {J w(s)dW(s)—~§ WO ds}

M) = M(O)+j' ¢ (5)dW (s) a.s.
0

Proof. The proof is adapted from [16]. We consider only the case where
M () is a mean zero square integrable martingale. The general statement in
the theorem follows by the usual localization arguments (cf. Problem 3.4.16
of [18]). Let L?*([0, T]: H,) denote the class of all measurable maps

n: [0, T] - H, for which Io lln(s)|3ds is finite. For 0<t< T and
neLz([O T]: H,) define '

t 1 t
B (£) = exp {I n(S)dW(S)—E Slin N3 dS}-
0 (1]
Applying 1t6’s formula (cf. Theorem 4.17 of [5]) we have
t
(2.2 BP @) =1+ (s)n(s)dW(s) for all 0<t< T
- 1]

Since (2 j;n(s) dW (s), %) is a real-valued martingale with quadratic variation

process j':) 121 (s)||3 ds, it follows that B is a non-negative local martlngale,
and hence a supermartingale. Observing that :

(B () = B () exp (g In (53 )

we have

sup E(B™ () exp(j lin ()3 ds) < oo0.

O<t<T

This implies that _ﬁ)n(s) B™ (s)dW (s) is a square integrable %,-martingale, and
hence, by (2.2), B (T)—1 is a mean zero square integrable random variable.
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Let Jl denote the class of all square integrable random variables of the form
X = _[Oy(s)dW(s) for some ye o, Clearly, p”(T)—1 is in .# for all n as
above.

We assert now that .# is all of L3 (f). To see this let Y be an arbitrary
mean zero square integrable %-measurable random variable. Suppose that Y is
orthogonal to 4, i.e., E(YX) = 0 for all X e.#. Since .# is a closed subspace
of L% (6), to prove .# = L% (6) we need only show that Y= 0. Let {1} be the
sequence of eigenvalues of Q and let {¢,} be a complete orthonormal system
(CONS) of corresponding eigenvectors. Let N, denote the set of positive in-
tegers. Suppose that le Ny, NeNy, 0 =1t; < --- <ty < T, and that {o}f-; is
a sequence of reals. By taking 5 to be the appropriate step function and using
EY =0, we see that

E(YCXP{ i ak(W(tk+la e)— W (t, el))}) =0
k=1

This proves that E[Y | W(t, e); 0<t< T] =0 for all IeN,. In a similar
manner we see that, for all me Ny, E[Y | W(t,e); 0<t < T,1I<m] =0.
The assertion now follows on observing that ¥ = o {W (', ¢); le Ny} (cf. Pro-
position 4.1 of [5]).

Finally, let M (t) be a mean zero square integrable martmgale Then there
exists ye /" such that M(T)—M0) = jo 7(s)dW (s) a.s. The proof now fol-
lows by taking conditional expectations with respect to %, and using the mar-
tingale properties of M (f) and the stochastic integral. =

Finally, in this section we will record two results which will be used in
Section 3 in proving tightness for a sequence of Hilbert space valued processes.
The first of these results is due to Aldous (cf. [25]). Let (&, d) be a Polish space.
We denote by € ([0, T]: &) the Polish space of continuous maps from [0, T
to & equipped with the uniform convergence topology.

THEOREM 2.4. Let {X™} be a sequence of processes with paths in
% ([0, T]: &). Suppose that {X™ (t)} is tight for each rational t € [0, T] and that,
for any sequence of stopping times {t,} such that t, < T and any sequence of
non-negative numbers {5,} converging to zero as-n— o, - -

d(X® (t,+6,), X™(z,)) > O in probability as n—c. -
Then {X™} is tight.

The proof of the following theorem can be found in [17].

THEOREM 2.5. Let K be a separable Hilbert space and let {e;} be a CONS
in K. Let {™} be a sequence of probability measures on (K, % (K)). Then {u®}
is tight if and only if

1. for all N >0

lim sup u® {xeK: max [(x, e;| > A} =0;

A= n 1<i€N
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2. for any 6 >0,

lim sup u™ {xeK: |lx—Py(x)llx >0} =0,

N—-w n
where Py is the projection operator with range span{e, ..., ey}.

In some applications it is convenient to consider stochastic differential
equations which are driven by a cylindrical Brownian motion rather than
a Hilbert space valued Brownian motion. We close this section by giving the
definition of a cylindrical Brownian motion and its connection with a Hilbert
space valued Brownian motion. Recall that (Q, &, {#}, 0) is a probability
space with an increasing family of right continuous §-complete sigma fields
{«9-’:}0 Lt<T. ‘

DEFINITION 2.6. A family {B(t, h): 0 <t < T, he H} of random variables
is said to be an F-cylindrical Brownian motion if '

(i) for every he H, ||h|| = 1, {B(t, h), F}o<:<7 is a standard Wiener process,
(ii) for every 0<t< T, oy, %R and f, f,eH,

B(t, o, fi+ayfo) = oy B(t, fi)+a, B(t, f2) as.

Let (Hy, {*,'>1) be a Hilbert space such that H; o H and the identity
map i: H —» H, is Hilbert-Schmidt. Obviously, H, is not uniquely determined.
Observe that the Hilbert-Schmidt embedding implies that if {e;}_ . and {fi},_,
are CONS in H and H,, respectively, then

(2.3) i i e, fiol < .

i=1k=1

Now let {e;},. , be a CONS in H and define f;(t) = B(t, ¢;). Then from (2.3)

we infer that the sequence {Z;=1 e;B; (1)} converges, in probability, in H, as
n— co. Furthermore, there is a trace class operator @, on H, such that

4. wr0 = 2 b0 -
' j= e

is a Q,-Wiener process on H;. The choice of the Hilbert space H, is immaterial
in the sense that, for all such extensions Q}/2(H,)=H and for ueH,
llull = 1Q1 Y? ul|,. Therefore, we can assume without loss of generality that
Q, is strictly positive. We refer the reader to [5], Section 4.3, for proofs of these
statements and further details. The following elementary lemma shows that one
can always go from a cylindrical Brownian motion to a Hilbert space valued
Wiener process in a measurable way.

Lemma 2.7. Let B(-, -) be a cylindrical Brownian motion as above. Let X be
a random variable which is measurable with respect to 6 {B(s, h): 0<s<T,
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he H}. Let the Hilbert space H, and an H,-valued Wiener process W*(*) be as
above. Then there exists a measurable map f- C([0, T]: H,) = R such that
foX ™! = fof (W*)~ 1.

Proof. Note that #(C([0, T]: H,)) [the Borel o-field on C([0, T]: H,)]
is precisely the sigma field o {{n.(), h)y: te[0, T], he H;}, where
m,: C([0, T): H;)—> H, is defined as =,(x) = x(t). Thus to prove the lemma
it suffices to show that o{{W*(t), h),: te[0, T], heH;} equals
a{B(t, h): heH, 0 <t < T}. The last statement is an immediate consequence
of (2.4) and -the observation that if { fk}k . i1s a CONS of- elgenvectors of

Q, with eigenvalues {Ak}k ,» then for every heH,

B(t,h)= ), <hfiy<{W),f>, as. =m
j=1
3. The representation theorem. This section is devoted to the proof of the
representation theorem. For a bounded operator 4 on H let ||4]|,, denote its
operator norm. We begin with the following lemma:

LemMmA 3.1. Let {v™} be a sequence of elements of </ (cf. (2.1)). Assume that
T
(3.1) M = sup [ E|p™ (s)ll3 ds < .
n O

Then the sequence {jo v™ (s)ds} is tight in €([0, T1: H).
Proof. For 0 <t < Tdefine X™(f) = {, v™(s)ds. The Cauchy-Schwarz

inequality and the observatmn that ||4|| < Q||1’ Z|ihllo for he H, yield that, for
{z,} and {3,} as in Theorem 2.4,

I1X® (24 8)— X P (@] < /310132 I [[o™ (s)II3 ds)*’2.

Thus, by (3.1), | X™ (1, + 8,) — X ™ (z,)|| converges to 0 in I? (§). It now sulffices, in
view of Theorem 2.4, to show that for each te[0, T] the sequence {X™ (¢)} is
tight -in' H. We will verify conditions 1 and 2 of Theorem 2.5 for,the measures
induced by {X™}. Let {e;} be a CONS of eigenvectors as in the proof of
Theorem 2.3. In order to verify condition 1, it suffices to note that, for 4 > 0
and n, ieN,,

00X, el > 4y <7

For condition 2 observe that

X0 0-PuxOQ)F = ¥ ([0, e

j=N+1
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Denoting Q‘“” 29" (s) by @™ (s), we can rewrite the right-hand side of the last
equality as z N1 (f, #™ (s)ds, Q' e;>% The Cauchy Schwarz inequality

shows that th1s last expression can be at most Tj' lo® (s)]|> dsZ ;. Obser-
ving finally that ||¢™ (s)|| = |[v"™ (s)|lo and recalling (3.1), we can venfy condi-
tion 2 applying Chebyshev’s inequality. =

The following lemma will be used in some of the tightness arguments in
Sections 3 and 4.

LEmMMA 3.2. Let {v'™"} be a sequence of elements of <. Assume there is
M < o0 such that - T

e

supjllv‘"’(s)llods M as.

Suppose further that v™ converges in distribution to v with respect to the weak
topology on L2([0, T]: Hy). Then Io v (s)ds converges in distribution to

jov(s)ds in €([0, T]: H).
Proof. For NeN, define

(3.2) Sy = {ue?([0, T]: Ho): [llu(s)i3ds < N}.
0

One can endow Sy with the weak topology, in which case it is a Polish space
(cf. [9]). The lemma then follows immediately by observing that the map
1: Sy = € ([0, T]: H) defined by 7(u) = [, u(s)ds is continuous. =

The following lemma concerning measurable selections will be used in the
proof of the main theorem below.

LemMMA 3.3. Let E,, E, be Polish spaces and let f: E; x E; — R be a bounded
continuous function. Let K be a compact set in E,. For each x € E, define the sets

i ={yekK: inff(x, yo) =f (x, y)},

yoek

2= {yek: supf(x, o) =f (6, )} w

yoek

Then for i = 1, 2 there exist Borel measurable functions g;: E; — E, such that
g:(x)eI% for all xeE,. :

Proof. Let x, be a sequence in E; converging to X. For each ne N, and
i=1,2let yierI. . In view of Corollary 10.3 of [12] it suffices to show that
{y} has a limit point in I'i. Let 7' be a limit point of {y’}. The result now is an
immediate consequence of the fact that for each n both

inf f(Xus Yo)—f (Xu> ya) and  sup f (%, yo)—f (Xn, ¥7)
yoeK yoek
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equal zero and that the maps

(x,y)*f(x,y)—yig{f(x,%) and  (x, y) = (x, y)—sup £ (x, yo)

are continuous. a

For probability measures 6, 6, on (22, %) we define the relative entropy
of 6, with respect to 6, by

a0,
- R(0,116,) = !)(IOgTGZ(w)) 8, (dw) o

whenever 0, is absolutely continuous with respect to 6, and log(d6,/d0,) is
0,-integrable. In all other cases, set R(f|/6;) = co. Define

(3.3) Ay ={ved: v(w)eSy -as.}.

LemMA 3.4. Let {f™} be a uniformly bounded sequence of real-valued mea-
surable functions on € ([0, T]: H) converging to f a.s. 6. Then

(3.4) inf E( fllv(s)ll%+f ""(W+f v(s)dS))

converges to

(3.5 igf E(%TIIU(S)||%+f(W+j'v(s)ds)) as n— .

Proof Let & >0 be arbitrary. For each ne N, pick an element v™* of
o/ 5 such that

T .
E G § ™= ()13 + £ (W + [ o™= (s) ds)>
Y 0

is at most ¢ larger than the infimum in (3.4). Since {v™*, ne N} is tight in Sy,

we can pick a subsequence (relabeled by n) along which (v™-, W) converges

weakly to (v, W). Using Lemma 3.2 we see that W+f v‘"’f(s) ds converges

weakly as elements of #([0, T]: H) to W+f0v (s)ds.
We next claim that

4o

E( f<">(W+(j;u(">vf(s) ds)) = E( f(W+(j)v“(s) ds)).

This is a consequence of [1], Lemma 2.8 (b), which states that for the last
display to hold it is sufficient that the relative entropies

R(% (W +] o0 (5)ds) | % (W)
[4]

be uniformly bounded in n, where £, (W) and £, (W + _[O v (s) ds) denote the
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measures induced on C([0, T]: H) by W and W+ v™*(s)ds, respectively.
But this is immediate by Theorem 2.2, since these relative entropies equal

T
E[[lv™=(s)|3ds < N.
0
Using the weak convergence of v™+ to v* and Fatou’s lemma, we obtain

1T 1T
liminfE( - { [[™*(s)[3ds ) = E{ 5 [ llv* ()3 ds ).
e \20 2o -
Thus the limit inferior, as n — oo, of the expression in (3.4) is at least the
expression in (3.5). )
For the reverse inequality, pick an element v* of o/ such that

(36) E (% ot ()3ds + (W + (s)ds))

is at most ¢ larger than the infimum in (3.5). Clearly,
17 .

E(gf [l ()13 ds +1 (W + fuﬂ(s)ds))
Y 0

is at least the infimum in (3.4). As n — o0, this quantity converges to the expres-
sion in (3.6). Thus the limit superior, as n — oo, of the expression in (3.4) is at
most the expression in (3.5). This proves the reverse inequality, and hence the
lemma. =

LeMMA 3.5. Let f be a bounded continuous function mapping € ([0, T]: H)
into R. ‘
1. Let el be such that ‘ ‘i

E(exp {I (), dW(s)>—§ | ||ﬁ(s)n3ds}) -1,

define W(t) = W(t)—jo #i(s)ds, and let E° denote expectation with respect to the
measure y° defined by '

aepr

. T 1T
dy” = exp {5 <o(s), dW () —3 J 11563 dS}dH-
0 0 .

Let voe o/ be an elementary process, and assume there is Mye(0, o) such
that |[vo (S)llo < My for all se[0, T] a.s. Then for every ¢ > O there exist elemen-
tary processes vy, v, € " such that ||v;(S)lo < Mo fori =1, 2 and all se[0, T],
and

(3.7 E<%}||u1(s)||(2, ds+f(W+jv1(s)ds)>—a
0 0

4 — PAMS 20.1
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< EG 1‘ llvo ()13 ds+f (W+£ v (5) ds))

T .
< E(é— [lloz (N ds+f (W+[v,(5) ds))+£.
o (1]

2. Let o/® denote the subclass of o/ consisting of bounded elementary pro-
cesses. Then

_inf Et"(lf||ﬁ(s)||gds+f(ﬁ/+jﬁ(s)ds))
Pest 2 0 0

= indf E(% f llo(s)II3 ds+ka+j v (8) ds)).

Proof. For the proof of part 1 we will use Lemma 3.3. We will only show
the first inequality in (3.7) since the proof of the second inequality is similar,
save that the corresponding supremization part of Lemma 3.3 is used instead.
Suppose that the elementary process v, takes the form

!
o (s, w) = Xo () S0y (5) + Z Xj(w)f(r,-,t,-ul(s),

J

where (s, w)e[0, T]1xQ,0=1t;<t; <...<t4; =T and X; are H,-valued
&, -measurable random variables satisfying || X;(w)llo < M, as. for all
je€{0, ..., I}, and .# denotes the indicator function. Define F;: H§'** — R by

1!—1
Fy(xg, ..., X)) ii Z (tiv 21—t IIXIG,
i=0
so that

T
Fy(Xo(@), .- X,(@) =5 [ oo (93 ds.
0 . -

' "Fbr'j. =1, ..., | define measurable maps Z~j from Q to M; = C([0, t;+,—t;], H)

by
ZNJ(OJ_)(S) = W) s+5)—W)(t), 0<s<t—t;

From the continuity and boundedness of the map f it follows that there exists
a continuous bounded map F,: (H§'** x (H;= M J)) — R such that

FW+[vo(s)ds) = Fo(X, 0<j < Z, 1 <j< ) as.
0

For 1 <i<|!, let X; and Z, denote the vectors (X, ..., X;) and (Z,, ..., Z),
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respectively. With this notation

(3.8) E° G } lwo (|3 ds+ f(W+ju0 (s) ds)) = E°(F,(X)+F,(X,, Z)).

We recall that every probability measure on a Polish space is tight. This implies
there is a compact set K, = Hy such that

E(Fy(X)+F,(X,, Z)) > Eg(fxmﬂ( D(F1(X)+Fy(X,, Z‘,)))—a/[4(lj-l)].

Since (W(t) &) is a Wiener process under y°, if 0 <wu; <u, < T, then
W (uy)— W(ul) is independent of %, . Therefore, Z ;1s independent of (X wZiq)
under y’. Let y; denote the standard Wiener measure on .4 and let F$" be the
real-valued continuous map on (H§'*! x (]_[ M) obtained- by integrating
out Z, from F,, ie.,

-1
FO ) = [Fy(y, 2)u(dz), where ye(HE™ 1 x([] 4;).
j=1
Recalling that ||X)]lo < M, as. and applying Lemma 3.3 with
-1
EziHo, E1=(H6®!X(H Jﬁj)),
j=1

K= Kor\{XEHO ”JC“O Mo} and fﬁF1+F(21),

we infer that there exists a measurable function

h: (B9 (T] 4)~ Ho

=1
satisfying {|h (*)llo < M, such that the right-hand side of (3.8) is bounded from .
below by

E(Fy (Xim10 h(Xom 1, Zim )+ FO(Ximy, h(Kims, Zim ), Zimy))—e/120+ 1)].

By subtracting an additional &/2 (I + 1) from this lower bound, we can take
h to be a continuous map via an application of [8], Theorem V:16a, and the
dominated convergence theorem. We now iterate the above procedtre ! times
to obtain the following inequality:

EJ(F1(XI)+F2 X, Zl)) = EG(F1 (F(Zl))+F2(F(Zl)= Zt))—ﬁ,
where
- T HI_:IﬂjaHg?’*l is continuous,

. F(z,)J can be written (Io, I'y(z4), ..., I'i(z)), where z; =(zy, ..., z))

en;=1.ﬂj,
* I'p is 2 non-random element of H, bounded in norm by Mo,
-fori=1,..., LI H _,#;— Hy satisfies |I";(w)lo < M for ueH
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Now define for j =1, ..., | measurable maps Z; from Q to .#; by
Zj(@)(s) = W(@)(s)=W(@)(t), ;<5<
and let Z; = (Z,, ..., Z) for ie{l, ..., I}. Finally, define

(s, w) = Fof(o)(s)’l'jzl Fj(Zj(a))) Ft5t5+11(8)-

Clearly, #(s) is an elementary process in .o#" satisfying ||5(s)|lo < M, for each
se[0, T] and

Eﬁ(%_[||1j;(s)||ﬁds+f(ﬁ/+j:u0 (s) ds)) > E(%f||5(s)||(2,ds+f(W+j6v(s}ds))—s.
0 0 0 -0

This proves part 1.

We turn now to part 2 of the lemma. Taking 7 in (3.7) to be a bounded
elementary process and v, = #, we obtain

(39 _inf Eﬁ(l}n||ﬁ(s)||%ds+f(W+jﬁ(s)ds))
et () 2 0 0

= inf E(% :jr |lo(s)I13 ds+f(W+j: v(s) ds)),
1] - [}

ved W ()

where /7'® is the subclass of /" of bounded elementary processes. Since
elements of o¢"® are piecewise constant, for every ve o/™® we can construct
e o/® via a recursive conditioning argument so that

{1 T - .
(3.100 E° (EIIW(S)”% dS+f(W+I5(S)dS)>
0 o
1 T .
=E (_2_ [llo@Nads+f (W+ (v (s)ds)).
. 0 o
Combining (3.9), (3.10), we have '
Lo S1T . )
(3.11).  inf E° (—j ||17(s)||%ds+f(W+j'ﬁ(s)ds)) B
fea®  \2p 0
1 T .
= inf E(— fllv@IFds+f (W] v(s)ds)).
ved W) 2 0 0
Next, taking =0 in (3.7) and observing that /" ® c o/®, we obtain

(3.12) ﬁmeG fllo (s)||gds+f(W+ju(s)ds))

= inf E(%fuv(s)n%dwf(Wﬁ v(s)ds))-
vesf (b) 0 0
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Now, let ves/ be such that E{jillv(s)]l%ds} < . Choose a sequence
{v": neNy} in & such that each ¢" is a bounded elementary process,

11m E(j o™ (s)—v (3)|13 ds) =

and supE(j o™ ()5 ds) < 1+E(f llv (9)II3 ds).

neNg

Clearly, j 0( "(s)—v(s))ds converges to zero in probability for each t€[0, T].
Also, an application of Lemma 3.1 shows that {jo( (5)—o(s))ds} is tlght in
‘5([0 T]: H). Thus (W, fov (s) ds) converges weakly to (W, fov(s) ds), and since
f is continuous, we have

. 1 T . 1 T ’ .

lim E (5 [l @G ds+f(W+ v (s)ds)) =E (5 fllo@N3ds+f(W+[v(s) ds)).
1= 00 0 0 0 0
Using o < /P, we prove that

(3.13) inf E(lfllv(s)ll(z, dS+f(W+jv(S)dS))
ved® \2 o

. 17 .
= me(—j ||v(s)||(2,ds+f(W+fv(s)ds)).
vesd 2 0 0
The proof of part 2 is completed by combining (3.11), (3.12), and (3.13). &

We now present the main result of this section. Though in the theorem we
take f to be a bounded function, it can be shown (as in [1]) that the represen-
tation continues to hold if f is bounded from above.

THEOREM 3.6. Let f be a bounded, Borel measurable function mapping
% ([0, T]: H) into R. Then

(3149 —logEexp{—f(W)}= 32de<—;-?||v(s)||(2,ds+f(W+iv(s)ds)).

Proof. We claim that it suffices to prove the result for f that are con-
tinuous: To see this, let {f™} be a sequence of real-valued continuous functions
on €([0, T], H) such that sup, ,|f™ (x)| < sup,|f (x), and f® converges to
f 0-as. Applying the dominated convergence theorem we obtain

—log Eexp {—f® (W)} - —log Eexp{—f (W)}.

For #<.o and g a bounded, Borel measurable function mapping
% ([0, T]: H) into R, define

T .
A(#, g) =nfE <lj' oI5 ds+g(W+[v(s) ds)).
: ved 2 0 0

To prove the claim, we must show that A(s/, f™) converges to A(<, f)
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as n— oo. Let
T
K=sup|f(x) and &={vess: E([llv(s)lI3ds)<4K}.
x 0

Then, clearly, A(#, ™) equals A(%, f™) and A(H, f) equals A(%, f). Let
¢ > 0 be arbitrary. Choose N € N, such that 4K2/N < ¢/2. Fix ve % and define
the stopping time

7y = inf{se[0, T]: jllv G =N}AT
Recall that
Ay ={ved: f||v(s)||0ds N f-as.}.

Let vy € o/ y be defined by vy(s) = v(s) Fio..x1(5), Where S denotes the indicator
function. We observe that

Ay, f) < E@_fuv” M3 ds-+£ (W + [ oy (5) ds))
0 0

E(% jT llo (s)I|3 ds+f (W + f v(s) ds))+s
0 0

where the inequality in the secdnd line follows since ve¥ implies that the
probability of the set {ty < T} is at most 4K/N. Taking the infimum over all
ve® in the inequality above we have

AL, [P < Ay, fP)< AL, fO)+e.
Exactly the same argument with f®™ replaced by f gives

Finally, an application of Lemma 3.4 shows that A(s/y, f®) converges to
A(y, f) as n— co. This proves the claim. .- -

" Henceforth we will assume that f is continuous. We prove that the
left-hand side of (3.14) is bounded from above and below by the right-hand
side.

Proof of the upper bound. From Proposition 1.4.2 of [10] it follows
that

(3.15) —log Eexp{—f (W)} = Yega(is%:fy@ {R@IO+E(f (W)},

where 2 (Q) is the class of all probability measures on (2, ). Let ie.of be
a bounded elementary process. Clearly, (j':) {D(s), AW (5)), F)o<i<r IS a real-
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-valued continuous martingale with quadratic variation f;l]ﬁ ()Eds ([5],
Section 4). The boundedness assumption also implies that the expectation

E(exp {jgllﬁ (s)ll3 ds}) is finite, and therefore Proposition 5.12 of [18] yields

T 1 T
E(CXP {I <), AW ()3 § ||ﬁ(s)||gds}) = 1.

By Theorem 2.2, dy’ = exp {j: {B(s), AW (s))—3% jg |5 (s)3 ds} df is a prob-
ability measure and, under y*, W(t) = W (t)— jov(s) ds is a Q-Wiener process.
The definition .of the relative entropy function implies

& .
R(V”IIB) E”(log‘w) E”(I<v(S),dW(S)>——§|Iv(S)II )

where E? denotes the expectation with respect to y°. The last expression equals
1E° (j oI5 )15 ds), and consequently

T .
ROPIO)+E(FO9) = (3L s+ (P 50949 ).
0
It follows from (3.15) that

—log Eexp {—f (W) < {1563 ds+f(W+(j;ﬁ(s)ds)>

if ¥ is a bounded elementary process. Therefore, an application of part 2 of
Lemma 3.5 yields

~logEexp {~f (W)} < _inf Eﬁ(%fnﬁ(s)u%dﬁf(mi 5(s)ds))
vest (P) 0 0

. 17 p
= me(—j||v(s)||§ds+f(W+jv(s) ds)).
vesd 2 0 1)
Proof of the lower bound. From Proposition 1.4.2 of [10] we have
—log Eexp {—f (W)} = RGoll )+ E*(f (W), ~

where dyé/de = cexp {—f (W)} as., and c is the normalizing constant. Define -
dyo
Clearly, (L(2), %:)o<.<r is a right continuous martingale bounded from above

and below by exp(2|fll.) and exp(—2]|f|l), respectively. It follows from
Theorem 2.3 that there exists ues/" such that for all 0<t< T

L) = 1+} <auls), dW (s).
0
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We can rewrite the last equality as
t
L(t) = 1+ {<L(s)8(s), dW (),
0

where #(f) = u(¢)/L(t). Since L(t) is a real-valued continuous non-negative
martingale with L(0) =1, we have ([16], Lemma 7.1.4)

L@ =exp (3‘ ), dW )~ 19613 ds).
0 0

It follows from Theorem 2.2 that under y,

W= W-—[i(s)ds
0

is a Brownian motion with covariance Q. Therefore
1 T - . ~ ‘ ~
(316) —logEexp{~f (W)} = E”(z JIF (B ds+f (W + v(s)ds))-
0 0

As in the proof of part 2 of Lemma 3.5, we can approximate § by a sequence
{o", ne Ny} of bounded elementary processes in &/ such that

T T
E*(§ 115" (513 ds) < 1+ E°(§ 115 (sWI3 ds)
o 0
and
- T
E’(f 15" (s)=0(s)I5ds) >0  as m— o0.
0
It now follows, as in the proof of part 2 of Lemma 3.5, that
(17T .
E° (5 SN N3 ds+f (W + [ 5" (s) ds))
0 0

converges to the right-hand side of (3.16) as n— oo.
Let & — 0 be arbitrary. We have shown that there exists M, < co and an
elementary process vo€ .o/ satisfying ||vo (s)llo < M, for all se [0, T7 such that

—logEexp {—f (W)} > E”Gfuvo(s)n%dsﬂ’ (VT’+§ vo(s)dS))—a- |
0 0

The proof is now completed by applying part 1 of Lemma 3.5. &

As an immediate corollary to Theorem 3.6 and Lemma 2.7 we have the
following representation theorem for a cylindrical Brownian motion. Define
o/* to be the class of H-valued & -predictable processes ¢, satisfying

0{fll¢ (s)lI>ds < oo} = 1.
0
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COROLLARY 3.7. Let {B(t,h): 0<t<T, heH} be an {#}-cylindrical
Brownian motion. Let X be a bounded random variable which is measurable with
respect to 6{B(s, h): heH, 0<s< T}. Then

—logEexp{—X} = iif*E(%}‘||u(s)||2ds+f(W* +j'v(s)ds)>,
Ve, 0 0

where f and W*(-) are related to B(,"), and X is as in Lemma 2.7.

4. A large deviation principle. Let W(-) be, as in Sections 2 and 3, an
H-valued Wiener process with trace class covariance Q. Let & be a.Polish space
and for ¢ > Qlet ¥°: C([0, T]: H) —» & be a measurable map. In this section we
are interested in the large deviation principle for the family of random elements

4.1) X =9 (W() ase—0.

As stated in the introduction, for Polish space valued random elements the
Laplace principle and the large deviation principle are equivalent. We will
show in this section that under appropriate conditions a Laplace principle
holds for {X*®}. This general result will be applied in the sequel [3]. We begin
with the following definitions:

DEFINITION 4.1. A function I mapping & to [0, co] is called a rate func-
tion if for each M < oo the level set {xed&: I(x) < M} is compact.

DEFINITION 4.2. Let I be a rate function on &. A family {X*}.., of &-val-
ued random elements is said to satisfy the Laplace principle on & with rate
function I if for all real-valued bounded and continuous functions # on &:

4.2) lirré clogE {exp [ —% h (X‘*)]} = — in£ {h(x)+I(x)}.

The set Sy of bounded deterministic controls defined in (3.2) will play a central
role in the proof of the Laplace principle. Also recall the definition of .y given
in (3.3).

We are now ready to formulate the main assumpt1on on %° under which
the Laplace principle holds. -

ASSUMPTION 4.3. There exists a measurable map %°: C([0, T1: H) - &
such that the following hold:

(i) Consider M < oo and a family {v*} < of s such that v* converges in distri-

bution (as Sy-valued random elements) to v. Then G*(W (- )+(\/_ )'1f0v (s)ds)
converges in distribution to 9° ([, v(s)ds).

(ii) For every M < oo the set
m = {%°(Jv(s)ds): veSy}
0

is a compact subset of &.
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For each feé& define

@3 1) = inf {3 wonsas)

{veL2([0, T: Ho):f = ¥O(fyr(s)ds)}

where the infimum over the empty set is taken to be oo.

It can be shown that solutions of a wide class of stochastic dynamical
systems driven by a Hilbert space valued Wiener process or a cylindrical Brow-
nian motion can be written as {&*(W(-))} with ¥° satisfying Assumpt1on 4.3

(see [3]).
Observe that if {g"} satisfies Assumption 4.3, then I is a rate function on &.
The following is the main theorem of this section:

THEOREM 4.4. Let X® be as in (4.1). Suppose that {%4°} satisfies Assump-
tion 4.3. Then the family {X*},. o satisfies the Laplace principle in & with rate
function I as defined in (4.3).

Proof. In order to prove the theorem we must show that (4.2) holds for
all real-valued bounded and continuous functions h on 8.

Proof of the lower bound. From Theorer_n 3.6 we have
—slogE{exp[—%h(X‘)]}

- in£E<§}llu(s)ll%ds+hog‘(W(-)+jv(s)ds))

= g}de( j||v(s)||ﬁds+ho€€r”<W( )+%§v(s) )) ,

&0

Fix 6 > 0. Then for every ¢ >0 there exists v"e o/ such that

/s
% (s)||0ds+hof48(W() — (s)ds>)—5.'
( ‘ VA

4 _ingEGfuv(s)n%ds+ho<f(wm+iju(s)ds)> -
- - ve, 0 R .

We will prove that
.. 1T
4.5) htelltnfE(Egllv ()3 ds+ho% (W()+\/_ju s)ds))

> in§ {I(x)+h(x)}.
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We claim that in proving (4.5) we can assume without loss of generality that for
all £>0 and as.

(4.6) Ellve Glgds <N
for some finite number N. To see this, observe that if M = |h||,, then
EB%)E(% E |l (s)I13 ds) < 2M+06 < w.
Now define §t6[;ping fiﬁ_le;v,
% = inf {te[0, TT: j:;||v*(s)||§ ds=N} AT

The processes v* (s) = v°(s) .# 10,4,1(5) are in o7, .# being as before the indicator
function, and furthermore

T IM +5
0{ur %0} < 0{{ I OM3ds > N} < =
0

This observation implies that the right-hand side of (4.4) is at most

1T WS T 2MQM+6)
E(Egnu N (M2 ds+ho® (W()+\/;£v N(s)ds>) —g o

Hence it suffices to prove (4.5) with v*(s) replaced by v™"(s). This proves the
claim. Henceforth we will assume that (4.6) holds. Pick a subsequence (rela-
beled by &) along which v° converges in distribution to v as Sy-valued random
elements. We now infer from Assumption 4.3 that

1T 1
liﬁi)nfE (5 (j) |[v* (s)|3 ds +ho%* (W(')+$ £ v° (s)ds))

T .
> EG fllos)IIZ ds+h(2°(§ u(s)ds))>
0 0

= inf {%} llv (s)||%ds+h(x)} P inéf: {I(x)+h(x)}.

{(x,v)e€ x L2([0, T]:Ho):x = #0(§v(s)ds)} 0 .

This completes the proof of the lower bound.

Proof of the upper bound. Since his bounded, inf,.s {I(x)+h(x)} < c0.
Let § > 0 be arbitrary, and let xoe& be such that

I(xo)+h(xo) < ing {I(x)+h(x)}+6/2.




60 A. Budhiraja and P. Dupuis

Choose #eI?([0, T]: H,) such that

%fllﬁ(t)[l% dt <I(xg)+6/2 and xq=%° (j' 7 (s) ds).

0

By Theorem 3.6, for bounded and continuous functions h

4.7) lim sup—e¢ log E (exp { — h(X?)/e})

= lim sup me( [NEGIE dt+ho€9£<W( )+—1— } v(s)ds))

. &0 €0

< lirgﬁsgxpE( Illv(t)ll%dt+ho€4£(W( )+— 7 = v(s)ds))
= lf||!7(t)llédt+lim supE<ho€¢<W(-)+—1—jﬁ(s)ds))
2% &0 €0

< I(x0)+5/2+1ims(}1pE (hofﬁa(W(')+—1—j'6(s) ds)).
e go

Now by Assumption 4.3, as ¢ -0

E(hog"(W(-H%:gﬁ(s)ds))

converges to h(%° ([, #(s)ds)) = h(xo). Thus the expression in (4.7) can be at
most

inf {7 (x) +h ()} +3.

Since ¢ is arbitrary, the proof is complete. =
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