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Abstract. A variational representation for positive functionals of 
a Hilbert space valued Wiener process (w(.))  is proved. This represen- 
tation is then used to prove a large deviations principle for the family 
{Yepe(W(.))),,o, where 9 is an appropriate family of measurable maps 
from the Wiener space to some Polish space. 
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1. Introduction. The theory of large deviations is one of the classical areas 
in probability and statistics (see for example [23], [7], 161, [14], [ll]). The book 
[lo] develops an approach to this topic that is based on proving the conver- 
gence of solutions to variational problems. The starting point for this approach 
is the fact that the large deviation principle (LDP) is equivalent to what is called 
a Laplace principle (see Definition 4.2 below) if the underlying space is Polish. 
This is a consequence of Varadhan's lemma [24] and Bryc's converse to Varad- 
hank lemma 121. We refer the reader to 1101 for the elementary proof. A key 
step in the approach is the representation of the pre-limit normalized expec- 
tations in the statement of the Laplace principle by value functiohs (minimal 
cost functions) of certain stochastic optimal control problems. The I'a?ge devia- 
tion problem then reduces to verifying the convergence of these value functions 
and identifying the limits. This latter problem is well suited to the application 
of weak convergence methods. 

The prototype of the representation is the following ([lo], Proposi- 
tion 1.4.2). Let (Y, d)  be a measurable space, k a bounded measurable function 
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mapping V into W, and 0 a probability measure on V .  Then 

where P(V)  is the -space of all probability measures on (V, d), and R c  11 -) 
denotes the relative entropy function (see Section 3 for the definition of relative 
entropy). For many interesting examples the right-hand side of the expression 
above can be written as the value function of an appropriate stochastic controI 
problem (cf. .[I01 and [I]). For example, if V is %(LO, TI: Rn) and 6 is the 
Wiener qaeasure, then it is proved in [lJ that 

(1.2) -log J e-'dB = inf 
7 

where d is the space of square integrable predictable (with respect to the 
Wiener filtration) processes. 

Our main interest in the present paper is the study of large deviations for 
infinite dimensional stochastic differential equations (SDEs). Such equations 
arise in a wide range of applications (see [S], [25], [15], 1171). The problem of 
proving Wenhell-Friedlin type Iarge deviation estimates for such SDEs has 
been studied by a number of authors, including [13], [5],  [4], [21], [22], [17]. 
When the diffusion coefficient is constant, the proofs in these papers basically 
follow from the contraction principle. In the general case where the diffusion 
coefficient is not constant and the contraction principle cannot be applied, 
discretization arguments as in the original work of Wentzell and Friedlin are 
used. A feature that is common to all the different models considered is their 
representation as a dynamical system driven by some type of infinite dimen- 
sional Brownian motion. In this paper we will use the stochastic control and 
weak convergence approach to obtain the LDP for the family {9"W(.))),,,,  
where $' is an appropriate family of measurable maps from the Wiener space 
to some Polish space and W(. )  is a Hilbert space valued Wiener process. 
This is done in Theorem 4.4. The key assumption on the family<BC) is Assump- 
tion -4.3. Assumption 4.3 (ii) essentially says that the level sets of the rate 
function are compact. Assumption 4.3 (i) is the crucial condition that needs 
to be verified in various applications of this result and is a statement on 
the weak convergence of a certain family of random variables. This condition 
is at the core of the weak convergence approach to the study of large devia- 
tions. Using the above result we are able to obtain Wentzell-Freidlin type 
large deviation results for a wide class of stochastic dynamical systems 
driven by a small noise, infinite dimensional Wiener process. We refer the 
reader to [3], where Hilbert space valued small noise diffusions with quite 
general coefficients and stochastic evolution equations with a multiplicative 
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noise are studied in detail. In fact, the conditions imposed on the coefficients 
are precisely the ones that are required for the existence of a unique strong 
(resp. mild) solution. The proofs of these large deviation results, which are 
essentially based on the verification of Assumption 4.3, are quite different from 
the proofs in [13], [ 5 ] ,  [4], 1211, [22], [17]. Furthermore, the approach taken 
in this paper gives a unified method for studying large deviations for a wide 
range of stochastic dynamical systems driven by an infinite dimensional Brow- 
nian motion. 

The crucial step in the proof of the LDP mentioned above is a variational 
representation -for positive functionals of an infinite dimensional Brownian 
motion, proved in Theorem 3.6 (see equation (3.14)). It may be worth observing 
that in our representation we allow the class A? to consist of processes predic- 
table with respect to a larger filtration than that generated by the Wiener 
process. This relaxation is of importance in some control applications. The 
starting point of the proof of the representation is (1.1). One of the main issues 
can be described as follows. Suppose that (a, 9, {%I, 8)  is a probability space 
with a filtration satisfying the usual hypothesis, H is a separable Hilbert space, 
and (K, 8 is an H-valued Wiener process (to be described precisely in Sec- 
tion 2) on P. Let y E P ( Y )  be such that 

for an appropriate predictable process $(.). Then the expression on the 
right-hand side of (1.1), i.e., 

equals 

- 
where EY denotes the expectation on the space V with respect to the original 
probability measure y. Thus, roughly speaking, in order to obtain the desired 
representation we need to replace the expectation with respect to the original 
probability measure y with the expectation with respect to the probability 
measure 6. This key step is undertaken in Lemma 3.5. 

The paper is organized as foI1ows. In Section 2 we recall some facts about 
Hilbert space valued Brownian motions and weak convergence criteria for 
probability measures on Hilbert spaces. Section 3 is devoted to the proof of our 
main representation theorem. In Section 4 we formulate and prove the general 
large deviation result for the family (9"W(-))).  



42 A. Budhiraja and P. Dupuis 

2. Preliminaries. Let (Q, P, 0) be a probability space with an increasing 
family of right continuous 0-complete sigma fields (Rt}, ,, , ,. We begin with 
the definition of a Hilbert space valued Wiener process. Let (H, (., .)) be a real 
separable Hilbert space. Let Q be a strictly positive, symmetric, trace class 
operator (cf. [B]) on H .  

D E ~ Q N  2.1. An H-valued stochastic process {W(t), 0 < t < T ]  is called 
a Q-Wiener process with respect to {&) if the following conditions hold: 

1. For every non-zero h~ H, (Qh, h)-'I2 (W(t), l a )  is a one-dimensional 
standard Wiener process. - - 

2. Fbr every h E H, W(t, h) G { W(t), h )  is an &-martingale. 

Define Ho = Q1I2 H .  Clearly, H, is a Hilbert space with the inner product 

{h, k),, A (Q-1/2 h, k) for h, ~ E H , .  

Denote the norms in H and Ho by ) I . I I  and Il.llo, respectively. Since Q is a trace 
class operator, the identity mapping from Ho to H is Hilbert-Schmidt. This 
Hilbert-Schmidt embedding of H, in H will play a central role in many of the 
arguments to follow. One consequence of the embedding is that if v("' is a se- 
quence in Ho such that v(") + 0 weakly in H,, then IlvIn)ll + 0. For an exposition 
of stochastic calculus with respect to an H-valued Wiener process we refer the 
reader to [ S ] .  Other useful references are [19], [20], and [17]. 

The following two theorems are crucial ingredients to the proofs in this 
paper. Although the first theorem is standard, the second requires some elemen- 
tary modifications of standard arguments. A sketch of the proof is provided 
for the sake of completeness. 

Let ( ~ t ) o ~ t , T  be the 8-completion of the filtration generated by 
( W(s): 0 < s < t),,, ,,. We denote the space of square integrable random 
variables on (52, F ,  8)  by L2(8) and the subspace of random variables which 
are BT-measurable by Lg(8). Also, define d to be the class of Ho-valued 
Ft-predictable processes q!~ that satisfy 

1 - 
(2.1) - 6 (J 114 (s)llids < a] = 1. ',=. 

0 

Finally, let 

We refer the reader to Chapter 4 of [5 ]  for the definition of stochastic integrals 
of elements of d with respect to W. 

THEOREM 2.2. Let $ ~d be such that 
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Then the process 
i 

@(t)=W(t)--J$(s)ds, t € [ O , T ] ,  
0 

is a Q-Wiener process with respect to (&} on (52, F, y), where y is the probability 
measure defined by 

For the- proof see Theorem 10.14 of [ 5 ] .  

THEOREM 2.3. Let ( M ( t ) ;  9,) be a real-valued local martingale with right 
continuous paths having left limits. Then there exists $E&" such that for all 
O G t G T  

t 

M (t) = M (0) + j C$ (s) d W (s) as. 
0 

Proof.  The proof is adapted from [16]. We consider only the case where 
M ( t )  is a mean zero square integrable martingale. The general statement in 
the theorem follows by the usual localization arguments (cf. Problem 3.4.16 
of [18]). Let L2([0, TI: H,,) denote the class of all measurable maps 
q: [0, TI - H, for which J: llq ($11; ds is f ~ t e .  For 0 < t < T and 
q E L2 ([0, : Ho) define 

Applying ItB's formula (cf. Theorem 4.17 of 151) we have 
t 

(2-2) 8'" (t) = f + 1 D(') (s) q (s) d W(s) for all 0 < t < T. 
0 

Since (2S0 q(s)dW(s), 99,) is a real-valued martingale with quadratic variation 
process so 112q(s)ll; ds, it follows that f 1 2 V )  is a non-negative local martingale, 

5.m 

and hence a supermartingale. Observing that 

we have 

This implies that So q (s) P*)(s) dW(s) is a square integrable gt-martingale, and 
hence, by (2.2), /?("(T)- 1 is a mean zero square integrable random variable. 
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Let denote the class of all square integrable random variables of the form 
X = 1; (s) dW (s) for some y s dw. Clearly, Brn (T )  - 1 is in A! for all q as 
above. 

We assert now that A is all of Lk(19). To see this let Y be an arbitrary 
mean zero square integrable BT-measurable random variable. Suppose that Y is 
orthogonal to A, i.e., E (YX) = 0 for all X E A. Since A' is a closed subspace 
of L$ (B), to prove A = L$ (6) we need only show that Y 0. Let { ,Ik]  be' the 
sequence of eigenvalues of Q and let (e,) be a complete orthonormal system 
(CONS) of corresponding eigenvectors. Let No denote the set of positive in- 
tegers. Suppose that 1 E No,  N E No, 0 = tl < ... < tN d T, and that {ak):= is 
a sequenCe of reals. By taking q to be the appropriate step function and using 
E Y  = 0, we see that 

N- 1 

This proves that E [Y I W ( t ,  el); 0 < t < TJ = 0 for all 1 E N o .  In a similar 
manner we see that, for all P ) ~ E N ~ ,  E [Y I W ( t ,  ei); 0 6 t 4 T, 1 6 I < m] = 0. 
The assertion now follows on observing that Q, = n { W ( . ,  e,); I E  N o )  (cf. Pro- 
position 4.1 of [5]). 

Finally, let M ( t )  be a mean zero square integrable martingale. Then there 
exists y e dw such that M ( T )  - M (0) = J: y (s) d W (s) a.s. The proof now fol- 
lows by taking conditional expectations with respect to g1 and using the mar- 
tingale properties of M ( t )  and the stochastic integral. H 

Finally, in this section we will record two results which will be used in 
Section 3 in proving tightness for a sequence of Hilbert space valued processes. 
The first of these results is due to Aldous (cf. [25]). Let (8 ,  d) be a Polish space. 
We denote by %([O, TI:  8) the Polish space of continuous maps from [0, TI 
to d equipped with the uniform convergence topology. 

THEOREM 2.4. Let {Xfn)) be a sequence of processes with paths in 
%(LO, TI: 8). Suppose that {X(")(t)) is tight for each rational t E [0, TI and that, 
for any sequence of stopping times {z,) such that zn < T a d  any sequence of 
non-negative numbers {6,] converging to zero as n -, m, - 

"?I 

d (X'") (z, + a,), XCn) (z,)) 0 in probability as n + m. 

Then {X'")) is tight. 

The proof of the following theorem can be found in 1171. 

THEOREM 2.5. Let K be a separable HiEbert space and let {e , ]  be a CONS 
in K. Let {p'")) be a sequence of probability measures on ( K ,  W (K)). Then {pcL'")) 
is tight if a d  only i f  

1.  for all N > 0 

lim supp'") {X E K: rnax I(x, ei>l > A) = 0; 
A-rm n 1CiCN 
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2. for any S > 0, 

lim S U ~ ~ ( ~ ' { X E K :  Ilx-PN(~)llK B S )  = 0, 
N + m  n 

where P, is the projection operator with range span {el, . . . , eN) .  

In some applications it is convenient to consider stochastic differential 
equations which are driven by a cylindrical Brownian motion rather than 
a Hilbert space valued Brownian motion. We close this section by giving the 
definition of a-cylindrical Brownian motion and its connection with a Hilbert 
space valued Brownian motion. Recall that (52,b, (z), 8) is a probability 
space with an increasing family of right continuous 0-complete sigma fields 
{ % ] o Q ~ < T .  

DEFINITION 2.6. A family (B(t, h): 0 < t < T, h~ H )  of random variables 
is said to be an 9,-cylindrical Brownian motion if 

(i) for every h E H, llhll = 1, (B(t ,  h), $lo is a standard Wiener process, 

(ii) for every 0 G t d T, ol,, U ~ E R  and f , , f i ~ H ,  

Let (HI, { a ,  
be a Hilbert space such that H1 3 H and the identity 

map i: H  + H I  is Hilbert-Schmidt. Obviously, H, is not uniquely determined. 
Observe that the Hilbert-Schmidt embedding implies that if {ei}i~ and &):= 
are CONS in H and HI,  respectively, then 

Now let (ei}tL be a CONS in H and define fij (t) = B (t, ej). Then from (2.3) 
we infer that the sequence {z=, ej/lj(t)] converges, in probability, in H, as 
n + co. Furthermore, there is a trace class operator Q1 on HI  such that 

is a Q1-Wiener process on HI. The choice of the Hilbert space H1 is immaterial 
in the sense that, for all such extensions Q:12(H,) = H and for U E H ,  
llull = llQ;112 uII1. Therefore, we can assume without loss of generality that 
Q, is strictly positive. We refer the reader to 151, Section 4.3, for proofs of these 
statements and further details. The following elementary lemma shows that one 
can always go from a cylindrical Brownian motion to a Hilbert space valued 
Wiener process in a measurable way. 

LEMMA 2.7. Let B (-, -) be a cylindrical Brownian motion as above. Let X be 
a random variable which is measurable with respect to g{B(s, h): 0 6 s < 7', 
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~ E H ) .  Let the HiEbert space HI and an HI-valued Wiener process W* ( - )  be as 
above. Then there exists a measurable map f: C([O, n: HI) 4 R such that 
B o x - I  = 8 0 f ( W * ) - ~ .  

P r o  of. Note that B (C ( [O ,  TI: H,)) [the Bore1 s-field on C (LO, : HI)] 
is precisely the sigma field LT {(n,(-), h),: t E [ O ,  TI, ~ E H ~ } ,  where 
n,: C ( [0 ,  TI: HI) + N, is defined as n, (x) - x (t). Thus to prove the lemma 
it suffices to show that n ((W* (t), t E [O, TI, h € H 1 )  equals 
a { B ( t ,  h): A E H ,  0 < t G TI. The last statement is an immediate consequence 
of (2.4) and the observation that if (fk}T=, is a CONS of eigenvectors of 
Q1 with eigenvalues {,lkjkm=, , then for every h E H ,  

3. The representation theorem. This section is devoted to the proof of the 
representation theorem. For a bounded operator A on H let llAllop denote its 
operator norm. We begin with the following lemma: 

LEMMA 3.1. Let (v(")) be a sequence of elements of d {cf. (2.1)). Assume that 

T 

(3.1) M sup f Ellv(")(s)II;ds < co. 
n 0 

Then the sequence (1; v(")(s)ds) is tight in V([O, 71: H). 

Proof.  For 0 < t < T define X(") (t) A fi dn) (s) ds. The Cauchy-Schwarz 
inequality and the observation that llhll < Q11ii2 llhllo for h E H o  yield that, for 
(7,) and (6 , )  as in Theorem 2.4, 

T 

IIX'") (rn + 6n)-X(n) ( ~ n ) l l  < f i  IlQIli~ ( j  11~'") (s)lIg ds)lI2 - 
0 

Thus, by (3. I), IIX(") (2, + 6,) - X(") (z,)(l converges to 0 in C (8). It now suffices, in 
view of Theorem 2.4, to show that for each t E [0, T I  the sequgnce (X(") ( t ) )  is 
tight -in H. We will verify conditions 1 and 2 of Theorem 2.5 for-the measures 
induced by (X1")). Let { e j )  be a CONS of eigenvectors as in the proof of 
Theorem 2.3. In order to verify condition 1, it suffices to note that, for A > 0 
and n ,   EN^, 

For condition 2 observe that 

Ilx'"' ( t )  - pN (x(') (t))11 = C (J dn) (s) ds , e j )  
j=N+1 0 
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Denoting Qi1j2 dn)(s) by $("I (s), we can rewrite the right-hand side of the last 
equality as xJ?' =,+ , (1; #n) (s) ds, Q1/' ej)'. The CauchySchwarz inequality 
shows that this last expression can be at most TI:  I l + C ) ( ~ ) 1 1 2  d ~ x ~ ? = ~ L ~ .  Obser- 
ving finally that Il+(") (s)ll = Ilv[") (s)llo and recalling (3.1), we can verify condi- 
tion 2 applying Chebyshev's inequality. rn 

The following lemma will be used in some of the tightness arguments in 
Sections 3 and 4. 

LEMMA 3.2. Let {v(")) be a sequence of elements of d. Assume there is 
M < cr;, such that - -  - 

i T 

sup 1 Ilv(") (s)lli ds G M a.s. 
n 0 

Supposefurther that v[") converges in distribution to v with respect to the weak 
topology on LZ ( [O ,  T I :  H,). Then Jb v(")(s) ds converges in distribution to 
Lv(s )ds  in Q([O, TI: H). 

P r o  of. For N EN, define 
T 

(3-21 sN G (uEL?([o,  T I :  H ~ ) :  ~lu(s)lllds G N ) .  
0 

One can endow SN with the weak topology, in which case it is a Polish space 
(cf. [9]). The lemma then follows immediately by observing that the map 
z: SM -+ V ([0 ,  T I  : H )  defined by z (u) 2 ro u (s) ds is continuous. s 

The following lemma concerning measurable selections will be used in the 
proof of the main theorem below. 

LEMMA 3.3. Let El,  E ,  be Polish spaces and let$ El  x E ,  -, R be a bounded 
continuous function. Let K be a compact set in E,. For each x E E l  define the sets 

Then for i = 1,  2 there exist BoreE measurable functions gi: El + E, such that 
g i ( x ) € r ;  for all X E E ~ .  

P r o  of. Let x, be a sequence in El converging to 2. For each n E No and 
i = 1, 2 let Y~ET;~. In view of Corollary 10.3 of 1121 it sufllces to show that 
{ y i )  has a limit point in rk. Let j? be a limit point of (yk). The result now is an 
immediate consequence of the fact that for each n both 
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equaI zero and that the maps 

I x , ~ ) - + f ( x , y ) - i n f f ( x , ~ o )  and ( x , ~ ) + f ( x , ~ ) - s u ~ f ( x ; % )  
Y OEK yoeK . .  

are continuous. s 

For probability measures 01, 82 on (52, F) we define the relative entropy 
of 0, with respect to d2 by 

whenever 8, is absolutely continuous with respect to O2 and log (d6,/dO2) is 
01-integrable. In all other cases, set R(O1 11 02) A co. Define 

LEMMA 3.4. Let (j(")) be a uniformly bounded sequence of real-valued mea- 
surable functions on %'(KO, T I :  H )  converging to f as. 6. Then 

conuerges to 

Proof .  Let E > 0 be arbitrary. For each n E N 0  pick an element v(")~" of 
d, such that 

E (i j llv(n)l' (s)ll: + (n)  (R+ j u(n)$E (s) ds) 
0 0 

is at most E larger than the infimum in (3.4). Since {v'"),", n  E N o )  is tight in S,, 
we can pick a subsequence (relabeled by n) along which (v'")~',, converges 
weakly to (a", W). Using Lemma 3.2 we see that ~+Sbv(")~'_(s)ds converges 
weakly as elements of W([O, TI : H) to W + Sb "'(s) ds. i,TX 

We next claim that 

E (f ("I ( W + j v(")," (s) ds)) -, E (f ( W + j v' (s) ds)). 
0 0 

This is a consequence of [I], Lemma 2.8 (b), which states that for the last 
display to hold it is suficient that the relative entropies 

be uniformly bounded in n, where 9, (W) and 9, (W + Jb u("),"s) ds) denote the 
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measures induced on C (m, : H) by W and W + 6 v("]*' ((s ds, respectively. 
But this is immediate by Theorem 2.2, since these relative entropies equal 

Using the weak convergence of dn)*Vo ue and Fatou's lemma, we obtain 

Thus the limit inferior, as n -+ m, of the expression in (3.4) is at least the 
expression in (3.5). 

For the reverse inequality, pick an element u-f d, such that 

is at most E larger than the infimum in (3.5). Clearly, 

is at least the infimum in (3.4). As a + m, this quantity converges to the expres- 
sion in (3.6). Thus the limit superior, as n -t CQ, of the expression in (3.4) is at 
most the expression in (3.5). This proves the reverse inequality, and hence the 
lemma. 

LEMMA 3.5. Let f be a bounded continuous function mapping %? ([0,  TJ : H )  
into R. 

1. Let 6 ~ d  be such that 

define w ( t )  - W (t)  -So F(s) ds, and let ~ " e n o t e  expectation with rgpect to the 
measure y" defined by - 'r 

dy' A exp { ~ ( s ) ,  d ~ ( s ) )  -A j lld(s)lle ds dB. 
1 0  2 0  1 

Let vo E& be an elementary process, and assume there is M,E(O,  co) such 
that llvo (s)llo < M o  for all s E [O, TI as .  Then for every E > 0 there exist elemen- 
tary processes t l l ,  v2 E dw such that jlvi (s)llo < Mo for i = 1 ,  2 and all s E [0, TI, 
and 

4 - PAMS 20.1 
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2. Let db) denote the subclass of d consisting of bounded eIernentary pro- 
cesses. Then 

Pro  of. For the proof of part 1 we will use Lemma 3.3. We will only show 
the first inequality in (3.7) since the proof of the second inequality is similar, 
save that the corresponding supremization part of Lemma 3.3 is used instead. 
Suppose that the elementary process vo takes the form 

where ( s ,  w ) E [ O ,  T ] x Q ,  O = t l  < t 2 <  ... < t l + ,  = T and X j  are Ho-valued 
Ftj-measurable random variables satisfying IIXj (co)llo < Mo as. for all 
j ~ ( 0 ,  ..., E ) ,  and 9 denotes the indicator function. Define F , :  H f 2 + '  -t R by 

so that 

For j = 1, . . ., 1 define measurable maps Zj from Q to Aj A C ( [ O ,  t j + ,  - t j ] ,  H) 
by 

From the continuity and boundedness of the map f it follows that there exists 
a continuous bounded map F,: (H:'+' x  (ni=, A~))  -. R such that 

For 1 < i < 1, let Xi and gi denote the vectors (Xo, . .., Xi) and (Z",, . .., zi), 
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respectively. With this notation 

We recall that every probability measure on a Polish space is tight. This implies 
there is a compact set K O  c H ,  such that 

Since (@(t), z) is a Wiener process under y', if 0 < ul < c, < T, then 
w(u2) -  @(ulj is independent of Su,. Therefore, zj is independent of (XJ, zj- ,) 
under y" ~ e t  pi denote the standard Wiener measure on Aj and let F':) be the 
real-valued continuous map on (H$"' x (nil: dj)) obtained- by integrating 
out zl from F, ,  i.e., 

Recalling that IIXlllo < Mo a.s. and applying Lemma 3.3 with 

K = K O  n (x E H,:  llxllo < M,)  and f = + F(:),  

we infer that there exists a measurable function 

satisfying Ilh(.)llo < M o  such that the right-hand side of (3.8) is bounded from 
below by 

By subtracting an additional &/2 (I + 1) from this lower bound, we can take 
h to he a continuous map via an application of [8], Theorem Vrl6a, and the 
dominated convergence theorem. We now iterate the above procedvre E times 
to obtain the following inequality : 

E ~ F  1 (XI) + F2 (Xi, 31)) 3 @(PI (r (31)) + ~2 (r (gi), ZI))-&, 

where 

r: nl. dj + H f l +  l is continuous, 
. . T ( z l )  can be written (T,, TI ( z , ) ,  . . ., rl (zl)), where zi ( z l ,  . . ., zi) ~n;., AjY 

To  is a non-random element of H, bounded in norm by M,,  
for i = 1, . . ., 1, ri: n:=, .l, - Ho satisfies ill', (u)llo < Ma for u EH:=, A,. 
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Now define for j = 1,  . . ., 1 measurable maps Z j  from Q to dlj by 

and let Zi A ( Z , ,  . . ., Zi) for i E (1, . . ., 1). Finally, define 

Clearly, D(s) is an elementary process in dW satisfying Ilfi(s)llo 4 Mo for each 
SE[O, TI and . . 

This proves part 1. 

We turn now to part 2 of the lemma. Taking i7 in (3.7) to be a bounded 
elementary process and v, = fi, we obtain 

where dwJb) is the subclass of dW of bounded elementary processes. Since 
elements of dW.(b) are piecewise constant, for every v E dw,(bl we can construct 
f i ~ d ( ~ )  via a recursive conditioning argument so that 

Combining (3.9), (3.10), we have 

Next, taking v" = 0 in (3.7) and observing that dw,(b' c dtb), we obtain 

(3.12) U E ~ W , ( ~ )  inf ,, E ( ; i I l v ( s ) l l : d s + f ( ~ + j v ( s ) d s ) )  o 

1 
= V E ~ ( ~ )  inf 6(21 0 l l a ( r ) ~ ~ d s + / ( ~ + j u ( r ) d s ) ) .  0 
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Now, let ve d be such that E {I: llv(s)]li ds)  < m. Choose a sequence 
{vn: n E N o )  in d such that each v" is a bounded elementary process, 

T 

lim E ( S  I~v@)(s)-v(s)~~;~s) = 0, 
n-rm 0 

T T 

and supE(IIlv(")(s)ll~ds)<1+E(~IIv(s)ll~ds). 
nfNo o 0 

Clearly, So (v" (s) - v (s)) ds converges to zero in probability for each t E [0, TI. 
Also, an application of Lemma 3.1 shows that {lo (on (s)- ?(s)) ds] is tight in 
W ([0, TI:  HJ. ~ h u s  (W, fb vn (s) ds) converges weakly to ( W, So v (s) ds), and since 
f is continuous, we have 

Using d c we prove that 

1 
= inf E (- llv(s)llsds+f (w+jV(s)ds)). 

V E ~ B  2 0 o 

The proof of part 2 is completed by combining (3.111, (3.12), and (3.13). 

We now present the main result of this section. Though in the theorem we 
take f to be a bounded function, it can be shown (as in [lj) that the represen- 
tation continues to hold if f is bounded from above. 

THEOREM 3.6. Let f be a bounded, Borel measurable function mapping 
V([O, TI:  H) into R. Then 

Proof.  We claim that it suffices to prove the result for f that are con- 
tinuous. To see this, let v(")) be a sequence of real-valued continuous functions 
on %' ([0, TI, H) such that sup,,, 1 f (") (x)l < supx If (x)l, and f (") converges to 
f 8-a.s. Applying the dominated convergence theorem we obtain 

For 53 c d and g a bounded, Borel measurable function mapping 
%(LO, TI:  H) into R, define 

To prove the claim, we must show that A(&, f'")) converges to A(&, f )  
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as n + m. Let 
T 

K A suplf (x)l and GZ = IDEA': E(J Ilu(s)llgds) < 4 K ) .  
X 0 

Then, clearly, A (d, f ["I) equals A (%, f ("I) and A (d,  f )  equals A (g, f 1. Let 
E > 0 be arbitrary. Choose N  E M, such that ~ K ' / N  < 4 2 .  Fix II E 5f and define 
the stopping time 

S 

. . 7, A inf { s ~  CO, TI: 1 Ilu (s)ll; 2 N )  A T. - -  ~ 

0 

Recall thrat 
T 

d, L ( v  ~ d :  j IIv(s)II;ds < N 8-a.s.). 
0 

Let v, E d,  be defined by vN(s )  G v (s) 4~,,,,, fs), where 9 denotes the indicator 
function. We observe that 

where the inequality in the second line follows since VE%' implies that the 
probability of the set (z, < T) is at most 4 K / N .  Taking the infimum over all 
V E %  in the inequality above we have 

Exactly the same argument with f(") replaced by f gives 

Finally, an application of Lemma 3.4 shows that A(dN, fen)) converges to 
A(&,, f )  as n + ao. This proves the claim. - 

Henceforth we will assume that f is continuous. We prove that the 
left-hand side of (3.14) is bounded from above and below by the right-hand 
side. 

P roo f  of t he  upper  bound.  From Proposition 1.4.2 of [lo] it follows 
that 

where 9(Q) is the class of all probability measures on (0,s). Let i?~d be 
a bounded elementary process. Clearly, (S', ( 5  (s), d W (s)) , E), , , , , is a real- 
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-valued continuous martingale with quadratic variation ji IIfl(s)II:ds ([5]. 
Section 4). The boundedness assumption also implies that the expectation 

E (exp {j: IIfl(s)!l; ds}) is finite, and therefore Proposition 5.12 of [lB] yields 

By Theorem 2.2, dye exp {li (6(s),  d W ( s ) )  -$J: 11v"(s)ll: ds) dB is a prob- 
ability measure and, under y", ( t )  A W ( t )  -So b(s) ds is a Q-Wiener process. 
The definition d the relative entropy function implies 

where ~"enotes the expectation with respect to The Iast expression equds 
4 ~ ' ( 1 :  11fi(s)ll$ ds), and consequently 

I 
I 

It follows from (3.15) that 

-log E exp {-.f(W)j < Eb ilfi(S)l~tdS+f ( m + i f i ( S ) d S ~ )  
0 

if v" is a bounded elementary process. Therefore, an application of part 2 of 
1 Lemma 3.5 yields 

P roo f  of t h e  lower bound.  From Proposition 1.4.2 of [lo] we have 

-logEexp(-f (n3) = R(YOII~)+E'"(~  (W), 
- 

.,m 

where dyo/d8 A c exp (-f (W)) a.s., and c is the normalizing constant. Define 

Clearly, (L ( t ) ,  gt)O 6 is a right continuous martingale bounded from above 
and below by exp (2 1 1  f 1 1  m) and exp (- 2 1 1  f 1 1  ,), respectively. It follows from 
Theorem 2.3 that there exists u € d W  such that for all 0 4 t  4 T 

t 

L(t) = 1 + J  (u(s ) ,  dW(s) ) .  
0 
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We can rewrite the last equality as 

where v"(t) G u(t) /L(t) .  Since L(t) is a real-valued continuous non-negative 
martingale with L(0) = 1, we have (1161, Lemma 7.1.4) 

It follows from Theorem 2.2 that under yo 
5 

Tv= w-jfi(s)ds 
a 

is a Brownian motion with covariance Q. Therefore 

As in the proof of part 2 of Lemma 3.5, we can approximate D by a sequence 
(v", n E No) of bounded elementary processes in d such that 

and 
T 

E;(S II~(s)-~(s)/1$ds) + O as n -+ co. 
0 

It now follows, as in the proof of part 2 of Lemma 3.5, that 

converges to the right-hand side of (3.16) as n + GO. 

Let E -+ 0 be arbitrary. We have shown that there exists Mo < co and an 
elementary process vo ~d satisfying Ilvo (s)llo < Mo for all S E  [0?,7T7 such that 

The proof is now completed by applying part 1 of Lemma 3.5. rn 

As an immediate corollary to Theorem 3.6 and Lemma 2.7 we have the 
following representation theorem for a cylindrical Brownian motion. Define 
d* to be the class of H-valued Pt-predictable processes #, satisfying 

T 

( j  1 1 #  (s)1I2 ds < a) = 1 .  
0 
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COROLLARY 3.7. Let ( B  ( t ,  h): 0 4 t 6 T, h E H )  be an {FJ-cyIindrica1 
Brownian motion. Let X be a bounded random variabIe which is measurable with 
respect to 0 { B  (s,  h): h E H,  0 < s < T) .  Then 

where f aid W*(-) are related to B ( . ,  a), and X is as in Lemma 2.7 

4. A large deviation principle. Let W(.) be, as in Sections 2 and 3, an 
H-valued Wiener process with trace class covariance Q. Let C be a Polish space 
and for E > Q let 9: C ([0, TI: W )  + t be a measurable map. In this section we 
are interested in the large deviation principle for the family of random elements 

As stated in the introduction, for Polish space valued random elements the 
Laplace principle and the large deviation principle are equivalent. We will 
show in this section that under appropriate conditions a Laplace principle 
holds for {X"). This general result will be applied in the sequel [3j. We begin 
with the following definitions : 

D E ~ I O N  4.1. A function I mapping d to [0, a] is called a rate func- 
tion if for each M < a, the level set {X E 8: I (x) 6 M }  is compact. 

DEFINITION 4.2. Let I be a rate function on 8. A family {X"E,,o of b-val- 
ued random elements is said to satisfy the Laplace principle on B with rate 
function I i f  for all real-valued bounded and continuous functions h on 8: 

The set SN of bounded deterministic controls defined in (3.2) will play a central 
role in the proof of the Laplace principle. Also recall the definition of dN given 
in (3.3). 

We are now ready to formulate the main assumption on 3' under which 
the Laplace principle holds. - 

ASSUMPTION 4.3. There exists a measurable map 8': C([O, !?I: H) -+ t 
such that the following hold: 

(i) Consider M < co and a family (v") c dM such that v9onverges in dish- 
bution (as SM-valued random elements) to v. Then P (W (=) +(&)-' J": v' (s) ds) 
converges in distribution to 3' (J": v (s) ds). 

(ii) For every M < oo the set 

rM (9 (J u (s) d ~ ) :  v E sM) 
0 

is a compact subset of 8. 
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For each f E 8 define 

where the infimum over the empty set is taken to be co. 
It can be shown that solutions of a wide class of stochastic dynamical 

systems driven by a Hilbert space valued Wiener process or a cylindrical Brow- 
nian motion can be written as (9'(W(.)))  with 8' satisfying Assuhption 4.3 
(see [3]). - 

- - 

Observe that if (8") satisfies Assumption 4.3, then 1 is a rate function on b. 
The following is the main theorem of this section: 

THEOREM 4.4. Let Xe be as in (4.1). Suppose that (87 ssatisJies Assump- 
tion 4.3. Then the family (XE},,, satisfies the Laplace principle in d with rate 
function I as defined in (4.3). 

Proof. In order to prove the theorem we must show that (4.2) holds for 
a11 reaI-valued bounded and continuous functions h on 8. 

Proof of the  l ower  bound. From Theorem 3.6 we have 

- E log flexp [ - h (X&)] ]  

Fix 6 > 0. Then for every E > 0 there exists V'G Ed such that 

We wiII prove that 

2 inf (I (x) + h ($1. 
XEB 



Infinite dimensional Brownian motion 59 

We claim that in proving (4.5) we can assume without loss of generality that for 
all E > 0 and a.s. 

T 

(4.4) 1 Ilv"slll$ ds 6 N 
0 

for some finite number N .  To see this, observe that if M Ilhllm, then 

. - .  

Now define stopping times 

The processes vemN(s) A Ue (s) 410,,y (s) are in d, 4 being as before the indicator 
function, and furthermore 

T 2 M + 6  
8 (vE # v ' . ~ )  < 0 (1 llve(s)IIt ds iS NN) d -. 

N O 

This observation implies that the right-hand side of (4.4) is at most 

Hence it suffices to prove (4.5) with vE (s) replaced by vepN (s). This proves the 
claim. Henceforth we will assume that (4.6) holds. Pick a subsequence (rela- 
beled by E )  along which v%onverges in distribution to v as SN-valued random 
elements. We now infer from Assumption 4.3 that 

2 inf {:[ ~ ~ v ( s ) ~ ~ ~ d s + h ( x ) )  > inf (~(x)+h(x)] 
( ( x , u ) E ~  X L2([0,Tf:Ho):x= 9to[jbv(s)ds)} X E ~  

This completes the proof of the lower bound. 

P roo f  of the  uppe r  bound. Since his bounded,infd{I(x)+h(x)) < oo. 
Let 6 > 0 be arbitrary, and let x, €8 be such that 
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Choose V"E L2 ( [O ,  TI:  H,) such that 

I = 
-JIIU"(t)l lgdt<I(x0)+S/2 and x o = 9 " ( ~ v " ( s ) d s ) .  
2 0  0 

By Theorem 3.6, for bounded and continuous functions h 

(4.7) lim sup - E log E (exp ( - h (xE)/~)) 
e + O  

Now by Assumption 4.3, as E -+ O 

converges to h (9" (fov"(s) ds)) = h (xo). Thus the expression in (4.7) can be at 
most 

Since 6 is arbitrary, the proof is complete. 

- 
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