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MARTIN REPRESENTATION FOR o-HARMONIC FUNCTIONS
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KRZYSZTOF MICHALIK* anp KRZYSZTOF SAMOTIJ* (WRoCLAW)

Abstract. Let D be a nonempty open bounded subset of RY,
d>2, and let 0 <o < 2. For a-harmonic functions on D vanishing
outside D an analogue of the Martin representation for harmonic func-
tions is derived.

1. Introduction. The problem of the Martin boundary for harmonic func-
tions is a part of potential theory. This theory can be expressed in a probabilis-
tic way with the use of Markov processes. In the past the relationships between
the classical Newtonian potential and the Brownian motion were investigated.
A natural extension of the classical potential theory and harmonic functions is
the theory of Riesz potentials and a-harmonic functions. This case has deep
connections with the rotation invariant (‘symmetric’) stable processes with their
index of stability « < 2. Although in general these processes differ from the
Brownian motion, they have some properties which are similar or analogous to
the corresponding properties of the latter process. That is why the results
concerning Riesz potentials and a-harmonic functions appear in many situa-
tions in probability theory, potential theory and in various analytical applica-
tions. They are often an interesting natural generalization of classical results.

For the rest of the paper let X, be a symmetric stable process in R? of index
afor d > 2 and 0 < o < 2. For a Borel subset B of R’ let T and 75 be the first
entry time and the first exit time, respectively, i.e. 75 = inf {t > 0: X, e B} and
13 = Tge. D will stand for a nonempty open subset of R%. A nonnegative Borel
function h on R? is said to be a-harmonic on D if for each bounded open set
B with B< D and for xe B we have :

(1) | h(x) = E*h(X.,) < .
This definition is equivalent to another one in which (1) is required to hold only

for each ball B = B(x, r) = {yeR*: |x—y| < r} with 0 < r < dist (x, D). In this
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case (1) can be written explicitly as

)] h(x)=¢xh(x)= [ &(x—2)h(z)dz,
Rd
where
I' (d/2) sin (m/2) 1
(3) g, (y) — 1‘51 +dj2 (|y|2_r2)a/2 Iyla:’ |yl >,
0, Iyl <r. -

The family of all a-harmonic functions on D will be denoted here by 5#*(D),
and the family of those functions in s#*(D) which vanish on D will be denoted
by #%(D). Functions from s#%(D) are continuous on D. Each nonnegative

Borel function on D° can be extended to D by the formula
h(x)=E*h(X,,), xeD.

Then h is either harmonic on D or infinite on D.
One of the classical results states that if D is a bounded Lipschitz domain
in R, then each nonnegative harmonic function on D admits a representation

) h(x)= [ P(x, y)du(y), xeD,
oD

where P(x, y) is the Poisson kernel for D, u is some Borel measure, and 6D
denotes the Euclidean boundary of D. If D is a general bounded domain in R?,
then a representation similar to (4), called the Martin representation, is valid,
although the Euclidean boundary éD must be replaced by the so-called Martin
boundary and the Poisson kernel for D is replaced by the Martin kernel
M (x, y). M(x, y) is nonnegative and harmonic in D with respect to xeD.

The main purpose of this paper is to establish a version of Martin re-
presentation for functions in 5 (D) (Theorem 5.12). The recent result shows
that for a bounded Lipschitz domain the Martin boundary coincides, as for
o = 2, with the topological boundary (cf. [5]). Our paper refers-to the general
case of bounded domains in R?. Contrary to what may seem at a first glance,
Theorem 5.12 is not a theorem about the zero function. Examples of nontrivial
functions in 5 (D) are given in Section 2. In Section 3 we prove a decom-
position theorem for functions in #*(D), which states that each he#*(D)
can be represented uniquely as the sum of an % (D) function and a function
from #*(D) “orthogonal” to ¢ (D). This second term has a natural represen-
tation (5).

In general, as long as possible, we follow the classical schemes. But, unlike
in the case of a = 2, a-harmonicity is a global property. For this reason the
kernels M (-, y) are not always a-harmonic on D. We show this at the end
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of this paper. Hence, to prove the uniqueness part, we use different arguments.
However, the boundary which we construct can be characterized as for o = 2.
Finally, we must remark that this boundary coincides with the boundary

| introduced in {8] in a more general setting. Also, as in the classical case, the
kernel M coincides on D with the kernel x defined in [8], except for the
definition for x =y = x,.

In the sequel an open bounded nonempty subset D of R will be fixed. We
will also use the notation (D,) for a fixed sequence of nonempty bounded open
subsets of D such that D, < D,4y, n=1,2,..., and | J,D,=D.

2. Examples of functions in 3 (D) o

ExamprE 2.1. The function

Ix_y’a_d, x;éy,
h =
=1 v
is in 55 (RY\{y}) ([9], 1.6.19). More generally, if gp (x, y) is (discussed later) the
Green function for D and yeD, then the function
0, x¢D\{y}
is in A5 (D\{y})-

ExampLE 2.2. Let K be a compact subset of D of nonzero a-capacity and
zero Lebesgue measure. Let us define the function h, by the following formula:

— Ex(lK(Xth))! xED\K,
hl(x)—{lx(X), D DK,

and let h = 1p - h,. The function h; is a-harmonic on D\K, equal to h on D\K,

and equal to h a.e. on R?. Therefore for xe D\K and r, 0 < r < dist{x, (D\K)"), -

we have
h(x) =hy(x) = & % hy(x) = g, *h(x).

Hence h is o-harmonic on D\K. Since A = 0 on D\K, we have he #§(D\K).
Since K is of nonzero a-capacity, we have _

h(x) = P*{X,, . €K} >0, xeD\K, o

so h is also nontrivial.

TO\K

ExampLE 2.3. Let P(x, y), yeR®, |x| < 1, be the Poisson kernel for the
unit ball, i.e. the density function of P*(X edy). This function is explicitly
given by the formula ([9], 1.6.23)

TB(0,1)

) r@2)sin(ra/2)  (1—|x?? M > 1,

P(x, y)= iz (P =1 x—y®
0, byl < 1.
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Let [y > 1 and 0 < ¢ < |y|—1. The function

1 X
hy,e (x) = mE (15,00 X 2p00,1,))

is a-harmonic in B(0, 1). Therefore for each x, |x] <1, and each 7,
0<r<1—|x|, we have

hyo (X) = & % hy 4 (x).

When we express h,, in the above equality in terms of P and we let ¢ tend to
zero, then ‘we obtain
-1

Bx,y) =6+ P(, () +e(x—y), 0<r<l—|x|

Multiplying both sides of the above equality by (|ly|>—1)¥? and letting y,
[yl > 1, tend to a fixed point yy, |yo| = 1, we obtain

hyo(%) = &% hy (x), O<r<l—|x|,
where
I (d/2)sin (moi/2) (1 —|x|?)42

hyo (x) = pltaz x—yol®
0, x| = 1.

x| <1,

Hence the function h,, belongs to #§(B(0, 1)). As can be easily verified by
Fubini’s theorem, a more general example of a nontrivial function from
H5(B(0, 1)) is given by the formula '

h(x)= | hy(x)p(dy),

=1

with px being any nonzero Borel measure on the unit sphere.

3. A decomposition theorem for a-harmenic functions

* THEOREM 3.1. Every a-harmonic function h in A#° (D) can be uniguely re-
presented in the form h = hy +h,, where hy e #% (D), h, € #*(D) and h, is such
that the condition: h, = v with ve #% (D) implies v = 0. Moreover, h, is of the
Sform :

E*(h(X.,): X.,-€D), xeD,
A )

) h(x), x¢D.

Proof For he #*(D) and for a positive integer n define

_E*(h(X.,): X, €D), xeD,,
7:'h(")_{h(x), x¢D,.

e
i
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Note that we have either 7, < tp for all n or 15, = 7, for all but finite numbers
of n’s. By quasi-continuity of X, we have

X.p- =1lim,X,, =X, eD°as. on {1p, <7p:n=1,2,..}

and

X.,-€\UDy=D on |J{zp, =1}

Hence

(X, eD} U{X,D eD} as.  with {X,, ¢D} c{X,, "¢D}.

Therefore T, h(x)1 Th(x) as n— co, where Th(x) denotes the right-hand side
of (5). Moreover, h(x) = E*(h(X,,)) > T,h(x), xeD. The monotone con-
vergence theorem implies that the function Th is a-harmonic on D as a fi-
nite limit of a nondecreasing sequence (7, k) of functions a-harmonic on D.
It is clear that T(Th)=Th and To =0 if ve#E (D). So, if he #E(D), we
set h, = Th and h; = h— Th. The function h, is a-harmonic on D as the
nonnegative difference of functions a-harmonic on D, and h; =0 on D~
To complete this proof assume that ves#§(D) and O < v < h,. Then
hy—v 2 T(h,—v) = Thy,—Tv = Thy = T(Th) = Th = h,. Consequently, we
have v = 0. '

4. Auxiliary results. Together with the process X, we will consider the
process X, which is “X, killed on exiting D”. This is a Markov process on the
state space D, = Du{4}, where A¢D, defined by the formula

() {f @, 1<)

t 2 Tp (CU),

if Xo(w)eD, and X, (w) = 4,t > 0, if X, (w) = 4. As is customary, all functions
on D, considered here will be assumed to vanish at 4. Therefore, we may
identify each function on D, with its restriction to D. The potentlal opcrator for
the process X, is denoted by Gy, ie.

“4tnr

Gp f (x) = E* j f(X)dt = E“Tf(Xt)dt, xeD,
0 0

for each nonnegative Borel function f on D. The operator G, has a kernel
which will be denoted by gp(x, y), ie.

Gpf ()= [gnlx,y) f()dy, xeD.

The kernel g, is positive on D x D and symmetric. Also, for each fixed x € D, the
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function gp(x, -) is finite and continuous on D\{x} while near x we have
lim,.,gp(x, y) = + o (see [7]). In the case D = R* we have

2 [ ((d—0)/2)
I'(2/2)
LEmMMA 4.1. If he #*(D), then h|p is excessive with respect to X,.

5)] (x7 J#’) = u(x_y) = Ad.a Ix_ylu_d: where Ad,a =

Proof. Since h is continuous on D, it is enough to show that
h(x) = E*h(X,), xeD,t > 0. To see this note that for each xe D, each t > 0 and
each n with xeD,, we have -

* h(x)=E*h(X,,) > E*{h(X,,): t <7p,}
= E* {EX‘h(XtD“): t<1p,}=E*{h(X) t<1p]}.

Since {t <1p,}1{t <7tp} as., letting n tend to infinity we obtain
h(x) = limE*{h(X): t <7} = E*{h(X,): t <1p} = E*h(X)).

PROPOSITION 4.2. Let he #*(D) and let h,(x) = E*h(X Tn,)» X€D. Then
there is a Borel measure v, concentrated on D, such that

h,(x) = Gpv,(x), xeD.
In particular, we have Gpv,(x) = h(x), xeD,.

Proof Note that since gp(x, y) < Ag.|x—y|*"% and since the function
gp (-, y) is continuous, from the dominated convergence theorem we may con-
clude that G, f is continuous whenever f is a bounded function on D vanishing
outside a compact subset of D. By Lemma 4.1, the function h is excessive with
respect to X,. Therefore our proposition follows by Theorem VI.2.8. of [3].

PRrOPOSITION 4.3. Let he #7%(D). Let h, and v, be such as in Proposition 4.2.
Let K be an arbitrary compact subset of D and let v, = v,|x. Then supxeK GD Vi ()
converges to zero as n tends to infinity. In particular, lim,v,(K) =

Proof. Let xeK and let 0 < 2r < dist (K, D“') Then for each n such that
Kc D we have

g

(6) 0 < GpVp(x)—& * Gp v (x) < GpVy(x)—&, % Gpv,(x)
=h(x)—&*h,(x) = & *(h—h,) (x) < & *(Ip\p, (X) A (x)).

By the dominated convergence theorem, the last éxpression converges to zero
uniformly with respect to x € K, when n tends to infinity. On the other hand, if
we assume additionally that r < dist(K, DZ), then we have

(7) GD V,, (X) — & % GD vn (x) = GR‘I vn (x) —& % GRd V,, (X)

= [lux—)—Cxu)x—pln@d) = [ 1=22"Yulx—y)v,dy.
K

[x—yl<r/3
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Since u(x—y) = A4, /379, |x—y| < r/3, by compactness of K, the inequali-
ties (6) and (7) imply that

8) li'rln v (K) =0.
To complete this proof note that

GpVa(K) < fu(x—y)vi(dy) < Ix_y}l"qﬂw(x—y) va(dy)+ II( Aa o (/37 vr (dy).
But, by (6)—(&),‘ééc‘h of the last two integrals converges to zero as n ténds to
infinity.

5. The Martin representation. Our construction of the Martin boundary
follows a classical scheme (cf. e.g. [6], Chapter XIV). For a fixed point x, e D let
us define a function M on R®x D with values in [0, co] by the formula

go(x, ¥)/gp(x0, ¥, X # X0, x€D,
M(x,y)=141, : X = Xo,
0, - xeD*.
Let K be an arbitrary compact subset of D containing x, and let B be an
open set with K « B < D. For a fixed ye D\B the function M (-, y) is a-har-

monic on B and assumes value 1 at x,. Hence, by the generalized Harnack
inequality there is a constant C depending only on K, B and D such that

©9) M(x,y)<C, xeK, yeD\B.

Let D* be the Constantinescu—Cornea compactification ([6], Chapter XIII)
of D with respect to the family of functions M (x, -), xe D. The set D is a dense
subset of D*, and functions of the family M (x, ), xe D, extend uniquely to
continuous functions on D*. The space D* is metrizable, since the family
M(x, -), xeD, contains a countable subfamily separating points of D.

..Let h be a fixed function in 5% (D). For each positive integer'n we define
a Borel measure y, on D by the formula -

U (dy) = gp (X0, y) va(dy),

where v, is the measure from Proposition 4.3. Hence we have
(10) #a(D) = | gp (%o, ¥) va(dy) < h(xo) < c0.
D
Since D is an open subset of D*, each measure u, may be considered to be
a measure on D* which is concentrated on D. The space D¥ is metrizable and

compact, therefore (10) implies that the sequence (u,) is relatively weakly com-

6 — PAMS 20.1
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pact. Let u be a weak accumulation point of (i,). By Proposition 4.3 we have
(D) = 0. Moreover, by Proposition 4.2, for each xe D and each n with xe D,
we have

h(x) = Gpv,(x) = [ gp(x, y)va(dy) = g M(x, y) pn(dy).

Hence
h(x)= | M(x, y)u(dy).
D¥\D
The set 03D = D*\D may be called the Martin boundary of D. Note that
Oy depénds on a. Thus we have proved the following theorem.

THEOREM 5.1. For each he #4 (D) there exists a Borel measure y on 0y D
such that

(1) h)= | M(x,»)p(dy), xeD.
omD
It was shown by K. Bogdan (private communication) that the converse of
this theorem is not true in general. More precisely, he constructed a region D in
R? such that for some yed, D the function

M(x,y), xeD,

(12) h(x)={0 ) x¢D

is not a-harmonic in D. However, if we denote by dy D the set of those points
y€dy D for which the function h defined by (12) is a-harmonic in D, then we
have the following theorem.

THEOREM 5.2. Let h be a nonnegative Borel function on R* vanishing off D.
Then he #5 (D) iff there is a Borel measure i on 05 D such that

h(x)= [ M(x,y)pudy), xeD.
234D
For the proof of this theorem the following lemma is needed.

" -LEMMA 5.3. Let us assume that x,, x,€D and y, 66;‘, D..are givén. Let
r1, 75 be real numbers with 0 < r, < dist(x, D) and 0 < r, < dist (x,, D). Then

(13) M(s yO)* 81'1 (xl) = M(xl, yO)
if and only if ’
(14) M (-, yo) * &, (x2) = M (x3, yo)-

Proof of Lemma 5.3. Let us choose any sequence (y,) of points of D
convergent to y, in D* Let us consider the following formal equality:

(K, j) [ (lim M (z, y,) &, (x;—2)dz = lim [ {M (z, y,)) &, (x;—2)dz.
K n n K
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Assume that (13) holds. This is equivalent to (D, 1). Since M is nonnegative,
(D, 1), together with the pointwise convergence.of M (-, y,) to M (-, y,), implies
that M (-, y,) converges in I} (D\B(xy, 1), &, (X, —2z)dz) to M(:, yo). Since

&, (X —2) < Ce,,(x1—2) for ze D\(B(xy, r{)UB(x2, 0)),

with ¢ being a real number such that r, < ¢ < dist(x,, D°), also M (-, y,) con-
verges to M(-,y) in L (D\(B (%1, 1)U B(x3, @), &, (x2—2) dz). Hence
(D\(B(x1, r2) UB(x2, 0)), 2) is true.

On the other hand, by (9) and the bounded convergence theorem, we have
(B(x1, r2)UB(x3, @), 2). Combining

(D\(B(x1, 1)U B(x3, @), 2) and (B(xy, r)UB(x2,-0), 2),

we obtain (D, 2) which is equivalent to (14).

Proof of Theorem 5.2. Let u be any Borel measure on d;; D. Let us
define

omD
05 xXe Rd\D .

Then for 0 < r < dist(x, D°) we have by Fubini’s theorem

{I M(x, y)u(dy), xeD,
h(x) =

&xh(x) = [h(z)e,(x—z)dz = [( | M, y)u(dy)e(x—2)dz

- D oD

= | M, y)uy) = h().
052D
Hence he #% (D), and the “if” part of the theorem follows.

To prove the “only if” part of the theorem note that Lemma 5.3 and the
Fatou lemma imply that y e d, D\05; D if and only if for each xe D and each r,
0 < r < dist(x, D), we have M (-, y)*¢,(x) < M(x, y). Now, let h be any ele-
ment of #%(D). By Theorem 5.1 there exists a Borel measure x4 on 0, D such
that we-have (11). Let us fix xeD and 7, 0 < r < dist(x, D°). Tflen we have

0=h@—-(hse)@=(] + [ )M »)-[ME, )& x—2)dz] p(dy)

omD OmD\onrD
= [ [M(x, )—MC(, y)+e ()] pu@y).
M D\oaD

Since the last integrand is positive, we have u (0, D\83 D) = 0. Therefore, by
(11) we have

h(x) = _[ M(x, y).u(dy)’ xeD.

omD
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Now we are going to obtain, as for o = 2, the uniqueness in the Martin
representation. The main obstacle is the fact that a pointwise limit of a-har-
monic functions does not need to be a-harmonic. To overcome this we in-
troduce the following definition.

DEFINITION 5.4. Let u be a Borel measure on R? such that yu|, is ab-
solutely continuous with respect to the Lebesgue measure and its density u is
locally integrable. We say that y is a-harmonic on D if for every xe D and for
every positive number é such that B(x, ) = D the following equation holds:

u (X) = E* U (Xtmx,a))9 -

where
(15) Exu(Xta(x.a)) = ij (Xra(x.a)Edy) dﬂ(y) ’

= [es(x—y)u()dy+ | es(x—y)du(y).
D De

Note that we may put u = 0 on D°. Then every function fe #7§ (D) may be
considered to be an e-harmonic measure u such that pu|p. = 0. It is easy to
verify that the basic properties such as the Poisson integral representation and
the Harnack principle remain true also for x-harmonic measures. Since the
notion of a-harmonic measure is a natural extension of the notion of an
a-harmonic function, as for functions we will denote the set of these measures
by #*(D). We will also denote by s#7% (D) the set of the measures ue #*(D)
such that u|p. = 0. Moreover, from now on we will denote the densities of some
measures u, ve #*(D) by u and v, respectively.

Now, let € = s#5(D) and let A = {ue #E(D): u(xo) = 1}. Both ¥ and
A" are convex. Moreover, /£ is the intersection of ¥ with the hyperplane
{u: Ly =1}, where L is a linear functional defined as L(u) = u(x,).

To start with the next theorem we need some technical lemmas.

LEMMA 5.5. Let A be an open subset of R”. Let y be a measure on R°. Let
v be a measure which is absolutely continuous on A with respect to the Lebesgue
measure and let its density be given by the formula - -

g

(16) v(x)=E*p(X,,) = | P*(X.,edy)du(y), xeAd.

Moreover, let v=pu on A°. Then ve #*(A).

Proof. Let B be an open subset of 4 such that Be A. Let x € B. Hence, by
the strong Markov property and the Fubini theorem, we have

E*y(Xop) = E*(v(Xp); 8 < 14) + | P*(X iz €dy)dp(y)
AC

= E*(E**® u(X.,); 15 < 14)+ | P*(X.,€dy; 15 = 1) du()
Ac
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= E* | P*(X, edy; 1 < 14)du(y)+ I P*(X, edy; tg = T4)dp(y)

A€

f

Jﬂ([P"(Xchiy; 1 < t)]00,)du()+ | P*(X.,edy; 15 = 1)dn(y)

[ P(X. edy; 15 < 1) dv()+ | P*(X. €dy; 15 =10dv())
A Ae

= | P*(X,, edy)dv(y) = E*v(X.,) = v(x).
Ac L. L

This completes the proof.

We will call the measure v defined in Lemma 5.5 an a-harmonic extension
of u onto A.

LEMMA 5.6. Let é be a posztwe number. Let ¢ C*(R) be a nonnegatwe
function for which [ ¢ (x)dx = j md)(x) dx = 1. Define the kernel & as

)= f ¢ (e, () dr.

312
Then &2eC®(RY. Moreover, pes#*(D) iff for each xeD, for every
d < dist(x, dD) and for each function ¢ defined as above we have

u(x) = [ & (x—y)du(y).

Proof. The proof of the first part is easy. To prove the second part
consider the following two equations:

(17) “(x)=jsr(X—J’)u(J’)dy, r<é, Ix—yl >r,
and
/]
(18). u(x) = ; fo®e (x—y)u@)drdy = [l (x—y)u(y)dy.
a/2

If (17) holds, then (18) is an immediate consequence of the Fubini theorem.
Conversely, if (18) holds for every ¢ defined in our lemma, then we have

u(x) = f& (x—y)u(y)dy

for almost every re(d/2, ). Since &, (z) is a continuous function of r for r < |z],
we obtain (17). This completes the proof.

THEOREM 5.7. The set A" is compact and metrizable in the topology of weak
convergence of measures. The set € is a vector lattice (in the sense of the defini-

tion from [1]).

Proof Let u,e# for each neN. Let r be a positive number such that
B (xo, r)eD. By the Harnack principle, the functions u, are uniformly bounded
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on B(xg, r). Moreover, we have

I=u(x)=_ | &xo—y)du,().
D\B(x0,r)
Since D is compact, inf,.p &, (xo— ) > 0. Therefore, for each n, u,(D\B(xo, ) < ¢
for some constant c¢. This implies that the total masses of the measures y, are
uniformly bounded. Hence for some sequence n, we have p,, = u. By the Har-
nack principle, the densities u, are uniformly bounded on every compact set
AeD. Therefore, ¢ must be absolutely continuous on A with respect to the
Lebesgue measure and its density u is equal to lim. , u, . Let xeA. Since
u, are a-harmonic on D, by Lemma 5.6, for sufficiently small § > 0 we have

Uy (x) = &8 (x—y) dp, (9)-

The function f(x,y)=¢&l(x—y) is uniformly continuous on K'xD and
u(R% < o0, so u is continuous on D. Hence we obtain

lim u, () = () = [ (==3)du )

Clearly, u(x,) = 1. Hence, by Lemma 5.6, u is a-harmonic on D. Therefore we
have proved that every sequence chosen from " has a point of accumulation
which is also an element of #". This shows that # is compact. Since A is
a bounded set of measures on a compact and metrizable set, the weak conver-
gence topology on 4 is a metric one.

Now let us focus on the second part of the theorem. Let u,, p, € #%(D)
and let 4 = py v u,. uis the least measure that dominates both u; and u,. Since
U; and u, have densities on D, the same property holds for  and its density is
equal to u = u; vu,. For each neN, let v, be an a-harmonic extension of
u onto D,. Since u <y, +pu,, for each xeD, we have '

Un (JC) = Ex,u (tin) < E* U (thn) +E* Ha (ern) = (x) +uy (X)
Naturally, v, =u < u,+u, on D\D, and v,=pu on D°. Hence we obtain
1val < Jit1] +|12]. The similar arguments as in the first part of thetheorem show
that for some subsequence n, we have v,, = ve #§(D) and v = lim, _, ,, v, is the

density of v on D (with respect to the Lebesgue measure). Moreover, if U is an
open neighbourhood of dD, then we obtain

[ va)dx < | uy(x)dx+ [ uy(x)dx,

DnU DU DnU

and since u,, u, are integrable, the following statement is true:

Ve>0,3U>dD,Vm=n, [ v,(x)dx <e.

DnU
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But this implies that v =y on dD. Moreover, if xeD,, then
va(x) = E*u(X,, ) 2 E*pi(X,,) = wi(x), i=1,2.

Hence v > u; on each D,, so on D. Therefore, v dominates p, and u, on R‘
Now let v € #§ (D) be another upper bound for u; and u,. We have v/ 2 p and
v 2 u; vu, on D. Then for xeD, we get

v (x) = E*V(Xop,) 2 E* p(Xop,,) = 0n(x).

Hence v/ (x) = v(x), so v = v on D. Moreover, since v' > p and v = p.on 0D, we
see that v > v.on @D, so v > v on RY. Therefore, v is the least upper bound for
MUy, Ho.

The existence of the greatest lower bound can be proved analogously and
the vector part of the definition is immediate. The proof is now completed.

Next we have to identify the extreme points of .

DEFINITION 5.8. A measure pe s#*(D) is called minimal harmonic on D if
for every measure ve #* (D) such that v < u there exists a number ¢ for which
v =clL.

PROPOSITION 5.9. A measure p is an extreme point of A iff u is minimal
harmonic on D.

Proof. The proof is similar to that for o =2 (cf. [1]).
Now recall the fundamental Choquet theorem:

THEOREM 5.10. If a set A is convex, compact and metrizable, then for every
x€ A there exists a probability measure u supported on the extreme points of
A such that x is the barycenter of . If, in addition, A is the intersection of some
cone C with some hyperplane and C is a vector lattice, then u is unique.

Our sets 4 and ¥ satisfy the assumptions of this theorem. Now fix xe D.
Define a linear functional L, as L,(u) = u(x). By the Harnack principle,
lu(x)| < ¢ for each ueHA’, so L, is continuous. Therefore

u() = Le() = | LO)dprr 0) = [0 dpr (),
X *
where u, is a unique probability measure concentrated on the extreme points
of A '

We now turn back to a-harmonic functions. Recall that each function
ue #'5(D) is a density of some measure pue #°G (D) such that pl;p = 0. We may
assume that u(x,) = 1. So if B is a subset of D such that Be D and x e B, then
by the Fubini theorem

u(x) = E*u(X,p) = § E*o(X.) dug (v).
K
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But, from Definition 5.4 we obtain E*v(X.,) < v(x), so we get

u(x) < [ 00 o () = ().
b4
This implies that u, is concentrated on these measures v for which
E*v(X,,) = v(x). Hence we have proved that p, is concentrated on the
a-harmonic functions ve (D) which are minimal harmonic. But we also
have the following

ProrosiTiON 5.11. If a function f € 3§ (D) is minimal harmonic on D, then
f=MC(,) for some yedyD.

Proof Since Theorem 5.2 holds, the proof is similar to that for o = 2
(see [1]).

We denote by 6,,D the points yedyD for which the kernels M (-, y) are

minimal harmonic. The set 0, D is called the minimal Martin boundary. Thus
we have proved the formula

u(x) = { M(x, yyduy (M(x,y)), where X7 ={MC(,y): yed,D}.
H

Since M (-, y;) # M (*, y,) for y, # y,, we may assume that u, is a measure
concentrated on &, D. Therefore, we have proved the following

THEOREM 5.12 (the Martin representation for a-harmonic functions).
A function u is an element of #5 (D) iff there exists a unique measure u concen-
trated on 0,,D such that for every xeD

ux)= [ M, y)du®).

omD

We will end this paper showing an example of a set D for which

OmD # 0y D. The idea comes from K. Bogdan (private communication).

Let points x,, n > 1, be elements of a ray, which has its origin at x;.
Moreover, let dist(x,, x;) < dist(x,+1,x;) for each n, and let

d, = dist(B,, B,.1) >0, where B, = B(x,, r,), and ) (d,+2r,).< co. Then if

we set D = | ), B,, we obtain an open bounded subset of R’

Put x, = x, and embed D into D*. Since D* is compact, we can find some
subsequence of {x,} which converges to some y € 0, D as n - c0. From now on
we will denote by x; the elements of this subsequence. We will show that
y ¢0, D. Since M (-, x,) is a-harmonic on D\{x,}, for every x € D and sufficiently
small 4 >0 we have ‘

M(x, x;) = [e5(x—2z) M (z, x;) dz.

Hence it is enough to show that there exists a positive ¢ such that for each
open neighbourhood U of y there is a positive integer n such that x,e U and
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fuM(z, x;)dz > ¢. For if this condition holds, then the sequence of measures
with the densities (with respect to the Lebesgue measure) M (-, x;) is convergent
to an a-harmonic measure with a positive mass at y and with the density on
D equal to M (-, y) (see Theorem 5.7). Hence we will obtain the inequality

M(x, §) > [os(x—2) Mz, y) dz.

Let n be a natural number for which B, = U. We use the following es-
timation (see [7]):

WMW%

9o (5; Xn) 2 g5, (2, Xn) Z Ay Min (|z—x,,|”_°" |z — x4

where J(x) = dist(x, dB,) and A, is a constant which depends only on d and a.
In our case d(x,) =r,, 6(2) = r,—|z—x,|- Therefore,

8% (x,) %2 (z
gD(Z: xn) Z gB"(Z, x,,) =2 Al _"w"(_"_)_,_..aw(l
A |Z_xn|

3

where ,
/2 a2
A {z: 5 ()00 _ 1

l—x* T lz—x,tC

} - {Z: (rn_lz_xnl)alz rﬁ/z S lz_xnlu}'
Substituting |z—x,| =r,t we see that
A={z: 0<(1-tf?<*< 1} ={z: g <t <1},

where ¢, = (\/g —1)/2. Hence

(ra—lz =) r3dz

ng(Z, xn)dZ>A1 j d
U rnZ|z—xn| Ze0rn Iz_xnl
1 r"_rntalz 1 l_ta/2
=A2rﬁ/2j(trn)"_lg——a—)—}—rndt=Azr§j( ) dt = C, 1%,
&0 n &0
where. the constant C; does not depend on U. - -
- Now, since xoeB;, for n > 2 we have _
gp (X0, Xs) = E™gp(xo, X;p,) = f gp (X0, 2) P (X, €dz)
D\B,, .
Cy.ridz
< | ulxo, 2) P(X,, €dz) = — e ~ .
h D{[B,. on i;fs’; o —2|* (1% — 212 — 2Y? |xp— 2|

For i =1 we see that |x,—z| > d;+r, and we have

C,,,,,r;',‘dz
Xo— 27 (1% — 2> — 3" |y —2I*

|x6—z|$r1 |
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f Ciqridz
|xo—z]<r1 |x0 - zld_a (27‘,, dl + d%)alz Idl + ruld

ry d—1_a a+d
‘" ridg 1/1
SAz | = A3ri—— ) rF= 4,1,

3£Qd_ad°{+d 3 1a(d1> 4t

<

where the constant 4, does not depend on U.
If we assume that the sequence (d;);», is nonincreasing, then for i > 2 we
have |z—x,| = d;+r, and |z—x,| = d;, so '

. Cyorydz

Jxi—z|€r |xo_Z|d_“(|xn_Z|2_rﬁ)m/2 |x"_zld

Cd ra 1 d—‘:x 1a+d
< ol Bi SA ﬁ_ 5 ds
T Qrydi+ Yy P S AsT (d) (di) @atl

and, again, the constant 45 does not depend on U. Hence

w /1\a+d
gp (Xo, Xy) < Agty+Agrs Y, (E) .
i=2 \%i

If we set d; =2"" and r; = 47, then we obtain g (x,, x,) < C,r%, where

C, does not depend on U. Thus we have proved that for every positive integer
n such that B,eU,

(M, x)dz = foone, x)dz (0
U

dop (xo, X,,)
| which we wanted to show.

Remark. If we put D’ = D\U,. {x,}, then the above calculations show
é that there exists a sequence of a-harmonic functions on D’ which is convergent
' on D' and its limit is not a-harmonic on D'.
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