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Abstract. We prove a contraction principle for vector-valued
martingales of type

IS Aixilus < ¢l sup A«Aonhuzmxanm (1<p <o),
i=1

<isn

where X is a Banach space with elements x;, ..., x,, (4)f=; = L, (L, P)
a martingale difference sequence belonging to a certain class,
(H)?=1 = L, (M, v) a sequence of independent and symmetric random
variables exponential in a certain sense, and A4; operators mapping
each 4; into a non-negative random variable. Moreover, special opera-
tors A, are discussed and an application to Banach spaces of Radema-
cher type a (1 < o < 2) is given.
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INTRODUCTION

For vector-valued random variables we relate the property martingale
difference sequence to the property independent and symmetric. This.is done by
the consideration of inequalities of type

n

! n
O Z Ay <ll sup A, | X Hoxllyy (1<p <o),
i P Sisn i=1

where X is a Banach space with elements x,, ..., x,, (4)}=1 = L{ (2, P) a mar-
tingale difference sequence belonging to a certain class, (H;)}-; = L; (M, v)
a sequence of independent and symmetric random variables, and A4; operators
mapping each A; into a non-negative random variable. Our interest in inequali-
ties of form (1) comes from the following two aspects. First, they extend the
classical contraction principle to the martingale setting. The classical contrac-
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tion principle corresponds to the case where 4,4, ..., 4, are independent and of
mean zero, H,, ..., H, are the Rademacher variables, and A4;(4;) = |4,]. Sec-
ondly, in Corollary 7.2 these inequalities lead us to martingale inequalities in
Banach spaces having type o, which extend the defining inequality from Defini-
tion 7.1, in which the Rademacher variables are involved. Herewith we want to
indicate a way for further applications for inequalities of type (1).

Let us recall known results with respect to (1). Assume that I:= {0, ..., N}
with N >1orI:={0,1, 2, ...} and that (%), is a filtration on a probability
space [Q, %, P] such that 9, =% = \/4r %:. We let

M (@)= = (e = L1 (Q, @, P) adapted | fy =0,
fi=E(f,1%) as. for kel and some f,eL,(Q2, ¥4, P)},

P ((gk)keI):= {fes ((gk)kez) | (dfil1,ker is predictable}

with dfy:=fi—fi-1 for k = 1 and dfy:=f,. The sequence (h)i=¢ = L, [0, 1)
stands for the Haar functions

ho:= X{0,1)> hy:= Xro,1/2) — X[1/2,1)s hz:= Xio,1/4)— X11/4,1/2)s
normalized in L, [0, 1), ry, 75, ...€ L, [0, 1) for the Rademacher variables
r; .= hzi-l +---+h2i_1,

the sequence gy, g,, ... for independent standard Gaussian variables, and
Ga1> Ga2s --- from Ly (M, v) with 2 < a < oo for independent random variables
distributed like

V(Guy > A) = xaofexp(—lifl“)df for AeR, where x,:=(]exp(—|¢%)d&)~t.
A R

The known cases in which (1) is satisfied can be listed as follows:

(Hy, ..., Hy)) | 4; =), df; with A;(4)(w)

@ [ (1esm) | fed(@Di=0) - 4i()
(b) (ga.l R ga,n) f eP ((gk)i\’: 0) - .supk {/E é’}:’n(w)

© @1, -5 9n) fe? ((gk)kN=O) A /zh |df, (w)|?
where 1 = 1/x+1/8,0 =1, < ... < 17, = N is any sequence of stopping times,

Ii:={1<k<N|Ti—1<k<Ti}’

and (¢f (w))f-; is a non-increasing rearrangement of (|xg,_, <x<zy @i (@))=1-
Statements (a) and (c) are proved in [9], statement (b) can be found in [8].
There is a basic difference in the proofs of (a) on the one hand, and (b) and
(c) on the other hand. In (a) an induction argument due to Kwapien and
Woyczynski is implicitly used, whereas (b) and (c) are based on majorizing

Dl
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measure type theorems due to Talagrand. The aim of this paper is the further
development of the method used in (a). This is done as follows:

(i) Our basic result is Theorem 3.4. It is based on extrapolation and on
Lemma 3.5, which contains the arguments of Kwapien and Woyczynski. Theo-
rem 3.4 allows variables H,, ..., H, on the right-hand side of (1) not necessarily
identically distributed (the results, mentioned above, use identically distributed
variables). Moreover, Theorem 3.4 provides an alternative approach to asser-
tions (b) and (c) which does not use deep majorizing measure type theorems
(see Corollary-6.6 and -the remark below).

(i1) The assumptions of Theorem 3.4 involve operators A4; defined on
martingales satisfying BM O} -L, estimates. In Theorems 4.7 and 5.3 (and im-
plicitly in Example 4.5) we extend the known examples of such operators. The
corresponding applications to Theorem 3.4 are given in Section 6.

(iii) In Section 7 we deduce a martingale inequality in Banach spaces
having the Rademacher type « (1 < « < 2) and relate this inequality to a corre-
sponding inequality in Banach spaces having a modulus of smoothness of
power type o.

1. SOME GENERAL NOTATION

Throughout this paper all Banach spaces and random variables are as-
sumed to be real. For a probability space [Q, 4, P] and a Banach space X we
let L¥(Q, 4, P) be the space of all Borel-measurable f:  — X such that there is
a closed separable linear subspace X, < X with P(feX,) =1, where

Lo(Q, %, P):= LE(Q, %, P)
and L$(Q,%,P):={feLly(Q,%,P)|f>0 as}.

Given a compatible couple of Banach spaces (X, X;) and 0 <# <1 we use

Ixllcxo,x sy = sUp t7"K(x, t; Xo, X;) for xeXo+X;,
0<t<mw
where, for t > 0,
K(x, t; Xo, X 1) :=inf {||[Xo|lx, +tlIx1llx, | X = Xo+x1, x;€ X;}

is the usual K-functional (see [1] for more information concerning the
K-functional and interpolation spaces). Moreover, we make the conventions
that inf@:= oo and that 4 ~_.B stands for cT'A<B<cAd if ¢>0 and
A, B = 0. Finally, we shall use the Khintchine—-Kahane inequality for the Ra-
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demacher variables stating that

) I roxlly ~all 2

rixi”Lx
i=1 2

for all Banach spaces X, n=1, 2, ..., elements x;, ..., x,6 X,and 0 < p < o0,
where ¢, > 0 depends on p only.

2. BMO-SPACES OF CADLAG PROCESSES

Her# we introduce the BMO-spaces we are going to exploit. For a com-
plete probability space [Q, &, P] we use T:= [0, cc) and a filtration (%)o <s<
such that, see [15], p. 3,

CY F=F,=\, %

(C2) %, contains all P-null sets of &,

(C3) #=(),.,Fu for teT.

DEeFINITION 2.1. (i) We let €L ((Fo)eer) be the set of all processes f = (fi)er
c Lo(Q, #, P) adapted to (#).er such that (f,(®))er is right continuous
and has finite left limits a.s. (i.e. f is cadldg) such that f, =0 and such that there
is some f,eLy(R2, #, P) with lim,,, f, = f, as.

(ii) For fe % ((F)er) and stopping times 0 < o <7< o0 we let

af; (60) :=ﬁ:(m)/\l(w)—fu(w)/\t(m)7 17‘1' = (of:)teTs and ft = oft'

(iii) A subset E € €% ((F)er) is closed under starting and stopping pro-
vided that °f*eE for all feE and all stopping times 0 < o <7< 0.

(iv) We let #((F)er) be the set of uniformly integrable martingales
f = (f;)teT from €% ((grt)teT)-

So, given f € % ((%).r) and a stopping time 7: @ — [0, o], we also have
f» and f;, which are unique as.

DerNITION 2.2. (i) Let 2 be the set of all increasing bijections
Y1, 0)—[1, 0) and Z <P the subset of all Y€ such that

YA+ +12yD+y@) for A, p>1.
(ii) Given Y2 we let

F()—1:= sup{f [ ()—111 4 = f A k=1, M=1,2,..}.
i=1 i=1

Obviously, ye€%. For a stopping time 7: Q2 — [0, c0] and f = (f)ere
€L (F)er) We use

ﬁ:— = X(t=oo}foo+ hm I:X(t<ao}x{loﬁt—1/n)v0]:
n—w
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where Q, is a set of measure one on which (fj),r is right continuous and has
finite left limits. The random variable £, _ is unique a.s. Moreover, given Be &
with P(B) > 0, we let Py be the normalized restriction of P to B, otherwise we’
set Pg:=0.

DEFINITION 2.3. Let fe €Y ((F)rer) and Y.
@ 1S liemo v = inf ¢, where the infimum is taken over all ¢ > 0 such that
for all stopping times 7: Q — [0, o] and Be %, one has

Py(|fo—fi-1 > 2) < exp(l —y(Afc)) for A=c.

@ 1Al B0}, = inf ¢, where the infimum is taken over all ¢ > 0 such that
for all stopping times 7: 2 — [0, co] and Be %, one has

Pp( sup |fi—fi-|> ) <exp(l—y(I/c) for A>c.
TEt< o0

For the classical notion of bounded mean oscillation for adapted cadlag
processes the reader is referred to [5], Chapters VI and VII. In [7] it is shown
that ¥ is the right tool to classify BMO,-spaces of adapted sequences. The
following assertion is proved in [7], Theorem 4.6, for the discrete time setting.
For the convenience of the reader we recall its proof for the continuous time
setting in the appendix.

THEOREM 2.4. For e P one has
() ||'||BM0*,7, = “'”BMO*lI, < 4'//—1 (3)”'”BM0',,-
(D) If Ifllssroz, =1, >0, u =1, and f*:= sup,r|fil, then
P(f*> i+ <etMWP(f* > J).
Besides the above theorem we shall use the relation
Lfe—fe-llwp < ”f“BMO’:;,a

where 7: Q - [0, o] is a stopping time and Yy eZ.

3. A GENERAL CONTRACTION PRINCIPLE

Throughout this section we assume that conditions (C1), (C2), and (C3) are
satisfied. Let us first summarize some assumptions needed in the formulation of
the main result, i.e. Theorem 3.4.

DEFRINITION 3.1. An operator 4: E — L3 (Q, &, P) satisfies property (S) (1)
with constant d > 0 provided that the following conditions are satisfied:

(81) ES 4% (F)er) is closed under starting and stopping.

(1) The symbol (S) should indicate an assumption related to stopping of cadlag processes.

7 — PAMS 20.1
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(S2) 14 (@ Loo,py < d1IAgllL 0.p for all geE and stopping times o.
(S3) For all 0 < A < oo and f eE there is a stopping time ¢ such that
(i) o=o0 as. on {Af <4}, (i) 1A N Lo@r < dA.

Although the above condition looks quite technical and somewhat ar-
tificial, it seems that this condition is a right one to guarantee the extrapolation
of a BMO-L,, estimate to an L,-L, estimate, needed in the proof of Theo-
rem 3.4. Moreover, this condition is satisfied in the situations relevant for our
purpose (see Lemma 6.3). The next definition we need is '

DEEINITION 3.2. For FeL¥(M, v) and ye9 let
IF||x
F|,:= s r-,
11y 15.‘3-1300 vl

Remark 33. First, note that [|F|l, < oo implies FeLX(M,v) for
1 <r < oo. The quantity |||, is often used because of the following:

(i) One has
inf{c > 0 | v(|F|| > 4) < exp(1—y (A/c)) for A > c} <e|lFll,

(a converse inequality fails to be true in general).

(ii) If there are a, f > 1 with oy (1) < ¥ (B4) for all 1> 1, then there is
a converse inequality: For example, by Lemma 3.7 one can see that
v(IF]l > 2) < e' ™% for 1> 1 implies that ||F|l, < c(y, a, f) < .

TaeOREM 3.4. Let Yy, ..., ¥,€9, Hy, ..., H,e Lo(M, v) be independent
and symmetric with

v(H| > ) =exp(1—y;(Av 1) for >0, and H;:=4y;'(3)H,.
Assume that Ay, ..., Ay M((F)er) 2 E - Lg (Q, F, P) satisfy property (S) with

constant d >0, that 0 =19 < 1; <... < 1, < 00 are stopping times, and that

([~ 'J”'||BM0* < [14; (Y N ewio.py fO" I<isn and feE.

Then the following holds:

(i) For all 1#69 there is a ¢ > 0 depending on d and only, such that for
f€E, elements x,, ..., x, of a Banach space X, and 1<p< oo one has

lsupll ¥ 0 f#3xlall, < ¥~ @) sup Al ‘f“)llL,,llz Hixil|,-

1<i<n

(ii) There is a ¢ >0 depending on d only, such that for feE, elements
X1, ..., X, Of a Banach space X, and 1 < p < oo one has

||SUP||Z O Tellelo, < epl] sup (- ‘f")IIL,,IIZ Hixipy

1<i<n
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Before we verify Theorem 3.4 some lemmas are needed. The first one
follows directly from the induction argument given by Kwapieni and Woyczyn-
ski in [12], Theorem 5.1.1.

LEMMA 3.5. Let 1<r<oo, let (%)-y be a [filtration, and let
(4)=, = L.(2, P) be adapted with respect to (%)i-,. Assume independent
Hy,...,H,eL, (M, v) and a Banach space X be such that for all 1 <i<n and
x, yeX one has

E(lx+4;yII" | 9:i-1) < Ellx+Hyll" as.

Then, for alll,(xil; .‘.., X, E_X , one has
E(|Y 4ix| | o) <E|Y, Hixy|" as.
i=1 i=1

LeMMA 3.6. Let €2 and Ae L, (Q, P) of mean zero. If for A = 1 one has
P(4] > J) < et ™V '

and if H@):=v¢ "1 (1+logt Y e Ly (0, 1], then

1 1 1
fllx+ 4yl dP < 5[] llx+cH (2) ylI" dt+ [ [Ix — cH () yII" dt}
Q2 0 (o]

for all 1 <r < o0, all elements x, y of a Banach space X, and c¢: =4y~ (3).

Proof. First we remark that [7], Lemma 4.4, implies (1) > A/c, for
some ¢y, >1 and all 1>1 so that ' ¥® <exp(1—(4/cy)) for 1> 1 and
AeL,(Q, #, P) as well as HeL,(0, 1].

(a) We show that

Zexp(l——d/(%v 1>> A1 < H{eH > A} = exp(l—t/t(—i:v 1)) for 2> 0.

Since
A
2exp| 1—y EVI <1 for A>=c, -

it remains to check that

2exp (1—:/1(%)) < exp(l—dz(%)) for A=c.

Setting po:= ¥~ *(1+log2) we get

l//<ﬂ>+log2 = |//<é>+¢(uo)—1 < ,/,<£+u0> < l,ll<&> for L>c¢,
c c c 2

which implies the desired estimate.
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(b) Now let A" be an independent copy of A. Then, for 1 >0,

P(ld—A41> A < ZP(IAI > %) Al Zexp<1—|,b(% v 1)) Al < [{cH > A}
and
fllx+4yll"dP < [ |Ix+(4—24)ylI" dP
2 2

1

! 1
< [J Whe-+-cH @) i+ s —cH () df];
° 0

B |

cf. [13], Lemma 4.6. &
The last lemma we need is Lemma 7.1 of [2]:
LemMA 3.7. Let f, ge L§ (2, #, P) and 0 < p < o0 be such that for some
B>1 and 6, ¢ >0 with e <1 one has
P(f>Pprl,g<ol)<eP(f>1) for all 1>0.

Then

B

<_—
11 < 50—

llgll5-

Proof of Theorem 34. For fixed 0<c< oo we introduce
U, VE-L;(Q,%,P) as

1<i<n

Uf @)= || 3, =@l snd V@)= sup A7)

The constant ¢ is introduced for convenience to define Uf (w) uniquely without
the closure f,,. Note that (fPer := (U (fDer € €L (Feer)-

(a) Let 7: Q —» [0, o] be a stopping time and Be %, of positive measure.
Then for 1 <7< o0 and 6:=1 AT, AC We obtain- - -

o

NS =f-l@en S fE—fE-lL@rs+ %=l 3.pm
< | fo—fo-llL.B.psy SUP 1%
i
n
+ ” 2 e = xi“Lx(B,PB) =:81+85>.
i=1 r

The first summand can be estimated via

n
Sl = ” Z Ximi-1<o<ty) [n_lf?_ﬁ_lf?—]“[‘r(plpn) sup ||x,||
i=1 i
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< sup | Y& =Y G| L SUP (X < SuP||t""lft’||muo';,,_ sup ||x|
i Yo

i i
n
< WVl || Z Hixll a0,y

To estimate S, we let %;:= %, ,and A;:= """ —"-1 fori=1,...,nand
obtain a martingale dlfference sequence (4;)f=, = L, (2, &, P) with respect to
(%):=,. Assuming B;_,e%;_, of positive measure, ||V (/)L a.pr < B and
A= 1, our assumption implies ||%-'(f c)’f||BMC.:~= < B and

Py, (B 144> ) = Py (B (S Yo~ ‘(f‘)n wod > 4) < exp(1—y,(2).
Applying Lemmas 3.6 and 3.5 yields

so that

(RE IS 7P o A e
(note that property (S) gives |V (fNirw@ry <4V L .p) and
o) 7%= £ lppey < (1+4d) ”é Aixl| x i IV licianr

(b) For the proof of assertion (i) we continue by dividing (3) by ¥ ! (r) and
by taking the supremum over 1 <r < oo so that, by Theorem 2.4 and Re-
mark 3.3,

1

K VIE)

U erllneoy < (U eerlzno,

<(1+d)e|| Z H, xi”,,, VS 1lLw2.p)-
i=1

~(c) For the proof of assertion (ii) we use |p(,1)':= 1+10g}t Fa_nd obtain
from (3) (r = 1) and Theorem 2.4 '

1

® 4703)

IO erllaacoy < U Neerllsaro,

< +d)|| Z ﬁixi”LX(M,v) WV llzi2.mr-
i=1 !

(d) Now let us fix feE, 0 <d <1, and A > 0. Property (S) implies the
existence of stopping times g4, ..., ¢, such that

gi=oo as. on {4;(* ") <di} and ||A.-('(“"J’")Q‘)||Lm<g,p) < doA.
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Setting ¢ :=inf;—, . ,0; we get

o= as. on {Vf <A} and ||V rm < d*6A.
Hence, for g:= f?,
- sy U < U*g < U% as.,

where U*h(w):= sup,.; U(h)(w). Let v >0 be such that
v > 4![/_1(3)(1+d)e ” Z ﬁ,—xl—“'p
. . i=1 -
in the cdse of assertion (i) and v > 4y~ 1(3)(1 +d) IIZ:= . H: x{l Lx(u,v in the case
of assertion (ii). Inequalities (4) and (5) yield )
U (@ erllsrwos; < vd? 52,
so that, by Theorem 2.4,
P(U* > (1+d¥) v, Vf<64) < P(U*g > (1 +d%vl)
- 2, -
< exp (1 — (%))P(U*g > vd) = exp(1—y (1/8)) P(U*g > vl)
< exp(L—¥ (1/8) P(U*f > vA)

and

P(U* > (1+d* 4, vVf < 62) <exp(l — Y (1/9) P(U* > 2)
> 1 with

for A >0 and 0 < é < 1. Choosing
el *(14+d) <t and 1/6:=y '(xp) for 1 <p< o,
from Lemma 3.7 we derive that

1U* I, < 201 +d*) o = (k) 1V -

‘Exploiting ¢ " *(xp) <c ¢~ '(p) ([7], Lemma 44) and ¢y '(p)<ep if

W (1) = 1+log 4 ([7], Example 4.3) we arrive at our assertion by ¢ — oo chosen
in the beginning. = - S

g

4. OPERATORS WITH TAIL BEHAVIOUR exp(—y (4)), WHERE lim, _ A2/ (%) = 0

In [9], Lemma 3.5, it is shown that

(6) P(fsl > A=ty 1) < €XP(1—(A/cy))

for feP((%r-o) and A > cg, where 1 <f<2<a<oo, 1 =1/a+1/8, and
where I§ _ is the usual Lorenz sequence space. Therefore, in order to obtain
BMOj,-L,, estimates needed for Theorem 3.4, we introduce the following ope-
rators.
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DEerFINITION 4.1. Let y = (y)i-, be asequence with0 <y; <y, <...<
and lim;., 7, = ©
(i) We let
e = {(&z1 | IERZallr=:=sup sup pdin < w0},
Nz11<ksN

where (&§y)Y-, is a non-increasing rearrangement of (|&[)7-1.
(i) We let S,: Z((%)iz0)2E, — Lg (2, %, P) by given by

8, f(@): = |[(dfi (@)= ||

on {[I ) = < oo} and S, f(@):= 0 otherwise, where

= {f e P(@izo) | @i1€1” as}.
We are going to replace in Theorem 4.7 the quantity ||(dfi)r- 1l of (6) by
S, f with ye %% and exp(1—(4/cg)) of (6) by exp (1 —y(4/c)) with lpe@W (&3
and 923 are given by Definition 4.2). It turns out that there is a complete
interplay between %2 and &7 which will be described in Proposition 4.3,

4.1. The sets 9% and ¥%.

DeFINITION 4.2. () The set of all convex decreasing bijections
W: [1, 0) — (0, 1] is denoted by #". An increasing bijection ¥: [1, o0) - [1, o)
belongs to 2% provided that there is some We#  such that

12
(i) We let y=(p)iz1eF2if 1l<y; <y, <... <,
z 1 ® 1
Y =1, and ) —=o0.
k=1 Yk k=17k

. One easily sees that 9% 2. Now we describe the interplay between
W and %2, and therefore between 2% and &3.

_ ProposiTioN 4.3. (i) Let y = (7Jix1€ S and define W,: [1, o0) (0, 11 by
ko1 Eoq e
w,(1):=1, W;<1+ Y —) =1-) 5 for k=1,
1=1 "1 =171
and piecewise linear otherwise. Then W,e #".

(i) Let We#. Then there is a unique sequence Yy = (Vywli=1< (1, 00)
such that

ko1 kol
W(1+Z )= 2—2— for k= 1.
1=1 Yiw

2
Moreover, yye ¥1.
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(i) For W,, Woe#" with yy, = yw, and A= 1 one has
Wi@2A) s Wo(l) and W, (2) < Wi (A).
Proof. (1) The function W, is strictly decreasing and satisfies
lim,_, , W,(4) = 0. Moreover, W, is convex because of
(7) W, (xi) < (1 =0 W, (xi— 1)+ O W, (xp4 1)

for k=1,2,..., %o:=1, ;3= 1+Y,_ (1/3;) for I > 1, and 6,€(0, 1) chosen
such that x; = (1—0,)x,_; +0;x,+,1. Consequently, W,e #._
(i) Since f; — W (1 +f,) is convex, f; — 1 — 2 concave, hm,,ﬁw W(l +B;) =
=0, and limg, ., (1—p23) = — oo, there is exactly one 0 < f; < 1 such that
W(l+6)=1-p2.

Now assume that we have 0 < f4, ..., iz <1 such that
k k
W(1+ Y ﬁ;) =1-3 Bt
=1 =1

Using the argument from the first step we find exactly one 0 < f,+1 < 1 such
that this equality is satisfied for k+ 1 instead of for k. Setting y, » := 1/B; we
have found the unique sequence yy. It remains to show that yy € 7. Since
W is convex, one can deduce from (7) with y; 5 instead of y; in the definition of
the x; and W instead of W, the inequality y, » < yx+1,w- Finally, we verify that

@ '1
— = 0.
k=1 YeWw
Assuming
o0
o= — < 00
k=17kW

and observing that

' k+1 - -
' Vk+"1,W|: (1+ > ) (1+ > )] —0 =~as k— o
” =1 YLw =1MLw Vk+1,W .

we obtain a contradiction to the fact that there is some ¢ > 0 such that for all
1 <a<b<o one has

W (b)— W(a)
b—a

(iii) Let y; = y;w, = yjw, and (x)2o be given as in the proof of (i). As-
suming A > 1 with x;_; <24 < x; for some [ > 1, we can conclude

Wi (22) < Wi (x-1) = Wa(x-1) S Wa (x/2) S W, (4). =
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DERINITION 4.4. The pair (i, 7)€ 2% x #2 is called related provided that
for y(4) = A2/W(J) one has yy =y, where yy is the sequence from Proposi-
tion 4.3 (ii).

ExXAMPLE 4.5. Let 1 < f<2<a<o0,1=1/p+1/a,ucR, and A, B> 0.
Define

Yei=kk' [A+logk]* and Y,,(2):=A"[1+B tlogA]™ for A>1
with &% :=Y " k™ 2[A+logk] . Then one has the following:
(1) y: —(yk)k 1€F} and Y, ,€ D% for A, B> c(a, u) > 0. ] ’
@) If 4, B c(a, u) >0 and if YyeD?% and y are related, then i
Y(A) S Youlcd)  and  You(d) < Y(cd)
for A= 1, where ¢ = 1 depends on a,u, A, and B only.

Proof. (i) follows from a simple computation. For example, for ye #2
one can check the monotonicity of the function t — t'#[ A +logt]* for t > 1.

(ii) Since for he 23 and A, u > 1 one has p?h(A) < h(ud), it suffices to
show that

V() ~Y.u(d) for 1>1 and some ¢’ 2= 1,

or
¥ () ¥ ()
8 0 < inf < su <
( ) AZ o '/’au('l) }.>}.po'/’au("l')
for some Aq > 1. Setting x;:= 1+Zl ((1/y) for k> 1 it is known that
kl/a © 1 kl—(Z]’ﬁ)
~y— d — NITTTTTT T
MU flogh]r l=§!-1%2 “[1+logk]*
where d > 1 depends on B, u, and A only. Hence
x2 k**/[1+logk]**
Vo) = Lt e =

W( D LK@ +logk]™
(notg tha_t W(xk) = l—zl=1(1/’“2) = Zl=k+1(1/ylz)) and, for Xi <A Xk+1s
L _ktl ¥ Y@ ¥Gued) 0 K )

ﬁ%mmeMomm e )

Moreover, there are koe{1,2,...} and d' > 1, both depending at most on
o, u, B, and d such that

1 k k k

—< < <
d, 'l’ d kl/fl l/’a.u(xk) lp 1 k1/¢
“\[1+logk]* “\d[1+logk]*

for k > ko. Hence we have (8) and are done. =

<d
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106 S. Geiss

Remark 4.6. Let y and ¥, , be from Example 4.5 (ii) and take symmetric
iid. Hy, ..., H,eLy(M, v) and symmetric iid. HYY, ..., Hi*e Ly (M, v) with

V(H{| > ) =e""¥" and v(HPY > 2) = exp(l—y..2)

! for A > 1. Then it can be easily seen that

n n
IS Hoxllye ~ell S, Hexlly for 1< <o,
i=1 4 i=1 4

where ¢ > 0 is taken from Example 4.5 (ii).

42, The tail behavmur generated by the operators S,. In the sequel we use
the Lebesgue measure || on [0, 1) and the dyadic o- algebras on [0, 1) given by

e 0]

g = (0,00,1)}, ¥ :=0{r,....n}, and FY:=)\/ gPd

k=0
where (r)i>; =L, [0, 1) is the sequence of Rademacher functions.

THEOREM 4.7. There exists an absolute constant ¢ = 1 such that for all
related pairs (Y, y)e D% x % the following is satisfied:

i (i) For feE,cP(%J)o) one has

| P(fol > A1ISyf o) < exp(1=¥ (30)  for 4>

| (i) For fo:=Y,  (/v)eLi[0, 1) and f:=(E(fx| gdy“d))k , One has
\ S,f(s)=1 for se[0,1) and |{|fl>A}| = "D for A>c.

Proof. (i) Because of fy — f,, with respect to the L;-norm and because of
1S, Ml < IS, fllz,, it is sufficient to prove the ﬁrst assertion for fV with

N > 1 instead of for f itself. For &, = &, > >0 and 4> 1 we first
show that

©) K((fk)lly=1, Y (A)Y2; 1, lg) < 34 sup &

i 1<k<N

By an extreme point argument it is enough to consider y,& =1 for
~k=1,...,N. Since the case Zk L) < Ais trivial (here we obtain

I(EDR- l[l,n < A), we consider Zk (/79> 1 and choose 1 < NO < N with

No 1 No+1 1
kzl P kzl E

We obtain

¥ No 1 ® 1
1//(1)("=%+1 V—l%) ( +k21 'J’k)(k go:ﬂ 'E)

; (i3 (i 8 D)0 Y v can
f k=1"7k =17k k=1"Vk
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so that y (1)/? (Zk No+1 ék)”z < 2A. Since also

No
Z &= ) (<4,
k=1 k=1
inequality (9) follows by using the decomposition

(ék)llcv=1 = (4:1’ LRT iko’ Oa L) 0)+(0! LS 0; éka+la LR EN)

Now, according to Theorem 4.1 in [11] (see also the proof of Lemma 3.5 in [9])
one has -

(10) o A(lfwl >c HK (@@= 15 15 B, B)|wco,m) < exp(1—p?)
for u > 1 and f €2 (%)i=o), where ¢ > 0 is an absolute constant. Combining
(10) for p =y (A)Y? with

K ((df(@)=1, s B, B) = K((df ¥ (@)=1, w5 1, BB),

where (dfF (w))i=1 is a non-increasing rearrangement of (dfy (@)=, and (9)
yields assertion (i).

(ii) We apply [13], Lemma 4.9, and get an absolute constant ¢ > 1 such
that for 4 > ¢ with

n— 11
<A< Z— and ne{2,3,...}
k= 1')’k =17k

a0

we can conclude that

{k m”} Ie""( z,f: ) %‘”‘p( (1+§':i,:1))

1 A2 1 A2 1
= ECXP(_Cm) = Eexp(—c W(2/1)) = iexp(—zw(ﬂ))

> exp(1—y(244))
with d:=./1+c/4+log2 (we use d*y(24) < Y(2d2) in the last step). =

Ty

e

5. OPERATORS WITH TAIL BEHAVIOUR exp(—y (4)), WHERE y () = A* AND ae[1,2)

The situation of this section differs basically from the situation of Sec-
tion 4 which can be illustrated by the following example:

EXAMPLE 5.1. For some N =1 let F: RY — [0, o0) be Borel-measurable
with

F(y, ... SN)=F(01¢1,..-, O0n&y)  for all Oke{_la 1}-

Let E be the set of mean-zero dyadic martingales f = (fi)i=o = L{[0, 1) and
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assume that
(11) A:E-Lg[0,1), given by Af(w):=F(df1(®), ..., dfy(w)),

satisfies for some fixed 0 < p < oo and all A =1 the tail estimate

(12) (Al > A4S llzaro.n}| < 1/27.

Then there is a c, > 0, depending on p only, such that for all fe E one has
(13) l{lfzvl > 2, I Af ooy} < 2€xp(—4%/2).

Proof For a = (Y=, eR" and f@:= (Zl L Xu<h oc,r,) eE we obtain
by Khintchine-Kahane’s inequality for the Rademacher functlons

”‘11”12 Cp“f )”L,, wl0,1) & Cp”Af( )Ile[o 1=y Flay, ..., oy).
But now Azuma’s inequality (see [4], [16], [10]) implies for all f € E and all
A>0

KUl > AcplIAF N0l < [ > AIARZ iy [, 0.0,}] < 2€xD(—22/2). =

Consequently, the ‘mild’ tail behaviour of (12) already implies the
sub-Gaussian tail behaviour of (13). This means, in order to find operators
which describe the tail behaviour exp(— (%)), where Y (1) = 1* and « < 2, in
a proper way we have to look for operators which are not generated as in (11).

DEeFINITION 5.2. For 6 = (6,)% with 6,e{—1, 1} and 2 < 9 € o we let
. M(G)=0) 2 Ego — Lo (2, %, P)
be given by

(Seof)@):=sup| Y Ok df ()|

N>1 k=1

on {sup [ZkN_ Oy k'e dfy| < oo} and (S, f)}(w):=0 otherwise, where
Nz1

= {feM(%)i=o) lsup|2 O ke dfy| < oo as}

N1 k=1 ,
THEOREM 53. Let 1 <a<o<2<go<pf< oo with 1=1/oc+1/ﬁ' and
1=1/c+1/gor 1=a=0¢ and g = f = 0. '
(i) There is some c > O depending on ¢ and B only, such that for all
6e{—1,1}N and feE,q one has
P(fol > ANlSq fllo} < exp(1—(Afcf) for A=c.
(ii) For f:=(E( fmlfﬁdy"d))k o and O :=(—=1)* with

formres 5 en 1

+ry

] Ll [0: 1)
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one has
I1Se0flle, <2 and  [{Ifal > 4} = fexp(—=1°) for 420
For the proof of Theorem 5.3 the following lemmas are used.

LEMMA 5.4. There is some ¢ >0 such that for 2<r< o and
fe M (%)R-o) one has

@Rl < e/rliflle,  and L < el

where (&= 1||uN(9)'= sup; <pen|01 &1 +...+ 0, & and 0 = (OR= re{—1, l}N

Proof One has to use Theorem IL1.1 of [6], Theorem 3.1 of [3], and
Doob’s maximal inequality.

LEMMA 5.5. For 0 <n <1, 0 =0)-,e{—1, 1}¥, and x = (&), €RY
one has

sup k=210, & . 40 &l < ER= 1llay.vx @,
1<k<N

Proof We fix 1 < ko < N and set t,:= kg V2. For x = y+2z we obtain
ko CT™2101 Ex 4.+ 0y Eiol < ko TR Iyl + ko T2 zllon 0y
= to " [yl + to llzllon )]
Hence kg™ ™20, & +...+ 04, Eol < to"K(x, to; 13, 05, (0)). =

LEMMA 56. For 0<d<e<1, N> 1, and (£)¥-1€R" one has

sup [17% +...+k7 &I <c sup k7°|E+.. .+ &,
N

where ¢ > 0 depends on 5 and & only.

"Proof We let o:=0 and #;:= ¢, +...+ & for 1 <k < N. Hence we
have to show that

Tosup |17 —No) .. AR TE i —m—1) S ¢ sup K70 nyl.
k=1,....,N k=1,..., N

This can be rewritten as
sup |k -y [k—1) 7=k T +...+m [17°=277] < ¢ sup k™°nl.
k=1,..., N k=1,...,N
To check this inequality it remains to consider #, = k® so that we are done. =
The last lemma we need is known and completely standard.

LeEMMA 5.7. Let 1 € a < oo and feL§(Q, P) such that for all 2 <r < ©
one has || fll., < \/— r. Then there is some constant ¢ > 0, depending on o only,
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such that
P(f >2) <exp(l—(i/cy) for Azc.

Proof of Theorem 5.3. (i) For the same reason as in the proof of
Theorem 4.7 (i) we can replace f by f" for Ne{1,2,...}. Thecase l =a=g¢
and ¢ = B = oo follows directly from the second inequality of Lemma 5.4 and
Lemma 5.7. To consider thecase l <a <o <2<g<fi<oweletd<py<l1
with (1—»)/2 = 1/B. Then, for 2 <r < oo from Lemmas 5.6, 5.5, and 5.4 one
gets, for a martingale (M )f-,< L, (2, P) with M, =0,

117480, dM +...+ N1 O dMyl,

.....

=C(5_5)” sup k_(l_”)lzwldM1+...+0dekl”L
k=1,..,N 4

< ¢5.6) @M= sllaz o @nm, ||y, < €560 [IIEM= 1llly T NEMR- 1112 .
1 —

< ¢(5.6) ””(de)Lﬂlllgl L "”||(de)112]=1“|:§(9) L

< €(5.6)C(5.4) p1=miztn Myl = ¢s.6) C(5.4)i/; | M pllg,..

Consequently, || fxll., < ¢s.6) c(5.4]{/;”SQ,9fN”Lr for 2 <r < o so that we can
use Lemma 5.7 and finish the proof of assertion (i).

(ii) One observes for ke{l,2,...} and (k—1)"" < A < k' that
l{‘fwl > A}l = I{lfoo' > kl/c}l 2{ri=...=n41 =114 =—1}
=1/2*2> Lexp(—41°). m

ProBLEM 5.8. Is there a way to remove the gap between assertions (i) and
(i) of Theorem 5.3?

6. SPECIAL CASES OF THEOREM 34 T
In this section we replace in Theorem 3.4 the abstract operators A4; by the
concrete operators examined in Sections 4 and 5.

DEFINITION 6.1. Let (%,).r be a filtration on [Q2, &, P] satisfying (C1),
(C2), and (C3) such that for t;;:=i—1/(k+1) with i=1,2,... and
k=0,1,2,... one has

(14) :975 = grt whenever ti,k <t < ti,k+1 and g’—, = \/ 5‘7[.

[LESES)

(i) We let 2((F)er) be the set of fe.H((F)er) such that
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@) Vfer— foorodl 18 ﬁilk_l-measurable for i, k=1,

() fi(w) = fi(w) for veQ and t;; <s<t <ty withi>1and k>0.

(i) Let I':=(9)2, 3, @:= (0N, = (69, 69, .. )2 ={-1, 1},
and 2 < ¢ < . Given f€P((F).r), we define

'%:f(w) = ”(f!‘tk (CO) _.f;i,k— 1 (w));l 1“ly(i),w .
Froo f(@):=sup | Y. XKL f,,, (@)= fioner (@)]],

Nz1 k=1

A sup [|Z 0P KM [ f, (@)= frn (@)]]

+(N + 1)1/0 |ﬁi,N+ 1 ((D) - ﬁi,N ((D)l] s

where we set these operators zero on those @ for which the corresponding
right-hand sides are infinite, and the ranges of definition

éﬂl‘ = {fe'@((%)teT) | sup|I(ﬁt,k_ﬁi,k-1)l:uﬁ1”17(")’“3 < 00 a.s.},

izl
N
Boo:={f€P(Fder) | sUP | Y. 0K Sy, — fros J| < 0 25}
i,Nz21 k=1

Remark 6.2. In the definition above condition (C3) automatically fol-
lows from assumption (14).

LemMA 6.3. (1) Sﬁ_,,s(.-)f(w) < *‘%-9“) f(CO) < 3:992‘00') f(CD)
(i) The operators

%(1) (g’r — Lo (.Q P) and *%,g(i)l éag,@ - L{,' (Q, ﬁ, P)

satisfy property (S) with constant 1.

Proof. (i) and properties (S1) and (S2) of (ii) are standard. For example, to
check that |°f5,, —f%.._. is %, ,-measurable for stopping times ¢ <t and
f€P(F)er) one can use

af!‘k dfhk 1 = Xo<nnse [f;. k—ﬁlk 1]

To show (S3) of (i) we fix i>1,0 <A< o0, and f from the correspondmg
range of definition. Then we can use the stopping time

G(w):=inf{t;; | k=0, L (f“’k+')(w) > i}

e

in the first case and
d(@):=inf{t;y | k 2 0, (*Fpe0) (f ) (@) > A}

in the second case, where inf@ := oo (note that Fu (f****) and (*%, gw) (f****?)
are &, -measurable). m
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CoROLLARY 6.4. For all y€PD there is a constant ¢ >0 such that for
W21 =2%, T =02, <2, where §; and y® are related, feép
1 <p < oo, and for all elements x, ..., x, of a Banach space X one has

nsupnz C= x4, < ™ @)l sup samc*lf*)uL,,nz H;xi|ly»

1<i€n

where Hy, ..., Hye Li(M, v) are independent and symmetric and satisfy
(15) v(H| > ) =exp(l—y;(2) for 1> 1. ‘

COROLLARY 6.5 Let l <a<2<g<f < oo with 1 -1/ac+l/,8 ora=1
and ¢ = ﬂ 0. Then there is a constant ¢ > 0, depending on g and f only, such
that for all @ = (02, < {—1, 1}, feé&,q, 1 < p < 0, and for all elements
X1, ..., X, of @ Banach space X one has

[lsup ]l X 02l ll;, < cpll sup Fpow (72, | z Hyo x| e
teT i=1 1<€i<n
where Hy,, ..., H,,€ L (M, v) are independent and symmetric and satisfy
(16) V(H;ol > A) =exp(1—4%) for A1

Proof of Corollaries 6.4 and 6.5. Fix ie{l, ..., n}, a stopping time 7,
Be #; of positive measure, and Se{%w, *%om0}. Let ¢ = 1 be the constant
from Theorem 4.7 if § = %, and from Theorem 5.3 (i) if § = *, g . First we

observe that % \/qu,/, implies that
17 Iim f,= f; as. and in the L,-norm.
t—i<i
Moreover,
(18) 1S C Mewiapy < IS C™ YNy HIS O NLoirry
' <28 Yz

and , .

1= e Nemirs < ISC Y Moy
where we also use (17). Then, for 4> 1,
PB(F—lfio = | > A3¢ “S(E_lfi)”Lm(g,P))
S Pp(FYL—"Y > A2¢|lS (iﬁlfi)”Lm(S?,P))
= PB(Ifi_f[(i—nvz]Ail > A2c||S( lfi)”Lw(Q.P})
=Pp(r < i_l)PBn{t<i—I}(Iﬁ_fi'-1| > Azc“S(i_lfi)”Lm(Q,P))

+ Z Pp(tin €T <tig+1) PBn{t;,k$r<t(,k+1} (lfz _fn-,k{ > 12| (i—lfi)”Lm(g,m)-

k=0
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Because of
Bﬂ{r<i—1}€.ﬂfri_1 and Bh{ti'kS‘r<ti,k+1}Gg§i_k

and because of (17) and (18) we can apply Theorems 4.7 and 5.3 (to ~'f* re-
stricted to Bn{t <i—1}e%; and "“*f* restricted to BN {t; < T < tjy+1}€F, )
to derive

PB(|i_1f' =l > A3ca. 7)”%(”( _lf )||L,,(9P)) exp(l ¥ ('1))

and

PB(FV' —i=if |> A3¢5.3) 1S pew (l 1f Meoo. P)) exp(l /V)
Consequently, by Theorem 2.4,

I woy, < 4+/311 o, < 12+/3 cen 150 (Mo

and
1P~ Nsmot < 12107 lmo,, < 36 ¢5.3)F S0 (7 Miwia,py

with y@ (1) := 2% where we used ¥; 1 (3) < \/3 and (Yy“)~1(3) < 3. Now we
can apply Lemma 6.3 (ii), Theorem 3.4 with 7, := i (observe that H; < 4./3 H,
in the case of Corollary 6.4 and H;, < 12 H; , in the case of Corollary 6.5), and
Lemma 6.3 (i). =

In particular, we obtain statement (b) from the table in the Introduction.

COROLLARY 6.6. Let 1 <f<2<a<oo with 1 =1/a+1/ and Ye2.
Then there is a constant ¢ >0 depending on « and Y only, such that for
feP(%IR=0), 1 < p < 0, elements x,, ..., X, of a Banach space X, and stop-
ping times 0 =1 <1, <...<1,= N one has

Hmnz[z dfi] xillyll,, < WIWWmMMmmM%m

O<ks€SN i= I=t3-1+1 1<i<n
where y:= (kYP)2.y, S, is defined as in Definition 4.1, and
) i 1T . — N 7 —,
= (Yo y <k<en Pidk=0-

Proof. First we complete the filtration (4,)}-, and apply Lemma B.1 to
come formally in the continuous time setting. Then we apply Corollary 6.4,
Example 4.5, Remark 4.6, and

exp(—(cx %) < v(goyl > 4) for A> 4, >0 and some c, > 0.

In the same way there is an approach to statement (c), mentioned in the
table of the Introduction, where we have to replace Theorem 4.7 by [9] (Lem-
ma 3.5, p = q = 2). Now we check that Corollary 6.4 is optimal whereas Corol-
lary 6.5 is ‘nearly’ optimal. This is done in the following way.

8 — PAMS 20.1
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Using (4992, introduced in Section 4.2 we equip

Q.= x [0,1) with P& := X ||,

i=1 i=1

the product measure of the Lebesgue measure, and with the filtration

o0
ygyad'o = ggyad X[ X g%yad] for tl,k Ls< tl,k+19
j=2
i—1 0
ygyad'-o = [ X ggad] X g?‘yad X [ X ggyad] for tl s S < ti k+1
- j=1 j=i+1
and i> 2, and F¥0 .- x;_"; , 93 This filtration can be completed to
(F%5<i<0 S0 that conditions (C1), (C2), (C3), and (14) are satisfied. The
corresponding sets &y and &, ¢ from Definition 6.1 are denoted by #¢*¢ and
&3, respectively. .
Now Theorem 4.7 implies

PROPOSITION 6.7. Let (V)2 = D% and I = ()&, <= %2 be such that
Y; and y® are related. For i> 1, k>0, and s = (s)2, eQd’““ we let

- T x TI(S,)
4;:=Y, ymeLl[O 1) and f,,(9):= Z A;(s )+Z 0
ji=1
where sums of type Zoz are treated as zero, and complete this to a cadlag
process f = (f)er such that f"e &P* forn =1, 2, ... Then the following holds:
@) o YY) =1 for all seQ¥,

(i) (fi—fi-1)21 is a sequence of independent and symmetric random var-
iables.

(iii) If A > 0 and x := sup;» s exp (¥;(c.7) — 1) < o, where ci4.7) = 1 is the

-constant from Theorem 4.7, then one has

P (1fifl >

4.7)

> > %exp(l —¥i(Av1)).

In the same way Theorem 5.3 gives

PROPOSITION 6.8. Assume that 1 <0 <2 <9 < oo with 1 =1/p+1/c and
09 :=((—1)2y. For i=1, k>3, and s = (s)2 1€ Q¥ we let

@ i N |
4 :=r1[2_1/9r2+ Y jTer; H I: + :HEL1[0, 1),

j=3 =

i—1 i—1
f;i,o(s) = ﬁi,l(s):= Z A(SJ')’ f;i,z (S):= Z A(Si)+r1 (Si)z_l/a ¥ (Si)a
ji=1 j=1
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and

Fua(8) 1= Z Al (S")[ “Uers (s)+ Zl e ry(s) H [Hr (Sl)ﬂ,

where the sums Z are treated as zero, and complete this to a cadlag process
f=(f)er such that fre8%8 for n=1,2,... Then the following holds:

(i) Fypoo (T (s) €2 for all se Q™
(i) (fi—fi- 1) ~1 is a sequence of independent and symmetric random vanables
(iiiy For A >0 and 1=1/c+1/o one has

1
P fi=fimal+1 > 2) > —exp (1-47).

Let (4)0=1 < Lo (R, P) and (H;)-; = Lo(M, v) be sequences of indepen-
dent and symmetric random variables such that

V(H| > 2) <xP(44 > 4)
for some x> 1 and all 4> 0. Then Lemma 4.6 of [13] gives

n n
13 Huxil e <el] X dixi
i=1 ® i=1 »

for all Banach spaces X with elements x, ..., x, and all 1 < p < co. Hence, for
the process f considered in Proposition 6.7 and H; as in (15) we obtain

(19) lisup o~ YN, <1 and ” Y Hixi”Lx < C(4.7)'<“ Y Lfi—fi-1] xi”Lx
iz1 i=1 P i=1 P
for all 1 < p < co0. Analogously, for the process f considered in Proposition 6.8
and-H;, as in (16) we obtain

”SuP*fg,a(‘) (i_lfi)”Lw <2 and || Z Hi,a xi”Lx < ¢ ” Z [f; _fi—— 1] xi||Lx~
iz1 i=1 - » i=1 wom P
In this way we obtain a converse statement to Corollary 6.4 and nearly a con-
verse statement to Corollary 6.5 (H;, is replaced by H,,).

Remark 6.9. One can take advantage from the operators %,» and
S,.0w in the factors of correction in Corollaries 6.4 and 6.5. For example, for
the process f from Proposition 6.7 in the case Y; = ¥, = ... or for the process
f from Proposition 6.8 one has, without the corresponding operators,

SUP” sup |fi—fi—1|||1.1 = .

nzl1 1<i<n
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The optimality of Corollary 6.4 can be expressed in a more elegant way. As
a direct consequence of (19) and Corollary 6.4 we obtain

COROLLARY 6.10. Let €2, n> 1, (Y)i-1 < D%, and (H)}—, <L, (M, v)
be independent and symmetric with
v(H{| > ) =exp(l—y;(2) for A=1

Then, for all elements xq, ..., x, of a Banach space X, one has

”Z Hixill; < cun e K”z Hix,, -

where ¢4 7) > 1 is taken from Theorem 4.7, k := sup; <; <. €xp (:(ck.)) —1), and
the constant cg4y)> 0 is taken from Corollary 6.4.

Note that for Yy €2 one has Y (A) <y (1) for 1> 1 and
IFlly < |IFllz for FeLg(M,v),

where the converse with some multiplicative constant is not true in general (for
instance, use ¥ (1):= \/I, F(t):=(1+logt™')*€L,(0, 1], Remark 3.3, and
W (4) = Afe from [7], Lemma 4.4).

ProBLEM 6.11. Is it possible to replace in Corollary 6.5 in the case
2 < g < f < o the variables H;, by H;,, where 1 = 1/o+1/0?

7. AN APPLICATION TO SPACES OF TYPE o

By means of Corollary 6.5 we demonstrate, in Corollary 7.2, how one can
apply the results from the previous sections. For this purpose we recall that
(M=o L,[0,1) is the normalized sequence of Haar functions and
(r)iz1 < L, [0, 1) the sequence of Rademacher functions. Moreover, we use
‘the operators &, 4m: &,¢ — Lg (2, #, P) from Section 6 for ¢ = w0

~ DeFmurioN 7.1. For 1 <a <2 a Banach space X is of_type o prov1ded
that there is a constant ¢ > 0 such that foralln=1, 2, ... and-x;, ..., x,€ X
one has :

IIZ rixilly < 2 i)

We let t,(X):=infc.

CoOROLLARY 7.2. For a Banach space X and 1 < a < 2 the following asser-
tions are equivalent:

(i) X is of type a
(ii) There is a constant c, >0 such that for all n=1,2,..., @ =
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=0y c{—1,1}", feboe, 1 <p< o0, and X4, ..., X,€X one has

||sup I z (1% llelle, < c2pl sup Foa (71N, (X Il
1<isn i=1
(iii) There is a constant cs > 0 such that for all n, N=1,2,..., all se-
quences of stopping times 0 = 1, < 7, < ...< 1, = N with respect to (F})i=o, all
£1, ..., EneR, and all xq, ..., x,€X one has

T

IS0 3 ahdsly<emp | 3 ahd, (3 5

i=1 k= n 1+1 1<i€n k=ti-1+1

Proof. (1) = (ii) follows from Corollary 6.5 and (with the notatlon of Co-
rollary 6.5)

” Z H;, xl'“z.{f < (.‘. ” Z riH;,y ® xi”arl,gf[o,l)dv (t))lla
i=1 i

< t(X)(§ Z |H;,1 @) %|* dv @) = ¢, (X) || H,, 1lle, (Z [Iil[%) 2=

Mi=1
(i) = (iii). We let 69 :=(1, 1,...) and apply Lemma B.1 with %, := %}
Hence we have c¢; < ¢
(iii) = (i). Taking N :=2"—1, 1;:=2'—1, and &;:=1 we get

sup | 3 &b, =1 and IIZ[ > ékhk]xlle—Ilanzlhx

1<i€n k=1-1+1 i=1l k=ti-1+1
Using (2) we obtain t,(X) < cc; with an absolute constant ¢ > 0. =

Remark 7.3. (i) In the same way as described in Remark 6.9 one can
take advantage from the factor ||sup; %y o0 (7Y i)”L,, in Corollary 7.2 (ii).

(i) The L,-norm on the left-hand side of the inequality in Corollary 7.2
(iii) can be replaced by any L,-norm with 1 < p < co. To relate this assertion to
Proposition 7.5 (ii) we have chosen the L,-norm.

- We conclude with Proposition 7.5 which provides a counterpart to Corol-
lary 7.2 in Banach spaces having an equivalent norm with a modulus 6f smooth-
ness of power type a. According to [14] those Banach spaces are charac-
terized by the following ‘martingale-type’ property:

DErFINITION 7.4. Given 1 < o < 2, a Banach space X is said to be of mar-
tingale-type « provided that there is a constant ¢ >0 such that for all
n=1,2,... and all martingale difference sequences (df}){—=; = LY one has

|| Z dfl, < z lafills ).

We let M —t,(X):=infc.
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ProPOSITION 7.5. For a Banach space X and 1 < o. € 2 the following asser-
tions are equivalent:

(i) X is of martingale-type a.

(i) There is a constant ¢, > 0 such that for all n, N=1,2,..., all se-
quences of stopping times 0 = 1y < 7, < ...< T, = N with respect to (¥ b=, all
..., EneR, and all x4, ..., x,€X one has

Ti

| Z [ Z Eihu] x”LX ca sup || Y Gl (X lxdlg)te.
i=1. k=ti-1+1 - 1<isn k=1;-1+1 i=1 -
Proof. (i) = (ii) follows from

Ti

[ =Z [k Z » &) xi“Lg: S M_ta(X)(_; “[k= ; .l &) xi”i;«)l/“

SM—t,(X) sup || Y &Ghl, (X Ixdlg)=.
i=1

) 1<i€n k=1-1+1
(i) = (i). Choosing N=n=2L—1 for L>1 and t;:=i we obtain

2i—-1

IIZ P> thIle—HZ Al ]
1 ”h ”L.,

I=1 i=21-

L 2t-1

cz(zuhu“,uxlux)”“cz le 2 hixi{fi )t

1= i=21-

so that we are done according to [14] (Theorem 3.1 and Proposition 2.4); note
that Z - 1h.ix are the martingale differences of a dyadic martingale. =

APPENDIX A. PROOF OF THEOREM 24

Given (f)r, We fix Q, < Q2 of measure one such that ( f )er has right-
-continuous paths with finite left limits on @, and f, € Lo (2, #, P) such that
fo =lim,, . f; a.s. Moreover, we fix a stopping time t: 2 — [0, oo] and Be %,
of positive measure. Now for v > 0 we define the stopping times

=inf{t > ||fi—fi-] > v}
and we can follow the proof of Theorem 4.6 in [7].
(@) If IIfIIBMo:,, =1,A>0, and u > 1, then we get
Py(sup|fi—fe-| > A+ 1) = Pp(@a+p < 00, @1 < 0)

t=t
< Py foss,—fe-| 2 A+ p, g < )

= PBn(g,q,<oo}(|fg;_+“—f;—l 2 A‘+:U')PB(QA < (X))
< PBh(g;,<oo}(|f¢‘ZA+p_j;—l 2 |for-—fi-|+ 1) Pplos < 0)
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< Pprgga<wo)(forsn— Jor-l = W) Prls < )

< el_“’(")PB(QA < oo) = el_"’(”)PB(SuP|f:—.ﬁ—| > 'l)

12z

For p; > 1 with = Z:‘:l u; the iteration gives

Py(sup |fi—fe-| > A+p) < [H exp (1= (u))] Ps(sup |fi—fe-| > A)

t=21 12t
so that assertion (ii) (t =0, B = Q) and ||*||smo3 = I|'llzmoy, of (i) follow.
(b) For ||f[[,,Mo‘,r =1L pu>u—e=2 BesQ,(Be#, was fixed above) we get

Py(suplfi=fe-l > ) < Pallfo,— firl > |
PB<lfw fil> g)+Ps(lfm—fe“I>§)

£ )
exp( (HT +P (lim |foo = fe+1m-1> 'g)

< exp(l |p<“—2w))+hm1nf PB(lfm_ﬁen"'l/")—l > g)

which implies
Ps(sup|fi~fi-| > 4) < 2exp(1—¥(u/2)) for u>2.

t2t

Applying the iteration argument carried out in (a) for M = 2 and e ~¥® replaced
by 2e!"V®2 we obtain for u = py +u, with g; > 2 and A > 0 the inequality

Ps(ﬁgglfx—ﬁ—l > A+u)
| < 2exp (1~ (41/2)) 2exp (1~ (12/2) Pa(sup| fi—fe-| > 7).
Now one checks that - B o
[2exp(1—¥ (/4)]* <exp(l—y (ufc) for u>ci= 4y~ 1)

and obtains the remaining part of assertion (i). =m

APPENDIX B. A RESCALING ARGUMENT

LemMma B.1. Let t;,:=i—1/(k+1) for i=1,2,... and k=0,1,2,...
Assume stopping times 0 = 1o <7y <... < 1, = N with respect to a filtration
(gk) =0 and feg’((gk)k 0) Let

JI'=g1‘u-1+k)Ari and ﬁ:=ﬁfi—l+k)AIi fOT tlk L<tip+1s ISlSn,
F=%,=%y and _f,:=f,"=fN for n<t < o0.
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Then the following holds:
() F#i=(Vus:Fufor al 0<t < o0 and F,,, = F, for all i 2 1.
(i1) | f;’,‘~f,‘,,k_1! is %, _,-measurable for i,k > 1.
(i) fi—fi-1=Yp ., . for i=1,..,n
Proof. Assertions (i) and (iii) are evident. To prove (ii} it is sufficient to

observe that |f,—f,| is %,-measurable whenever fe2 (%)) and the stopping
times 0 < 0, 7 < N with respect to (%)=, satisfy 6 <t<o+1. =
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