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1. INTRODUCTION 

1.1. Physical motivation and recent history. A non-linear diffusion equation 
known as the Burgers equation describes various physical phenomena, from 
non-linear acoustic and kinematic waves to the growth of molecular interfaces, 
and the formation of large-scale quasi-Voronoi tessellation structures of self- 
-gravitating matter in the late stages of the universe (see, for example, Burgers 
[ll], Chorin [13], Gurbatov et al. [34], Witham [97], Kardar et al. [52], 
Shandarin and Zeldovich [78], Kofman et al. [54], Weinberg and G u n  [93], 
Vergassola et al. [89], Molchanov et al. [64], Woyczynski [99]), and other 
types of irrotational flows. Equations related to the one-dimensional Burgers 
equation have also emerged in models of financial markets (option pricing) (see 
Hodges and Carverhill [40]). 

Rosenblatt [70], [72] was one of the first to have considered the Burgers 
equation with random initial data from the rigorous perspective of probability 
theory and, more recently, numerous researchers studied solutions of the Bur- 
gers equation. Bulinski and Molchanov [lo], Giraitis et al. 1271, Funaki et al. 
[25] studied solutions of the Burgers equation when the initial condition was 
either a Gaussian random field or a shot-noise (or Gibbs-Cox) random fields 
with weak and strong dependence. They obtained Gaussian and non-Gaussian 
distributions as parabolic scaling limits of distributions of the solution random 
fields. Leonenko et al. [58]-[60] also obtained Gaussian and non-Gaussian 
limit distributions in the same context of parabolic scaling in the case when the 
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initial condition was either a Gaussian random field or a chi-square field with 
long-range dependence. Analogous results under suitable non-Gaussian initial 
conditions with weak dependence can be found in Surgailis and Woyczynski 
[84f, [86], Bu and Woyczynski [42], Leonenko and Deriev [57], and Deriev 
and Leonenko [l8]. In the Gaussian model with non-integrable oscillating 
correlations, the limit solution turned out to be non-Gaussian (see Swgailis 
and Woyczynski [85], [86]). For other results concerning limiting distributions 
of averaged solutions of Burgers' equation see Rosenblatt [72] and Hu and 
Woyczynski [44]. Leonenko and Woyczynski [61] obtained results on the rate 
of convergence to Gaussian fields in parabolic limits with strongly dependent 
initial data. 

Other types of random problems for the Burgers equation have also been 
considered recently in the mathematical literature. Sinai [81], Albeverio et al. 
[I], Molchanov et al. [63], Avellaneda and E [3], Hu and Woyczynski [43], 
Wehr and Xin [92], E et al. [22], and Ryan [73], [74] considered the statistics 
of shocks in the zero-viscosity limit and related problems of hyperbolic limiting 
behavior of solutions of Burgers' equation with random data. This type of 
scaling is of importance in physical applications (see Gurbatov et al. [34], 
Vergassola et al. [89], among others). Surgailis [83] considered intermediate 
asymptotics between the smooth parabolic limits and shock-type hyperbolic 
asymptotics. Recent results on the forced Burgers equation can be found, e.g., 
in Sinai [80], Holden et al. [41], Bertini et al. [5], Saichev and Woyczynski 
[75], Molchanov et al. [64] and Kifer [53]. 

A recent book by Woyczynski [99] contains a fairly complete bibliogra- 
phy of the subject and an exposition of some of the principal results of the 
theory of Burgers' turbulence. 

1.2. Goals of the paper. The present paper provides new statistical infer- 
ence tools, both in the space a d  in thefrequency domains, for the parabolically 
rescaled one-dimensional Burgers equation with random initial conditions (so- 
-called Burgers' turbulence problem). In particular, we discuss estimation of sev- 
eral important physical parameters of the equation itself (such as kinematic 
viscosity; see Gurbatov et al. [34], Witham [9n) and parameters of the initial 
data. The statistical tools take advantage of the underlying dynamics governed 
by the non-linear diffusion Burgers' equation. The parameter identification 
problems for the multidimensional Burgers turbulence will be addressed in 
separate papers. Some results in this direction will appear soon in Leonenko 
and Wo yczynski 1621. 

The probIems under consideration belong to a large and recently aggres- 
sively studied area of statistics of processes which are characterized by certain 
singular properties (e.g., vanishing, or unboundedness) of their spectral densities. 
Statistical problems for discrete processes with singular spectra were studied, 
among others, by Dzhaparidze and Yaglom 1211, Dzhaparidze and Kotz [20j, 
Fox and Taqqu [24f, Dahlhaus [16], ~ i i a i t i s  and Surgailis [31] and Robinson 
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[67]-[69]. Beran's [4] book contains a fairly complete bibliography of the 
subject. Statistical problems for continuous-time long-memory processes were 
considered by Viano et al. [go], Comte [14], and Chambers [12]. 

13. Organization of the gaper. We begin (Section 2) with a review of results 
of Bulinski and Molchanov [lo], Surgailis and Woyczynski [X4], [85), Al- 
beverio et al. [I] and Leonenko et al. [57]-[60] on parabolically rescaled 
solutions of Burgers' equation with weakly dependent (Theorem 2.1) and strong- 
ly dependent (Theorem 2.2) random initial data. They are rephrased here in 
the form convenient for statistical inference. In particular, the statistical in- 
ference for rescaled solutions of the Burgers equation with weakly dependent 
initial conditions is reduced to the statistical analysis for stationary continu- 
ous-parameter Gaussian processes with the covariance function of the form 

and the spectral density of the form 

where t > 0 is a fixed parameter (which plays the role of time in the rescaled 
solution), and c ,  q, and p are positive functions of unknown parameters which 
have to be estimated from the observed data (see (2.5) for an explicit formula 
for c). 

On the other hand, statistical inference for the rescaled solutions of Bur- 
gers' equation with strongly dependent initial data can be reduced to an analy- 
sis of continuous-parameter stationary Gaussian processes with the spectral 
density of the form 

where t > 0 is fixed, and p and p are positive functions of unknown parameters. 
The parameter a, called here thefi.actiona1 exponent (elsewhere it is also called 
the seEf-similarity parameter or the Hurst parameter), is also unknown. This pa- 
rameter characterizes the decay at infinity of the correlation function of the initial 
data or, equivalently, the rate of divergence to in6nity of its spectral density at 
the origin (see condition E and (2.18) below). All unknown parameters are to be 
estimated from observed data. Note that from (1.1H1.3) we immediately obtain 

Reduction of statistical problems for Burgers' turbulence to statistical in- 
ference for stationary Gaussian processes (or fields) with spectral densities (1.2) 
and (1.3) is feasible because of what we call a Gaussian scenario which is 
described in detail in Section 2. 
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Our continuous-time statistical models with singular spectra appear to be 
new. Note that Viano et al. {90], Comte [14], and Chambers [I21 have pro- 
posed long-memory statistical models for continuous stationary processes of 
ARMA type. However, their spectral densities are different from (1.2) and (1.3). 
Dzhaparidze and Yaglom [21] did discuss statistical inference for continuous 
random processes with spectral densities of the form ~ ~ e - ' l " ,  R E  w', but their 
ideas do not seem applicable to our situation either because they can take 
advantage of the exact likelihood function of the Markovian Ornstek-Uhlen- 
beck process (with the covariance function e-clal, AER,  see, for example, Gre- 
nander [32], p. 118). Nevertheless, the data transformation techGique due to 
Dzhaparidze and Yaglom 1211 and Dzhaparidze and Kotz [ZO] will be em- 
ployed in our paper. 

Section 3 deals with statistical analysis in the space domain. We use infor- 
mation on parameters contained in the covariance function and the functional 
limit theorem to estimate the covariance function itself (Theorem 3.1). For- 
tunately, for the spectral density (1.2) the limiting covariance structure is availa- 
ble via an explicit formula (3.3). This permits us to use the method of moments 
based on an estimate of the covariance function. 

The functional limit theorem contains a statement on convergence of dis- 
tributions of functionals continuous in the uniform topology (see Theorem 3.1 
(iv)). This permits us to develop tests of hypotheses on unknown parameters. 
Those tests are based on Fernique's type inequalities (see (3.20) or (3.21)). 

Section 4 develops three types of discretization (4.1H4.3) for the purposes 
of statistical inference in the frequency domain. As a result we obtain di- 
scretized versions of spectral densities (1.2) and (1.3). The spectral densities of 
these discrete stationary Gaussian processes seem to be completely new and are 
elegantly expressed via the elliptic Jacobi theta-junctions (Theorem 4.1) and 
what we call the fractional Jacobi functions (Theorem 4.2). The behavior of 
these spectral densities at zero depends on the type of discretization. For exam- 
ple, for discretization of the integral type (see (4.1)) we obtain the spectral 
density (4.8) : 

(1.4) f 1'1) (A) - const - ,I2 as A -+ 0, 

but the discretized versions f $:I, i = 2, 3, of (1.2), obtained through discretiza- 
tions (4.2) and (4.3), have no singularities at zero. The answer to the question 
about the best discretization scheme depends largely on one's point of view. If 
one wants to preserve singularities of the original continuous spectral density, 
then the discretization (4.1) is better. If one wants to smooth them out and, as 
a result, to obtain simpler statistical tools, then the discretizations (4.2) and 
(4.3) are more desirable. 

Section 4 also presents results in the asymptotic theory of minimum con- 
past estimators (Theorems 4.3 and 4.4) where our conditions are weaker than 
those required by other authors; see discussion in Subsection 4.2. 
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Statistical inference on the discretized version of (1.2) in the form (1.4) uses 
ideas of Dzhaparidx and Kotz [20] who suggested certain transformations of the 
data before applying standard asymptotic results using either the minimum con- 
trast estimation or Whittle's method of quasi-likelihood. As a result, we obtain 
consistent, asymptotically normal and asymptotically efficient in Fisher's sense 
estimates (Theorems 4.5-4.7) for parameters of rescaled solutions with weakly 
dependent initial conditions. In principle, it would be possible to deal directly 
with untransformed data but then the asymptotic behavior of the normalized 
periodogram becomes rather anomalous (see, e.g., Hurvich and Ray [47]). 

Finally, we discuss statistical inference for spectral densities obtained from 
(1.3) through discretizations (4.1H4.3). In particular, making again use of 
Ilzhaparidze's data transformation technique, we reduce statistical inference for 
discretized data (4.1) to statistical inference for stationary Gaussian processes 
with the property 

For spectral densities of long-memory processes this is the typical behavior at 
zero, and several known results are applicable (see Beran [4]). We restrict our 
attention to results relying on the earlier results of Fox and Taqqu [24], Dahl- 
haus [16] and Robinson [67]-[69], and on our Theorems 4.3 and 4.4. Con- 
sequently, we obtain a semiparametric estimate of the parameter u (Theorem 4.8) 
and consistent, asymptotically normal estimates of parameters with a more 
general structure (Theorems 4.9 and 4.10). We plan to continue this line of 
research using recent important results of Robinson [67]-1691, Anh and Lun- 
ney [2], and Hurvich et al. [46], on the semiparametric estimation of the fractal 
parameter (see, also, Giraitis et al. [28], [29] about the optimality of such an 
estimator and on the variance-type estimators of the long-memory parameter). 
Theorem 4.8 describes corresponding statistical properties of Whittle's esti- 
mates for parameters of the spectral densities fi?), i = 2, 3. 

The proofs are collected in Section 5. 

2. PARABOLIC ASYMPTOTICS: THE GAUSSIAN SCENARIO 

2.1. The Hopf-Cole solution. We consider the one-dimensional Burgers 
equation 

subject to a random initial condition 
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We shall think about the time- and -space-dependent random field u(t ,  x), 
(t, x)E(O, CO) x Rt, as a velocity field. In this context, the initial datum v (x) is 
often called the (random) uelocity potential. 

The non-linear parabolic equation (2.1) can be viewed as a simplified 
version of the Navier-Stokes equation with the non-linear quadratic inertial 
term uu, preserved, the pressure term omitted, and the inverse R = 1/p of the 
viscosity parameter p corresponding to the Reynolds number. Despite its ap- 
parent simple form, the Burgers equation (2,l) encompasses some of the impor- 
tant features of the fluid flow, such as steepening of the velocity profiles leading 
to creation of shocks. - 

The Burgers equation (2.1) can be linearized by the so-called Hopf-Cole 
transformation u (t, x) = -2p(a/ax)logz (t, x) (see, e.g., Witham 19711, which 
reduces (2.1) to the linear diffusion equation 

subject to the initial condition z (0, x) = exp { - v (x)/2,u), x E R ~ .  Thus, the solu- 
tion of equation (2.1) is given by an explicit Hopf-Cole formula 

j:, [(x - y)/t] g (t, x - y) e-u(ylH2p) d y  
(2.3) u(t, x) = 

- I(E, x) 
w -- 

- v ( Y ) / { ~ P )  d y  J(t, 

where v(x) = v(0, x) is the initial velocity potential (see (2.2)) and 

is the Gaussian kernel. 

2.2. Parabolic limits for weakly dependent initial conditions. Let now 
(0, 9, P) be a complete probability space, the initial velocity potential 
u(x) = 5 (x) = 5 (w, x), w E S2, x €R1, be a random process, and u = ts (t, x), 
(t, x)E(O, m) x R1, be the solution of the random Cauchy problem (2.1) and 
(2.2). In view of the inner symmetries of Burgers' equation and its connection to 
the linear diffusion equation via the Hopf-Cole transformation, a study of the 
limiting behavior of the parabolically rescaled solution random field 

as p -+ ao is of obvious interest. If p > 0 is fixed, under some additional con- 
ditions on the random process 5 (x), x E R1 (to be stated explicitly later in this 
section), the above rescaled solution obeys asymptotically a "Gaussian scena- 
rio" (see, e.g., Bulinski and Molchanov [lo], Surgailis and Woyczynski [84], 
[86], Albeverio et al. [l], Leonenko and Deriev [57], Deriev and Leonenko 
[IS]). Non-Gaussian limits have also been found in some cases when <(x), 
x€Rt, is a stationary random process with long-range dependence (see Sur- 
gailis and Woyczynski [85], [86], Albeverio et al. [I], Leonenko et al. [59], 
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Leonenko and Orsingher [58], among others). The latter situation is, however, 
not considered in the present paper. 

In what follows we will need the following assumptions: 

A. The random process 5 (x) = 5 (w, x), o E 0, x E R', is a real, separable, 
measurable, stationary, a.s. difirantiable Gaussian process with E { ( x )  = 

= 0 ,  E t 2  (x) = c2 > 0 and continuous couariance function B ( x )  = B(lx1) = 

cov(t(O), t(x)), x€R1-  
B. There exists a real measurable nun-random function F (u) ,  u E R', such 

that the expectation E [exp (- F (c ( 0 ) ) / 2 ~ ) ] ~  < CO, where ((x), SE R', is a ran- 
dom process satisfying condition A. 

Let 

be the density function of a standard M(O, 1) Gaussian random variable, and 
Lt (R1, 4 (u) du) be the Hilbert space of functions f ( a )  such that E [ f (5  (0))l2 < 
c ao. It  is well known (see, e.g., Kwapien and Woyczynski [56]) that Hermite 
polynomials 

form a complete orthogonal system in the Hilbert space L2 (R1,  4 (u)du). 
Under assumption B, the function f (u) = exp {- F (au)/2p) E L2 (R1, cjh (u) du), 

and may be expanded in an L2 (R', I$ (u) du)-convergent series 

with coefficients 

D. The function f (u) = exp { - F (au)/2p), u E R1, satisJies assumption B and 
there exists an integer m 1 such that C, = . . . = = 0, C, # 0. Such an 
m is called the Hermitian rank of the function f (u) (see, for example, Taqqu 
C881). 

An application of ideas of Breuer and Major [q (see also Giraitis and 
Surgailis [30], Ivanov and Leonenko [51]) yields the following theorem which 
is a version of results proved by Surgailis and Woyczynski [84], Albeverio et al. 
[I], Leonenko and Deriev [5fl (see also Deriev and Leonenko [ I S ] ) .  

THEOREM 2.1. Let u( t ,  x), ( t ,  x)E(O, a) x R 1 ,  be a solution of the Cauchy 
problem (2.1) and (2.2) (see (2.3)) with a.s. dtyerentiable random initial condition 
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v (x) = F ({ (x)), x~ R1, where the random process 5 (x), x E R ~ ,  and the non-ran- 
dom function F ( - )  satisfy conditions A, B, D, and 

where m 2 1 is the Hermitian rank of the function f (u) = exp ( - F (m)/2p), 
u E w ~ .  Then the finite-dimensional distributions of the random fields 

converge weukiy, as /3 + co, to thefinite-dimensional distribtdtions of the Gaussian 
field U ( t ,  x), t > 0, xeR1, which is stationary in x €R1, with EW (t, x) = 0, and 
has covariance function of the form 

where 

and 

Remark  2.1. The covariance function (2.5) of the Gaussian random 
field U (t, x), t > 0, x €R1, which is a limit of the field (2.4), has the spectral 
density g(A), IZ€R1, given by (2.6). It vanishes at zero (g(0) = 0). This con- 
dition, especially in the context of Burgers' turbulent diffusion, i.e., pas- 
sive tracer transport in stochastic Burgers' flows, is a consequence of the 
physical dynamic mass conservation law (see Saichev and Woyczynski [75], 
p. 1030). 

COROLLARY 2.1. Let, under the assumptions of Theorem 2.1, F(u) = u, and 
v (x) = 5: (x), x E R1, be a stationary Gaussian process with ES: (x) = 0 and covari- 
ance function B(lxl), x€R1, such that 

Then the statement of Theorem 2.1 is true with the constant 
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The constant c @ given by (2.5) and (2.7) can be approximated in this case by 

EXAMPLE 2.1. Let 

Then the constant cJp/n in (2.5), where c is given by (2.81, is approximately 
equal to 

EXAMPLE 2.2. Let 

Then the constant c f i  in (2.5), where e is given by (2.8), is approximately 
equal to 

Theorem 2.1 describes limiting distributions of parabolically rescaled solu- 
tions of the Burgers equation with random initial condition which is a station- 
ary Ipossibly, non-Gaussian) random process with weak dependence (the co- 
variance function is integrable or, equivalently, the spectral density is continuous, 
bounded and bounded away from zero). We note that results similar to Theo- 
rem 2.1 have been obtained by Bulinski and Molchapov [lo] for the shot noise 
processes, by Surgailis and Woyczynski [84] for the stationary mixing proces- 
ses, and by Funaki et al. [25] for Gibbs-Cox random processes. In those 
papers the limiting Gaussian process has the correlation function of the type 
(2.5) or, equivalently, the spectral density of the type (2.6), but the structure of 
the constant depends on the probabilistic structure of the corresponding ran- 
dom initial data. 

2.3. Parabolic limits for strongly dependent initial conditions. The present 
subsection contains a theorem related to the known results on scaling solutions 
of the Burgers equation with strongly dependent (long-memory) Gaussian ini- 
tial data (see Giraitis et al. 1271, Surgailis and Woyczynski [84]-[86], Albeve- 
rio et al. [I], Leonenko et al. [58]-[60]). Those results were obtained by an 
application of ideas and methods of Dobrushin and Major [19], and Taqqu 
1881. We will have need of the following condition: 
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E. Condition A is satisfied with the covariance function 

where B(0)  = a2 and where L( t ) ,  t > 0, is a function bounded on each finite 
interval, slowly varying for large values of t. 

THEOREM 2.2. Let u ( t ,  x), t > 0, X E R ' ,  be a solution of the initial value 
problem (2.1) and (2.2) with a.s. dzyerentiable random initial condition 
v (x )  = F (< (x)), XE R1, where the random process t (x), x E R1, anddhe non-ran- 
dorn function F ( . )  satisfy conditions A, B, E, and 

Then the finite-dimewional distributions of the fields 

converge weakly, as + co, to thefinite-dimensional distributions of the station- 
ary in x Gaussian field Y ( t ,  x), t > 0, x €R1, with E Y ( t ,  x )  = 0 and the covari- 
ance function of the form 

O<a < 1, t, s >  0, x, ycR1 ,  where 

Remark 2.2. Let F (u) = u and let v ( x )  = (x), x E R1, satisfy condition E. 
Then 

a 
Co = exp (a2/(8p2)}, C1 = - - exp f a2/ (8p2)}, 

2~ 
and 

Remark 2.3. If the Gaussian process 

m 

5 ( x )  = a J e'" [b (A)] (dA) , x E R l ,  
-cO 
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where G(.) is the complex Gaussian white noise with mean zero and unit 
variance (that is, its real and imaginary parts have variances equal to 1/2), has 
the spectral density b (A),  I E R1, which is decreasing for 111 3 A, > 0,  then the 
limiting Gaussian field Y (t, x), t > 0,  x E R1, in Theorem 2.2 can be represented 
in the following way: 

(see Leonenko et al. [60]), and, for F(u )  = u, we obtain from (2.15) 

where 

r(1) = Rexp{-ptlZ} I;ll(a-1)/2, A € R 1 ,  

and 

Using the Tauberian theorem (see Bingham et al. [6], p. 2411, under conditions 
A and E we have the following asymptotic representation: 

where the constant cl (u) is defined by (2.17). Thus b(A) co as IIJ + 0. Using 
(2.16), we have r (0) = 0. 

Let L2(f2) be the Hilberi space of random variables with finite second 
moments. Then the limiting field Y,(t ,  x), t > 0, x ERI, given by (2.16'), is 
L2(Q)-equivalent to the stationary in x Gaussian field 

m 

(2.19) Y,* ( t ,  x) = [cl (a)]112 a 1 exp (ilx - @A2) IAl(lf G (dA)  
- m  

with the covariance function 

where the spectral density 

f (A)  = ~ ~ ( o l ) a ~ e x p { - p A ~ ( t + s ) } I l l ~ + ~ .  

Remark  2.4. Witham [97] and Gurbatov et al. [34], pp. 14-20, give 
examples of physical phenomena (in geometric optics and acoustic wave propa- 
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gation) leading to the Burgers equation containing two parameters: 

with the initial condition 
&?lo7 4 = eo(z), 

where Q = Q (z, z), B > 0, z E R1. The parameters fl= B (w) > 0, w E W< p 2 1, 
and v = v(v) 3 0, ~ E R ~ ,  q >, 1 ,  themselves are already summary parameters 
that are functions of several physical constants such as linear sound velocity, 
dissipation coefficient, adiabatic index, dimensional coefficient, and so on. After 
transformations 

the equation (2.20) leads to the Burgers equation (2.1) with parameter 
p = v(v)/fl(w). It  is obvious that these transformations do not affect parab- 
olic asymptotics. So it is good to keep in mind that the parameter p = p(9) ,  
~ E R ' ,  s 3 1, which principally represents the viscosity of the medium, 
may itself depend on a number of other meaningful physical constants 
Q = (Q1, ..., Q J ' E R S .  

In the next section we will consider statistical problems of estimation of 
the unknown parameter 9 and possibly other parameters (such as constants 
appearing in the initial conditions) using observations of rescaled solutions of 
the Burgers equation. 

Remark  2.5. Grenander and Rosenblatt [33], pp. 163-173, and Rosen- 
blatt [71j, pp. 152-155, considered the problem of measuring turbulence spectra 
for the three-dimensional Navier-Stokes equation and proposed a non-pa- 
rametric approach to the problem. However, it is worthwhile to note that the 
structure of the Reynolds number R = d / v  makes it dependent on three other 
physical parameters: v - the characteristic velocity, 3L - the eddy magnitude, 
and v - the kinematic viscosity. In the context of the Burgers equation this 
corresponds to the structure of parameter p being p = p (a,, 9,, 9,) and, in the 
next section, we will describe statistical inference methods applicable in this 
situation. 

3. INFERENCX IN THE SPACE DOMAIN 

3.1. Properties of correlation function estimators. In what follows we will 
need the following assumption: 

P. The riandomj5eld U (t, x) = U,, ft, x), t > 0, x E R1, is measurable, centered 
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and Gaussian, stationary in x, with the covariance function of the form 

and 

are two melastsrabZefinctions with respect to BoreE n-algebras W ( E )  x A3 (0) and 
B (O), respectively, and B c Rr, O c Jtk, r 3 1, k 2 1, are compact sets with non- 
-empty interiors which are assumed to contain the true ualues qo and 9, of 
parameters q and 9, respectiueiy. 

Remark 3.1. Applying results from Cramer and Leadbetter [15], p. 170, 
we infer that for every fixed t > 0 there exists a separable version of the Gaus- 
sian field U (t, x), x G R1, the sample paths thereof are continuous on every 
compact interval D in Ri. So, every such random field U induces a probability 
measure Q,, on the space C (D) of continuous functions on D with the uniform 
topology. 

In this section our main goal is to estimate the true vaIue of parameters 
q,  and 3, (or some components thereof) from observation of the random field 
U { t ,  x), X E  A c Ri, with a fixed t > 0. 

Re m a r  k 3.2. The Gaussian random fields with covariance functions 
(3.1) appear as parabolic limits of rescaled solutions of the Burgers equation 
with weakly dependent initial conditions (see Theorem 2.1). The parameter 
c = c(q, 9) contains all the information about the initial conditions (see (2.6) 
and (2.7)) and information about parameters depending on 9 through the vis- 
cosity p(Q). The parameter p ((9 contains information about the viscosity and, 
possibly, other physical constants (see Remarks 2.3' and 2.4). The structure of 
parameters c = c (q, 9) and p (9) can be chosen in various ways. For example, 
we may consider a = c &2-312 > 0 as a single parameter that characterizes 
the value R (0) which, physically, represents the flow energy. Another possibility 
would be to consider the factorized structure 

where bl (q) contains information about the initial data and b2(9) contains 
information on parameters depending on 9 through viscosity p(9). 
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For example, for Gaussian initial conditions using the approximate value 
(2.9), instead of ~ & 2 - ' / ~  with c given by (2.8), we obtain 

1 ,  
bl (y) = - B (1x1) dx, b2 (9) = [p  (a)] - ' I 2  2-3/2 

4J;;-, 

Then, for the correlation function (2.10), we obtain 

or, for the correlation function 12-12), we have - 

Unfortunately, such a factorization is not always possible since all the coef- 
ficients C, in the formula (2.7) depend on y. However, if instead of the initial 
condition (2.2) we consider an initial condition of the form u (0, x) = - 2pdv (x)/dx, 
then the coefficients Cis  do not depend on p. 

To estimate the covariance function R (x) at the fixed point x E [0, A], 
where A > 0 is a constant, from observation U (t, x), x E [ O ,  T+ A], with t > 0 
being fixed, we shall use the statistic 

Combining results of Ivanov and Leonenko [ S O ]  (see, also, Ivanov and Leo- 
nenko [51], Chapter IV) and Buldigin [9] we obtain the following theorem: 

THEOREM 3.1. Let U ( t ,  x), t > 0, x E R1, be a stationary in x Gaussianfield 
satisfying condition F. Then, as T + oo, 

(i) aT (x) -, R (x) a.s. ; 
(ii) sup,[,,,, la, (x) - R (x)l + 0 as.; 

(iii) finite-dimensional distributions of the centered process 

converge weakly toJinite-dimensional distributions of a centered Gaussian process 
Z (x) with the covariance function 

x, Y E  [0,  A],  where z (a) = ( 8 , ~ t ) - ~  [a4 -48a2 pt +24 (pt)2], and the spectral den- 
sity of the field U ( t ,  x) is given by (2.6), that is 
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(iv) The probability measures YT converge weakly to the probability mea- 
sure 9 in the space C([O, A ] )  of continuousfirnctions on LO, A] with the ungorm 
topology, where PT are measures induced by the processes X T  (x),  x E [ O ,  A] ,  and 
9 is a measure induced by Z{x), X E  10, A] ,  on the space C([O, A]).  

Remark  3.3. With covariance function ~ ( x ,  y) given by the first line of 
(3.3) statements (iHiv) of the above theorem are true for general stationary 
Gaussian processes, and, with some additional covariance structure and ad- 
ditional conditions (see Ivanov and Leonenko [Sl], Chapter IV), also for non- 
-Gaussian mixing processes. For a Gaussian process those conditions simplify. 
For example, if the spectral density g(A), A E E R ~ ,  of a Gaussian process {not 
necessarily of the form (3.4)) satisfies the condition j: g2 ( A )  dA i m, then 
statement (iii) remains true (see Buldigin [g]); and if there exists a PE(O, 1) such 
that jmm 1A11+8g2 (1)dlZ < CO, then statement (iv) remains true (see Ivanov and 
Leonenko [50], combined with Buldigin [9]). 

3.2. Method of moments. In this subsection we will apply the method of 
moments to estimate parameters q and 9. 

Let us consider the following system of non-linear equations with respect 
to q or 9: 

j = 1, . . ., r +  k,  where Zj are fixed points from an interval [0, A] c [0, of 
monotonicity of the function R (x). If we solve these equations, then we obtain 
expressions for 

where [ = (cl, . . ., Cr+k)l = (R(Z1), . . ., R(%,+R))'. The basic idea of the method 
of moments is to put vector 5, = (I?,(%,), . . ., RT (x,+~))I instead of vector 5 in 
expressions (3.5) or (3.6), where i?, (x) is defined by (3.2), to obtain the estimates 

Remark  3.4. Recall that if B is a symmetric n x n positive-definite rna- 
trix, then there exists a symmetric positive-definite matrix, denoted by B1I2 and 
called the symmetric square root of B, such that B = 3112B112. 

For a function Q = Q(i), 5 = (cl, . . ., cr+k)f, denote by 

air + k 

its gradient at the point (il, . . ., i r fk)  = (R (Zl), . . . , R (x,+~))'. 
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If the functions Qj ,  j = 1, .. ., r+k ,  are continuous, then it follows from 
Theorem 3.1 that, as T -+ m, 

VT 10, $T 90 

and 

where 

and Q (xi, xj) = e (xi, xj; q , 9.) are defined by (3.3). 
If S > 0 and S1I2 is a symmetric square root of S (see Remark 3.51, and 

~ 1 1 2  = ~ 1 1 2  (q,  9) is continuous in q0 and 9,, then, as T 4 w ,  

where I ,  stands for the identity matrix of order n 2 1. The last statement allows 
us to construct asymptotic confidence intervals for unknown parameters (q,  9)' 
or for some of their components. This method permits us, first, to use an 
approximate solutions (3.6) of the non-linear equations (3.5), and then to apply 
(3.7) and (3.9). 

For the sake of simplicity put t = 1 and consider the problem of estima- 
tion of two parameters only: 

a = ~ f i 2 - ~ ~ '  and p ( 9 ) = p > 0 .  

Parameter a characterizes the value R (0) (energy) in the initial data, and pa- 
rameter p > 0 represents the viscosity of the medium (see Remark 2.3). One of 
the monotonicity intervals of the function R (x) is, in our case, [0, fiP]. So, 
for example, for p 3 1/12, put Z1 = 0 and Z2 = I. Then the system of non- 
-linear equations (3.6) becomes 

Thus the methods of moments estimates for parameters a and b = 1/(4p) have 
the form 

a'T = zT (o), 6T = u0 (T),  

where uo(T)  is a unique solution of the non-linear equation 

(3.10) expi-t6/2)=sT/(1-u), O < u < l ,  
C 

with ST = RT (I)/@, (0). 
In practice, one has to use numerical methods (such as the Newton- 

Raphson method) to solve equation (3.10) in the interval UE [0, 1). AS the 

2 - PAMS 21.1 
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first step one can also approximate in the above interval eui2 by 1-u/2 
to obtain 

This gives the following statistics as estimators of parameters a and p: 

- 

where I? (x) is defined by (3.2), and uo (T) is a unique solution of the non-linear 
equation (3.10). 

The strong consistency of all these estimates (as T-i oo) follows from 
Theorem 3.1. A construction of asymptotic confidence intervals can be also 
based on Theorem 3.1 since, as T 4 a, 

where 

(3.14) CT: (a, = 3a2 &/8 

is a continuous function of parameters a > 0 and p > 0. 
Thus the asymptotic (T -, co) symmetric €-confidence interval for the 

unknown parameter a > 0 has the form. 

(GT - ~ 1  -.E 0 1  (&T, f i T ) / f i ¶  ZT+% - 8  C l  GT,  / I T ) / @ ) ,  

where ai (a ,  p) is given by (3.14) and u l - ,  is a root of the equation 

Construction of an asymptotic confidence interval for the unknown pa- 
rameter p > 0 can be based on Theorem 3.1, which, for T + oo, gives 

where 

where the function z(a) depends on p and is defined by (3.3). 
Thus from (3.8) and (3.17), and remembering that Q ( b , ,  [,) = 

= 3 / 4 - J w y  we obtain 
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where 

is an approximation to bo = 1/(4p), and 

where FQ is taken at the point (11, la)' = (R (0). R (1))'. 
If we assume that the function a;(a, y) given by (3.19) is continuous at 

a', and kg, then we may construct a symmetric asymptotic confidence interval 
for the unknown parameter y of the form 

where 02 (a, p) is defined by (3.191, E > 0 is the significance level and u , -, is 
a root of equation (3.15). We need the approximation $*, instead of fi ,  (see 
(3.1 3)). 

Remark 3.5. Let us consider the special case when the viscosity parame- 
ter ,u > 0 is known but the parameter c (q , 9 )  = c (q),  q = (ql, . . ., q,)' E E c Rr, 
is unknown. For the sake of simplicity put t = 1. Parameter q contains infor- 
mation on the random initial condition (see (3.1) &d Remark 3.2). 

We may observe from (3.1) with t = 1 that R (x )  = 0 for x = 2 &. Let us 

suppose that s = [T/2&] - 1 + a, as T + co. Then observations of the 
Gaussian process U (1 ,  x) at the points x = 2i A, i = 0, 1, . . ., s - 1, are in- 
dependent, and statistical inference for parameter q can be based on the exact 
likelihood function of independent Gaussian observations 4 = U(t, 2i&), 
i = 0 ,  1,  . . ., s - 1, the logarithm thereof has the form 

1s-1 

where a (q )  = e (q) ,,@&-3j2. In this case the standard madmum likelihood 
parameter estimation theory for exponential families is applicable. The maxi- 
mum likelihood estimators are strongly consistent, best asymptotically normal, 
and asymptotically eEcient in the Bahadur sense (see, e.g., Zacks [loo], p. 239). 

3.3. Testhg hypotheses. In this subsection we only establish the asymp- 
totic normality and the large deviation estimate which form the foundation of 
standard hypothesis testing procedures. We will not dweIl here on the latter. 

Under assumption F let us consider asymptotic tests for the validity of the 
hypothesis Ho:  ( q ,  9)' = (qo, go)' against its alternative H I  : (11, 9)' # (qO,  so)', 
where qo and 9, are some fmed points of the sets S and 8, respectively. 
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Under hypothesis H o  we infer from Theorem 3.1, as T +  m, that 

where R(x;  q, go) is defined by (3.1) and ~ ( x ,  x ;  y o ,  go) is defined by the ex- 
plicit formula (3.3). Thus, for large enough we decide in favor of hypothesis 
Wo and reject H I  with s imcance  level E > 0 whenever, for every x E [0, A], 
the quantity [, < ul -,, where ul -, is the root of equation (3.15). 

For construction of the critical regions we will use a modification of Fer- 
nique's [23] inequality due to Buldigin [8], and some results fmm the book of 
Ivanov and Leonenko [51], where confidence intervals for the correlation func- 
tion based on Fernique's type inequalities have been developed. In particular, 
we will apply Theorems 4.6.3 and 4.6.4 of the above-mentioned book for 
a Gaussian random process with the covariance function (3.1) and the spectral 
density (3.4). 

Using notation of the preceding subsections, we set 

where XT (x)  and Z (x) are defined in Theorem 3.1. The statement (iv) of Theo- 
rem 4.1 implies that, uniformly in z > 0, 

If we estimate the function F(z) by the Fernique inequality, then the above 
relation may serve as a basis for construction of asymptotic functional 
confidence intervals for the correlation function R (x) and for hypothesis 
testing. 

From Theorem 4.6.3 of Ivanov and Leonenko [51] we infer that if hy- 
pothesis Ho is true, then, for any r > $K,  

FT (z) lim sup - < l2  
T-tm Gl(2) 

where 

5K 
F(T) < G1 (z) = -exp 22 --+2 , { } 

and, in the case of the spectral density (3.4), 
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So, for large enough T and for all a s  [u, A] and r > $K, if the in- 
equality (3.20) is satisfied, then we decide in favor of the hypothesis H o  and 
reject the alternative HI. 

Another variant couId be to decide in favor of H o  and against H1 if, for 
large enough i; and r > $K, the inequality 

is satisfied for every x E [0, A], where E > 0 is the significance level and ul -, is 
the root of the equation: 1 - Gl (ul -,) = 1 -8. In this case, for large enough T, 

will be asymptotically greater than 1-E.  
We may also apply the Rice formula-based Theorem 4.6.4 (Ivanov and 

Leonenko [51]) to the covariance function (3.1) and the spectral density (3.4). 
Thus we see under hypothesis H ,  that, for each r > 0, 

FT (7) 
lim sup 1, 

T-rm 2b) 

where, for the spectral density (3.4), 

where 

Thus, if T is large enough, and for all x E [0, A] and z > 0 the inequality 
(3.21) is satisfied, then we decide in favor of the hypothesis Ho and against the 
alternative hypothesis HI. 

Or, for the ~ i ~ c a n c e  level E > 0, we decide in favor of the hypothesis 
Ha and against the alternative H1 if, for large enough T, the inequality 

f i ( R T ( ~ ) - ~ ( x ,  q0, 80)) < u;-& 

is satisfied for every x E [0, A] with u;-, being the root of the non-linear 
equation: 1-G, (u;-,) = 1 -E. In this case, for large enough T, 

will be asymptotically greater than 1 -8. 

Such types of procedures are also useful for construction of goodness-of-fit 
tests. 
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4. INFERENCE LN TEE FREQUENCY DOMAIN 

4.1. The discretization problem. The discretization problem for continuous- 
-time random processes was considered, from different viewpoints, by many 
authors, see, e.g., Sinai [79], Grenander [32], Grenander and Rosenblatt [33], 
Rosenblatt 1711, Stein [82]. 

Consider a continuous-parameter random field 5 (t, x), t > 0, x E R1, which 
is stationary in x and has an absolutely continuous spectrum. Following Gre- 
nander [32], pp. 249-250, we will consider three main types of discretization in 
X E R ~ ,  with a fixed t > 0: 

- 

I. Locally aueraged sampling. For a fixed step-size h > 0, define 

11. Instantaneous sampling. For a fixed step-size h > 0, define 

(4.2) ~ d 2 ( t , ~ ) - - ~ ~ t , h ~ ) ,  XEZ'. 

111. Randomized sampling. For a fixed step-size h > 0, A > 0, and a se- 
quence of independent, identically JV (0, d2)-distributed random variables v,, 
x€Z1, which are also independent of the random field g(t, x), define 

(4.3) Cd3(t, X) [ ( t ,  ~x+v,), XEZ'. 

Let now U ( t ,  x), t > 0, x E R', be a Gaussian field which is stationary in 
x and satisfies condition F. Then (see (3.4)) its spectral density has the form 

where 

with w = (q, 9)'~ W 
non-empty interior 
condition F). 

c R', 1 = r+  k 2 1, and where W is a compact set 'with 
containing the true value wo of the parameter w (see 

In calculation of the spectral densities of the three discretizations intro- 
duced above we will also have need for the elliptic Jaeobi theta-jiunction 0 (x, s). 
Recall that 

(see, for example, Widder f961 and Mumford [65]). 
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THEOREM 4.1. Assume that the Gaussian $eld U ( t  , x), t > 0, x E R1, is  sta- 
tionary in x and satisJies condition F. Thm: 

I 

(i) Spectral density of the stationary in x Gaussian field U,, ( t ,  x), t > 0, 
x €Z1, has the form 

4q ' f i 0 ( A ,  h2/(8pt)) . ' 
= - sin2 - 

h2 2 2pt 

m 

x ( 1  -2 exp ( -h2 (2k-  1)/(8pt)) COSR 
k =  1 

+ exp {h2 I4k - 2)/(8pt)}), 

-n<A<.rr ,  and, cas 1 4 0 ,  

1 1 "  
(4.8) f !#(A) = 1' exp {- k2 h2/(8pt)) 

(ii) Spectral density of the stationary in x Gaussian fceld Ud2 ( t ,  x), t > 0, 
x € Z 1 ,  has the form 

- f k2 exp { - k2 h"(8pt)) cos (krl) , 
K k = 1  1 

- K < A < R ,  and 

(4.10) lim f 2;) ( A )  > 0 .  
1-0 
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(iii) Spectral density of the stationary in x Gaussian Beld U,, ( t ,  x), t > 0, 
X E  Z1, has the form 

K q r n  =--I-> C (If 2 k ~ c ) ~ e x p ( - - ( l l + 2 k 7 ~ ) ~ ( A ~ + ( 2 p t ) / h ~ ) ]  
2n h ,=-, 

a2 + 2 0 (A, h2/4 (h2 A + 2pt)) I 

and 
I 

lim f (A) > 0. 
A-cO 

~ 
I 

Remark 4.1. The parameter dependence structure for fields with spectral 
densities (4.7), (4.9) and (4.11) is given by (4.5). Discretization procedures (4.2) 

l 

and (4.3) produce more regular densities f i i )  and fa;) than the discretization 
procedure (4.1). However, the advantage of the latter is that it preserves the 
singularity type of the original spectral density of the continuous-time process 

I (see (2.6) and (3.4)). 

Let us now consider the discretization procedures 1-111 for rescaIed solu- 
tions of the Burgers equation with strongly dependent initial conditions (see 
Theorem 2.2). In view of (2.16) and (2.19) we will introduce the following 
condition: 

G. The random field Y ( t ,  x), t > 0, x €R1, is Gaussian, stationary in x, has 
an absolutely continwus spectrum, and spectral density of the form 

(4.13) f ( A ) = f ( ( n ~ ) = p I A l ~ + ~ e ~ p { - 2 @ A ~ ) ,  O < E < ~ , A E P Z ~ ,  

with 

where the cpnstant c,(ol) is &"en by (2.17); p = =(,!I), 8 E @  c Rk, k 2 1, and 
~ = ( a , ~ , a ~ , 9 ) 1 ~ W ~ R k + ~ , w h e r e a ~ ( O ,  I ) , B = c ~ ( o ~ ) E ( O , C O ) , C > O . T ~ ~ S ~ ~  W 
is assumed to be compact with the true value w, of the parameter in its interior. 

Remark 4.2. Condition G corresponds to the case when F(u) = u in 
Theorem 2.2, so that we are dealing with Gaussian initial conditions with 
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strong dependence. The structure of the spectral density is chosen according to 
(2.16) and (2.19). In principle, it is possible to consider a more general situation 
when the parameter p in (4.13) has a more complex structure than (4.14). For 
example, according to (2.16), we can put 

P = 2clI4 ~ ( 9 )  d, d = C1/Co, 

where Co and C1 are defined in Theorem 2.2. 
The next result describes the shape of the spectral density for the field 

Y for the above three methods of discrete sampling (1-111). The random field 
Y appears as a rescaled solution of the Burgers equation with strengIy depen- 
dent initial conditions (see Theorem 2.2). 

THEOREM 4.2. Suppose that Y(t, x), t > 0, XER', is a Gaussian random 
field, stationary in x, and satidying condition G. Then: 

(i) The spectral density of the discretization (t, x), t > 0, x E Z1, is of the 
form 

(4.15) fit) (A) = fi:) (A, w] 

-n: < R < n, where 

1 "  
am = - e-ims Isla- ' exp ((-'2pt~Z)/h2) d~ 

2n -, 
and, as I Z + O + ,  

(ii) The spectral density of the discretization G2 (t , x), t > 0, x E Z1, is of the 
form . - -  

- p 1 "  C eimA b,, 
h2+a2n,=-, 

-IT < R < x, where 
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and, as /1+0+, 

lim f $%'(A) > 0. 
1-0 

(iii) The spectral density of the discretization G3 (t, x), t > 0, x E z', is of 
the form 

- ~ < A < K ,  and 

(4.20) lim f $23) (1) > 0. 
a-co 

Remark  4,3. The parameter dependence structure of the spectral den- 
sities (4.151, (4.17) and (4.19) is given in condition G. Again, the discretization 
procedure (4.1) gives the spectrd density fji2,) with the same singularity as the 
spectral density (4.13) of the original continuous-time process, whereas the 
discretization procedures (4.2) and (4.3) produce spectral densities without sin- 
gularities (see (4.18) and (4.20)). 

Remark  4.4. The function appearing in expressions (4.15), (4.17) and 
(4.19) contains functions which can be called the fractional Jacobi theta-func- 
tions; in the general theory of theta-functions the function B(x ,  s) introduced 
before is usually called the theta-function of the third kind. 

Remark  4.5. Now consider the case when t > 0 is fixed and the di- 
scretization step h > 0 is also fixed, but the observations of U (t, x), x E [0, TI, 
are made with T -+ oo. This is the so-called increasing domain asymptotics 
problem (see, for example, Stein [82]). The fixed domain asymptotics problems 
(see, again, Stein [82]), with T being constant, but h + 0, or T being constant, 
but statistical inference being done for the spectra1 density of the fields 
h3 U (h2 t, hx), or h1 +'I2 Y (h2 t, hx), as h + 0, where U(t, x) is the parabolically 
rescaled solution of the Burgers equation with weakly dependent random data, 
and Y(t, x) is the parabolically rescaled solution of the Burgers equation with 
strongly dependent data, also remain open. 

mum coatrast estimators. The quasilikelihood, or minimum con- 
trast, method of spectral density parameter fitting for discrete-time stationary 
process was first proposed by Whittle [94], [95], and was later developed by 
Walker 1911, Ibragimov 1481, Hannan [37], Rice [66], Guyon [35], [36], 
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Dzhaparidze and Yaglom 1211, Dzhaparidze and Kotz [20], Fox and Taqqu 
[24], Dahlhaus 1161, Heyde and Gay [38], [39], Giraitis and Surgailis [31], 
among others. Also, a few years ago, Tanigushi [87] proposed a wide class of 
asymptotically eficient estimators which are essentially different from the 
maximum likelihood estimators. For recent developments, see Dahlhaus and 
Wefelmeyer [17]. A discretization procedure-based estimation for continuous- 
-time parametric models was considered by Comte [14], Chambers [12] ,  and 
others. 

In this subsection we present general results on consistency and asymp- 
totic normality of the minimum contrast estimators under the Gaussian Whit- 
tle contrast. By and large, we follow the approach suggested for random fields 
by Guyon [36], but our conditions for consistency and asymptotic normality 
are weaker than those of Guyon and, in particular, are fulfilled in the case of an 
unbounded spectral density. Our conditions for consistency are also weaker 
than those of Fox and Taqqu [24], although they did prove the strong consis- 
tency of parametric estimators for spectral densities which are unbounded at 
the origin. In the proof of asymptotic normality we use the results of Heyde 
and Gay [38], [39]. 

We begin by introducing the foIIowing general assumption: 

H. Process [(x) = [(my x), WEE, x ~ ; Z l ,  is a real stationary, centered ran- 
dom process with covariance function R (x), x E Z 1 ,  and spectral density 
fd ( A )  = fd (A, w), w E W, A E (-n, IT], where W is a compact set and the true value 
of parameter wo is in the interior of W c Rr. 

A statisticaf model with spectral density f, (A, w) is called ident$fiabb if the 
following condition is satisfied: 

I. If w # w', then& ( A ,  w) differs fiom fd ( A ,  w') on a set of positive Lebesgue 
measure. 

Now, consider a parametric statistical model of distributions P,, w E 

and put Po = P,,. Let 5 (x), x E (1,2, . . ., T), be an observation from a random 
process satisfying condition N, and let 

T-1x1 
(4.21) RT = RT (x ,  5)  = T - l  x c (Y) c (Y +XI 

y = l  

be the sample covariance function, and 

be the periodogram. 
A contrast fmction for wo is a deterministic mapping K ( w o ,  q ) :  W + [0 ,  a), 

which has a unique minimum at w = w,. Given K (w,, .) let us consider contrast' 
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processes ST (w), T€Z1, adapted to [ (x), x E ( 1 ,  . . ., T), defined for all w E 

and such that 

in probability Po. The minimum contrast estimator w, minimizes the values of 
ST? i.e., 

We shall consider a Gaussian Whittle contrast, defined by the contrast 
process 

the contrast function 

and the associated minimum contrast estimator 

(4.24) WT = WT (IT (4, f d ( A  4) = argmin ST (w), 
weW 

where ST(w) is defined by (4.23). The functional S,(w) will also be called 
Whittle's functional. We will use the same notation wT for the general contrast 
process and for the Gaussian Whittle contrast process. 

THEOREM 4.3. Assume that the conditions H and I are satisfied, the function 
f h l ( A ,  w)  is continuous on ( - K ,  x] x and the sample covariance 
RT(x )  R ( x )  in Po-probability, as T + CQ. Then; in Po-probability, 

and the minimum contrast estimator wT + wo as T -, ao . 
Assumptions in the above theorem are weaker than those in the com- 

parable result of Guyon [36f, p. 145. In particular, he assumes the condition 
0 < m < &(A) < M < co, and the existence and continuity of the second-order 
derivatives. Fox and Taqqu [24] and Dahlhaus [I61 also employ conditions on 
derivatives of the spectral density but they prove strong consistency of the 
minimum contrast estimates for long-memory random processes. The assump- 
tion of continuity of f h in Theorem 4.3 is satisfied for spectral densities which 
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are unbounded at zero (see, Fox and Taqqu [24], Beran [4]), and so is  the 
sample covariance convergence condition; for Gaussian processes, the latter is 
a consequence of the ergodic theorem. 

In the remainder of this subsection we present results on asymptotic nor- 
mality of the minimum contrast estimators. The following condition will be 
utilized : 

K. The process 

where cy, y E Z1, are i.i.d. random variables (Gaussian, if the process is 
Gaussian) with zero mean, and variance given by ~o lmo~orov ' s  formula vars, = 

= exp {(l/24 ITx log f ,  (4 di}. 

Condition K is rather weak and is satisfied if 

the latter condition, in turn, plays a fundamental role in the linear prediction 
theory of stationary processes. Since log f, ( A )  6 &(I)  and j" = 

varc(0) < oo, it follows that i"_logS,(L)dil cannot diverge to + co, and there- 
fore must be either finite or diverge to - m. This integral diverges to - oo if, 
e.g., &(A) vanishes on an interval of positive Lebesgue measure. 

We will also need some regularity assumptions on the spectral density. 

L. The spectral density f, (A ,  w), A E ( - R ,  n] ,  W E  W, and the vector-valued 
function 

satisfy the following conditions Ll-L7. 

L1. The parametric integral I"_ log f, ( I ,  w) d l  is twice dgerentiable with 
respect td- parameter w. 

k2. The function f (A ,  w), I € ( - I T ,  711, w E is twice dzfferentiable with 
respect to w and the derivatives a fd l (A ,  w)/awj and a2 fT1(A, w)/dwjdwk are 
continuous for all w E W. 

k3. The vector function A(1,  w) is symmetric about I = 0, for A€(-71, IT], 

w E W, 2 W, where Wo is an open set. 

IA. For all W E  Wo, the function A(L, w)EL,((-x,  n]). 

L5. For all WEW,, & ( A ,  w)A(A, W)EL , ( ( -n ,  n ] ) n L 2 ( ( - n ,  K]) .  

U. There exists a K, 1x1 < 1, such that ILIKfa(A, w) is bounded, and 
tAl-"A(d, W ) E L ~ ( ( - K ,  R])  for all W E  W,. 
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L7. The r x r-matrix function Vw &(,I, w) A' (A, W) E L1 (( - rc, XI) for all 
 WE^ where W c  Wo. 

THEOW 4.4. Let C (x), x E Z1, be a Gaussian process satisfying assumptions 
of Theorem 4.3 and conditions K and L. If the matrix 

is nonsingular, then the minimum contrast estimators (4.24) are asympgotically 
normal, i.e., as T 4 a, - 

Remark  4.6. Under some additional conditions on the spectral density, 
the minimum contrast estmators are asymptotically efficient in the Fisher sense. 
Those conditions can be found, e.g., in Dzhaparidze and Kotz [20], Dahlhaus 
[16] and Guyon [36]. In principle, it is possible to prove Theorem 4.4 for the 
general (not necessarily Gaussian) linear processes using the central limit theo- 
rem for quadratic forms of random fields (see Heyde and Gay [39]). In such 
a case the limiting covariance matrix would contain some supplementary 
terms, see Giraitis and Surgailis [31]. Again, the above theorem has weaker 
assumptions than the comparable results of Fox and Taqqu 1241, Dahlhaus 
[I61 and Guyon [36], p. 145. This was achieved by having weaker assumptions 
in the consistency result (Theorem 4.3) and by applying a stronger central limit 
theorem due to Heyde and Gay 1381, [39]. 

4.3. Estimation of parameters d the rescaled solutions of the Burgers equation 
with weakly dependent initial conditiom In this subsection we will apply results of 
Section 4.2 to obtain estimates of parameters of random processes arising in 
Burgers' turbulence. In our approach we will rely on the approach proposed by 
Dzhaparidze and Kotz [20] and consider the problem of estimation of parameters 
of the spectral density (4.5) based on the observations of U(t, x), x~ [0, q, with 
a fixed t > 0, and T +GO. The locally averaged sampling (4.1) reduces the problem 
to the parameter estimation problem for the spectral density d$i l (a ,  w), 
- 7 ~  < A < 7~, w E given by (4.7), based on the sample Udl (t, x), x E (1, 2, . . ., T), 
T + oo (see Remark 4.1). We consider a parametric model of distributions P, and 
put Po = P,, (see condition F). 

Note that the spectral density f 2;) given by (4.7) admits factorization of the 
form 

where 

(4.29) 
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is positive, integrable, bounded and bounded away from zero on A E( -x, n] 
(see (4.7)). 

To estimate the time series parameters in the case of a spectral density 
with fixed zeros (see (4.28)) Dzhaparidze and Kotz [20j proposed to begin with 
the following transformation of the data: 

where - 

and then to consider the Whittle functional 

defined by (4.25), and based on the periodogram I , @ ,  p) i f  the process P(z), 
z = 1 ,  2, .. ., T {see (4.30)), with the spectral density fo (A ,  w) from (4.29). 

Let 

GT1 = arg min S(T1)(w) 
WEW 

be the minimum contrast estimator of the unknown parameter w obtained 
from minimization of the function (4.31). In view of Dzhaparidze and Kotz's 
result ([20], pp. 104-110) and Theorem 4.3, we obtain the following result. 

THEOREM 4.5. (i) Suppose that condition F is satisfied and functions 
c = c (q ,  9) and p (8) are such that the spectral density fo (A, w), -n < A < n, 
w E satisfies the identGability condition I .  Then oT1 5 w, as T -, CQ. 

(ii) Suppose, additionally, that functions c = c ( q ,  9) and ,x (9) are such that 
the function fo (A, w), -x < 1 < R, w E W defined by (4.29) is twice diferentiabk 
in W E  W the second derivatives are continuous on (-n, R] and the matrix 
El = E(f,@, wo)) defined by (4.27) is non-singular. Then the estimate I+,, is 
asymptotically normal and eflcient in the Fisher sense, as T -, CQ, that is 

Rem a r  k 4.7. If functions c (q ,  9) and ~(9.)  are twice continuously differen- 
tiable with respect to both arguments, and all derivatives of the first and 
second order are bounded and bounded away from zero when parameters 
belong to the corresponding compact sets (see condition F), then all the as- 
sumptions of Theorem 4.5 (ii) are satisfied. Moreover, for the model with two 
parameters: w = ( a ,  p)' and a = c &2-3/2 characterizing R (0) (we put t = 1) 
and p (8) = p > 0, condition I is also satisfied. This fact follows from the unique- 
ness of the Fourier series (4.9) for functions that are integrable in the square. 
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Another simple parametrization w = (q, CL)', where q > 0 is a parameter to be 
estimated (see (4.6)), is also identifiable. Other assumptions of Theorem 4.5 are 
also satisfied for these two parametrizations. 

Dzhaparidze and Kotz's [20] arguments can be simplified if we consider 
periodograms in the Fourier frequencies 

and define - 

where Z(x), XEZ', is a stationary Gaussian process with zero mean and the 
spectral density f,(A), -7t < 1 < x, defined by (4.29). Then, by the spectral 
decomposition theorem, ' 

where G (dA) is a complex Gaussian white noise on ((-IT, x], 99 ((-IT, x])). 
From (4.33), we obtain 

Then, from (4.21) we infer that the random field 

with fmed t > 0, has the covariance function 

Hence Uzl ((t, X) is L2 (Q)-equivalent to Udl (t, x), X E  Z1. We shall use the same 
notation for both processes. 

For (4.34) we obtain 

where the unobservable random variable Z(0) is independent of x. It then 
follows that the finite Fourier transforms at the Fourier frequencies ,Ij, defined 
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by (4.321, has the property 

because 

T 1-exp {iT;lj} - - - 
C exp { - ix l j }  = e ih  - 0 ,  j = 1 , 2 , . . . y  

x = l  1 - exp {i;lj] 

where the transformation ZS(x) of the observed discrete data U d l ( t ,  x), 
x~ ( l , 2 , .  . ., T), is defined as follows: 

It follows from (4.36) that the periodograms (see (4.29)) of the data (4.35) 
with one unobservable variable coincide with the periodogram of the data 
(4.37) at the non-zero Fourier frequences: 

IT (Ajy 3 = IT ( A j ,  z*) - 
The above fact reduces the problem of estimation of parameters of the spectral 
density f y1(2, w), given by (4.7) or (4.28), to statistical inference for the process 
Z(x),  x € Z 1 ,  defined by (4.33), which has the spectral density fa (A, w) given 
by (4.29). Statistical inference at the non-zero Fourier frequencies can be 
done in terms of the periodogram I , (Aj ,  Z*) of the transformed data Z* (x) 
given by (4.37). 

For 

we have the following result: 

THEOREM 4.6. Under the assumptions of Theorem 4.3 the estimate GTl is 
consistent and asymptotically normal Nl (0, 2.E;'), and asymptotically eflcient in 
the Fisher sense, as T -, oo. 

Remark 4.8. The limiting covariance matrix Z, in Theorems 4.3 and 4.4 
can be consistently estimated by 

which is computationaIly simpler than (4.27). 

3 - PAMS 21.1 
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Usually, it is not possible to solve the non-linear estimating equations 
VwSF(w) = 0 exactly (they are usually non-linear). Instead, one could deter- 
mine the estimates by the Newton-Raphson iteration. The resulting estimates 
have the same asymptotic properties as I$,, and I+,,. 

, Remark  4.9. Using the standard arguments (see Hannan [37], Rice 
[66]) one can prove that Theorems 4.3 and 4.4 remain true for estimates 
w*, = arg min,,, S$ (w), where S$(W) is defined by (4.32a) with fo (A, w) replaced 
by f , (A ,  w )  (which fulfills assumptions of the above-mentioned theorems). 

Now let us turn to the parameter estimation problem for the spectral 
density (4.5), based on the observations U = U (t, x), x E [ O ,  TI, with fixed 
t > 0 and using discretizations (4.2) and (4.3). These discretizations reduce the 
problem to parameter estimation of spectral densities f $!)(a, w), -x < L < 71, 

W E  W, i = 2, 3, given by (4.9) and (4.11), respectively. 
Let Udi = (Udi(tl I), .. ., Udi(t, T))', i = 2, 3, be data discretized through 

sampling procedures (4.2) and (4.3), respectively. Consider the corresponding 
Whittle functionals 

and 

THEOREM 4.7. (i) Let i = 2 or 3, and assume that conditions F and I (with 
Po f, replaced by A!)) are satisJied. Then, as T + c ~ ,  GTi+ w0.  

(ii) Suppose, additionally, that functions c(q, 8) and p (8 )  are such that the 
functions f $1 (A, w), - n < d < R, w E deJined by (4.9) and (4.1 I), respectively, 
are twice dlyerentiable in w E their second dmivatiues are continuous in L on 
( -n,  x], and the matrix Ci = E2(f$$)(L, w,)) defined by (4.27) is non-singular. 
Then the estimator $Ti is asymptotically normal and eficient in the Fisher sense, 
as T-, co, that is 

&(09 2zr1). 
Remark  4.10. If functions c(q, 9) and p(9) are twice continuously dif- 

ferentiable and the derivatives are bounded and bounded away from zero, then 
all the assumptions of Theorem 4.7 are satisfied. For a model with only two 
parameters w = (q, p)' E W c (0, the assumptions in Theorem 4.7 (ij(ii) 
are always satisfied. The condition I is also satisfied (see Remark 4.7). 

4.4. Estimation of parameters of the rescaled solutions of the Burgers equa- 
tion with strongly dependent initial conditions. We will now consider the problem 
of parameter estimation for the spectral density f (A, w), AER', w E W, defined by 
(4.13), based on the observation Y(t, x), x E [0, TI, with fixed t > 0. We con- 
sider a parametric model with probabilities P, and put Po = P,,. 
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After the locally averaged discretization (4.1) the problem is reduced to the 
problem of estimation of parameters of the spectral density 

given by (4.15) and based on the sample Y,, (t, x), x E {l , . . ., T). This spectral 
density is singular at zero (see (4.16)). Normalized periodograms of processes 
with such singularities can have some anomalous properties (see Hurvich and 
Ray [47]). In particular, the expectation of the normalized periodogram tends 
to infinity in this case (ibidem, Theorem 2). 

For the sake of simplicity, we select the discretization step in (4.15), (4.17) 
and (4.19) to be h = 1, but accommodating other step sizes can be routinely 
accomplished by replacing h by A/h. 

The spectral density f$!), given by (4.151, can be written in the form 

(4.39) fhil'(A, W )  = 11 -e-ia[2flo(/l, w), 

where 

(4.40) f ~ o  = f ~ o  (1, W )  

= p I/lIa-l [exp { -  2ptA2} 

+11111-* C 1;1+2kxla-1exp{-2pt(A+2kn)2)],  
k + O  

-x < 1, < x, w E K In analogy to (4.33H4.37) we can introduce the trans- 
formed data 

(4.41) Fl(x) = &(t, 1)+ ...+Y,,( t ,  x), x ~ { l ,  2,  ..., TI ,  

and 

where Yl (x), x E Z1, is a stationary process with spectral density fl0 given 
by (4.40). 

As in. the previous section (see (4.33H4.37)) we see that the periodograms 
of these two processes coincide at the non-zero Fourier frequencies (4.32): 

Thus the parameter w E W estimation problem for the spectral density f $2) is 
reduced to the estimation problem for the parameter w E W for the spectral 
density fl, (see (4.40)), based on the periodogram at the non-zero Fourier 
frequencies. The periodogram I ,  (Aj, TI) can be obtained in terms of discretized 
observations (4.41), and IT (A j ,  Y,) is a periodograrn of the stationary Gaussian 
process Y1 (x), XEZ', with the spectral density flo given by (4.40). It follows 
from (4.40) that, as 1 + 0, 
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This spectral density has a pole at zero. Statistical inference problems for 
processes of such type (called the long-memory processes or processes with long- 
range dependence) were considered by many authors, including Fox and Taqqu 
[24], Dahlhaus [16], Beran 141, Robinson [67]-[69], and Anh and Lunney 
[2]. It would be of interest to investigate the parameter estimation problems 
for the spectral density (4.39) without using transformation (4.41) and compare 
the two methods from the efficiency viewpoint. 

We begin with the special problem of estimation of the parameter a E (0, 1) 
alone and employ the semiparametric methods (see Robinson [67]-[69]). Pa- 
rameter a is called by various authors the parameter of seEf-similarity, the Hurst 
parameter, or the fractional parameter. 

The first simple method of estimation of parameter cr-was proposed in 
a paper by Geweke and Porter-Hudak [26]. It reduced the problem to the 
regression problem with asymptotically independent errors. Unfortunately, for 
long-memory processes it is not true that the normalized periodogram's or- 
dinates at the Fourier frequencies may be treated as asymptotically i.i.d. ex- 
ponential random variables (see Kiinsch [55], Hurvich and Beltrao [45], Igloi 
[49], Robinson [68]). In fact, both the limiting distribution and the limiting 
expectation of the normalized periodogram's ordinates at the Fourier frequen- 
cies ,Ij depend on j .  In view of these anomalies in the behavior of the periodo- 
gram at very low frequencies (i.e., frequencies of order 1/T) it seems natural to 
contemplate removal from the regression scheme of a block of very low fre- 
quencies of the periodograrn. 

This idea was pursued by Igl6i [49] and Robinson [68] who proposed 
to choose the ordinary least-squares estimates associated with the regression 
scheme 

where b = logp - y ,  y x 0 .5772 . .  ., is the Euler constant('), 

c j  = log IT (J - j ,  TI) + ? ,  
P lAjla- 

and Aj are Fourier frequencies (4.30). 
In what follows we shall have need for the following condition: 

M. The quantities I, m -P co in such a way that, as T + oo , 

(I) Recall that the Euler constant y can be defied via the asymptotic relation 
H ( N )  - log(N+l)+y,  N + a, where H ( N )  = 1+1/2+1/3+ ...+ 1/N is the partial sum of the 
harmonic series; see, e.g., Saichev and Woyczynski [7q, p. 97; also y = exp{-j"ee-tlogtdt). 



Stochastic Burgers' flows 37 

Under condition M the random variables t j  in (4.45) are asymptotically 
i.i,d. random variables with the Gumbel distribution F(u) =I-exp I-eU), 
u E R1. Its expectation is - y, and its variance is x2/6 = 1.645.. . 

The least-squares estimator of parameter a obtained from (4.45) has the form 

where Z = (Z1 + . . . , Z,)', V = (dl + . . . , dm)'. In the one-dimensional case, 
utilizing Robinson's [68] result we obtain the following theorem: 

THE~REM 4.8. Under conditions G and M, - 

E(oi,-01)' = O ( l /m)  and 2&(olT-a) 3 N ( 0 ,  n2/6). 

We plan to continue work on this type of semiparametric estimates of the 
fractional parameter ct using recent results of Robinson [67]-[69], Anh and 
Lunney [2], and Hurvich et al. [46]. Note that Giraitis et al. [28] presented an 
optimal choice of rn in such estimates. 

Next, consider the more general problem of estimation of the parameter 
w = (a, B, u2, $9)'~ W (see condition 6) of the spectral density flo given by 
(4.40), based on data (4.411, and using (4.43). These issues have been studied 
before. Fox and Taqqu [24j have developed the theory of estimation of pa- 
rameters of spectral densities satisfying condition (4.44). Dahlhaus [16] proved 
the asymptotic efficiency of their procedure and extended their results to more 
general parametrizations. Dahlhaus [16] also proved the asymptotic normality 
for the exact maximum likelihood estimates. Our approach will use that of 
Heyde and Gay [38], [39]. 

Following notation (4.32a), let 

and 

wgl = arg min Sa (w) . 
weW - 

THEOREM 4.9. (i) Suppose that  he condition G is satisfied and that the 
spectral density fol, given by (4.40), satisjes the iden@ability condition I. Then 
w?, -? wo in Po-probability, as T -+ m. 

(ii) If; additionally, the function p(8) is twice continuously diflerentiable in 
9 E O, all its derivatives ofthefirst and second order are bounded awayfiorn zero 
on $ E  0, and the matrix r ,  = E(f,, (A, wo)) (see (4.27)) is not singular, then, as 
T-? CQ, 

,/F(w:, - w,) 4 N ( 0 , z r y  I) .  

Remark  4.11. For the parametrization w = (a, p ,  p ) ' ~  W c R3 (Wa com- 
pact set) all the assumptions of Theorem 4.9 are satisfied. 
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Remark 4.12. Theorem 4.9 provides an alternative way of estimating 
fractional parameter u ~ ( 0 ,  1) as the only parameter (see Theorem 4.8), if we 
consider the one-parameter model w =  or^ [ao, ul] c (0, 1) and assume that 
other parameters are known. 

Remark 4.13. In Dahlhaus' [Id] paper one can find additional con- 
ditions under which our procedure becomes asymptotically efficient in the 
Fisher sense. 

Finally, consider the problem of estimation of the parameter W E  W for 
the spectral densities f if), i = 2,  3, given by (4.17) and 74.181, respec- 
tively. These densities have no singularities at zeto or at infinity (see (4.19) and 
(4.20)). 

Let Ki ( t ,  x), x E (1,  , . ., T ) ,  i = 2, 3, be discretized data obtained from the 
observation of Y ( t ,  x), x E [0, TI, using discretizations (4.2) and (4.3). Consider 
the minimum contrast estimates (see (4.22) and (4.24)) 

where w = (a, f l ,  a2, 9) E Rk+ (see condition GI. 

THEOREM 4.10. (i) Let i = 2 or 3. Assume that the condition G is satisfied 
and that the spectral density f 6:) satisfies the identijiability condition I .  Then 
GT, + wo in Po-probability, as T -, m. 

(ii) Suppose, additionally, that the function p(8) is such that the function 
fa:) is twice differentiable in ~ E O ,  its second derivatives are continuous on 
(-n, XI, and the matrix ri = Z(f $:)(A, w,)) deJined by (4.27) is non-singular. 
Then the estimator GTi is asymptoticaZ1y normal and eJSicient in the Fisher sense, 
i.e., as T -, m, 

J F ( G ~ - W O )  4 Xk+, (0,2rr1). 

Rem a r k 4.14. For the parametrization w = (a, P, a2, ,u)~, all the assump- 
tions of Theorem 4.10 are satisfied. 

5. PROOFS 

Proof of Theorem 2.1. We shall only indicate the main steps of the proof 
which is an adaptation of ideas of Albeverio et al. [I] for dimension n = 1. 
Following their Theorem 3, from (2.3) we obtain 
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m 1x1 -x2 -212 

= exp {B (0)/(4p2)) J [4np (tl + t,)] - exp - 
-a { 2 ~ ( t 1 +  t2) 3 

X ( ~ X P  ( B  lz ) /Pb2)}  - 1) dz, 

and 

where 
m 

X l  = exp ( B  (01/14p2)) J (exp (B (z)/i4~~~)1- l)dz. 
- m  

Then, using the method of moments with the diagram formalism (see, e.g., 
Breuer and Major [7], Giraitis and Surgailis [30], Leonenko and Deriev [57]) 
it is easy to prove that the finite-dimensional distributions of the renormalized 
field 

converge weakly, as p + w, to the centered, homogeneous Gaussian process 
with the covariance function given by (5.1). By the functional central limit 
theorem (see Albeverio et al. El], Theorem 2) we infer that the finite-dimen- 
sional distributions of the random fields f(tfi, x), (t, x)E(O, co) x R1 tend, as 
p+ w, to the distributions of the stationary Gaussian field 

with the covariance function x1 cov (B Itl, xl), B (t2, xZ)) = g (tl + t2, x1 - xZ), 
where G(.) is a complex Gaussian white noise. 

Then, asymptotically, distributions of the velocity field (2.3) can be ob- 
tained from- the formula u (t, x) = - 2 p  (8 (J (t, x))~~x)/J (t, x), where, in view of 
the law of large numbers, the denominator tends in probability to the constant 
EJ(t, x) = C ,  = exp (B(0)/(8p2)), while in the numerator the derivative com- 
mutes with the passage to the limit. Hence, by Slutsky's arguments, the finite- 
-dimensional distributions of the rescaled velocity fields t3I4u(8t, xJfi), 
(t, x)E(O, co) x R1, converge weakly, as /3 + a, to the finite-dimensional dis- 
tributions of the Gaussian field 
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The limiting field U ( t ,  x) has a moving average representation, so that it is 
stationary in x, zero mean, Gaussian, with the covariance function 

where the spectral density 

Putting a2 = 27tpt in the formula 

we obtain 

and 

Thus we proved (2.6) in the case F(u) = u (see Corollary 2.1). 
Then, taking derivatives of both sides of the identity 

m 

$ ( x )  = j exp {iAx - 12/(2rz))  d A  = w exp {( - x2 u2)/2), x E R1, 
-m 

we obtain 

-- a' *'XI - u2 ~ ( K I  x2 - I) exp ((- x2 u21/21j. 
ax2 

Putting lc2 = 1/(2p(t+s)) in the above formula we obtain, with the help of 
(5.2)-(5.4), the formula (2.5) in the case F (es) = u. For non-Gaussian processes, 
the full proofs are presented in Leonenko and Deriev [57] in the case t = s = 1; 
and the general case can be proved in a similar fashion. The pape~also con- 
tains specific applications of the diagram formula (see Step 5 in the proof of 
their Theorem 2.1). Related parabolic asymptotics is discussed, in a variety of 

. contexts, in Surgadis and Woyczynski 1841, [86], and in Funaki et al. [25]. 

Proof of Theorem 2.2. Theorem 2.2 can be proved following the main 
steps of Leonenko et al. [58],  [59], where the case F(u)  = u and t = s = 1 is 
considered. There is a little difference since in those papers the initial con- 
ditions are Gaussian. So, for example, in formulas (3.8) and (3.9) of Leonenko 
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and Orsingher [58] one only has to substitute 

The expression for the limiting variance (2.14) can be obtained by methods 
similar to those of (3.17) in Leonenko and Orsingher [58]. Below we just 
indicate the main steps in the proof. 

First, let us consider the Hilbert space L2(51) Hermite expansion for the 
local functional 

and apply it to the numerator of (2.3), to obtain 

where random variables 

Observe that ? l a ( t ,  x), (t, x)E(O, CQ) x R", is a Gaussian field because 
H l ( u )  = u. Since (see, e.g., Ivanov and Leonenko [51], p. 55) 

where 6; is the Kronecker symbol, we have 

where 

Changing variables via the transformations 

w2/2 = (x  f i - y ) ' /@pt /? )  and z2/2 = ( x ' f i -  y')2/(4pt/?), 
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and utilizing the basic properties of the slowly varying function L from con- 
dition E {see, e.g., Ivanov and Leonenko [51], p. 561, we have, for 0 < am < 1, 
m 3 1, and b+ a, 

Q ~ ~ ( X - - X ~ )  = - ' i i  wz$h (WI A (4 dwdz, o < o c < l / m .  
%,/L - m  - m  I(X-X~)/JZF-(WJI-Z&)I~ 

By the law of large numbers, the denominator of (2.3) converges in probability 
to a constant, as f l +  m, 

and it is easy to prove that lirna, Co qo (t, x) = 0. Then, as in Leonenko and 
Orsingher [58], we can show that, for 0 < u < 1 and f i  + oo, 

in probability. From (2.3) and (5.5H5.8) we obtain, with the help of Slutsky's 
argument, 

as B -+ a, where q ( t ,  x) is defined in Theorem 2.2. 
Next, (5.6) implies that the covariance function of the field Y(t, x) is as 

claimed in (2.14). The Gausianness of Y (t, x) follows from the fact that qla (t, x) 
is a Gaussian field defined by the first Hermite polynomial. 

The remainder of the proof is a modification of arguments in Leonenko et 
al. [60]. Let us show that the stationary in x random field Y(t, x), 
(t, X) E (0, 011) x R1, has the spectral representation (2.16) and the spectral den- 

sity given by (2.19). Using the self-similarity property G(d(aA)) & G ( ~ A ) ,  



Stochastic Burgers' flows 43 

a > 0, of the Gaussian white noise G, we can write 

exp ( -(x - ~ ) ~ / ( 4 p t )  + iAt} dy  I 
(t, X) E (0, a) x R1. Utilizing the identity - 

we have, with the help of (2.12) and (5.9), (5.10), 

- c: B1+K12 (M2 
(5.11) E IYg(t, x)- Y(t, x)I2 = ---- 

L (a) 
XtlL j [ y  x - ~  exp ( - (x - Y 12/(4pt) + ~ t )  dy 

2p - , -4 t (47Cpt)ll2 I 
x Je (IAvJB) F 3 1 4  G (d2) 

2 
- (q)3 "' L x p  ( i tA - -ptA21 I ]AI('- G (dA)l 

' 2 -, 
" A  exp {itL - ptA2) 

(x -7 Y )  exp {iAx - (x- Y ) ~ / ( ~ P ~ ) )  
dy] J* G ( d p  2Pt (4.rrPt)lJ2 p3t4 

- 0 0  

,I exp ( i d -  pt12) f11/2+aJ4 

nexp{ixa-pt~z} 2 

1'1(1 -")I2 I 
dy( (lil,fil 

= A1 (8) +A2 0, 
where cl (a) is given by (2.17). 
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The function t,b (A) = A2 exp ( ~ ~ A X - ~ ~ ~ A ~ ) / I R [ ~  -", AER', is absolutely in- 
tegrable. Using the Tauberian result (2.18), and properties of dowly varying 
functions, we infer from (5.11) that 

where, as j3 + co , 

For A 2 @ )  we have the following estimate: 

Hence limp+, A,( j )  = 0, and lima+, E IG (t, x)- Y ( t ,  x)I2 = 0, where Y( t ,  x) 
is defined by (2.16). Finally, applying the Cramer-Wold argument we obtain 
the assertion of Theorem 2.2, including the statement in Remark 2.3. 

Proof of Theorem 3.1. The statement (i) is a consequence of Theorem 4.2.1, 
and statements (ii) and (iv) are consequences of Theorem 4.2.2 in Ivanov and 
Leonenko [51],  but we must note that the convergence of the finite-dimen- 
sional distributions has to be proved by using the mixing condition (see Ivanov 
and Leonenko [51], p. 34). On the other hand, Buldigin [9] proved by the 
method of moments, without using mixing conditions, the central limit theorem 
for correlograms of Gaussian processes with a square-integrable spectral den- 
sity; and the proof of compactness of probability measures in the uniform 
topology (see Lemma 4.3.2 of Ivanov and Leonenko [51])  does not use the 
mixing condition. So, Theorem 3.1 is a combination of the results mentioned 
above. The proof of the last formula (3.3) is based on the formulas 

m 

e(x, y) = 2n J [eiA(x-Y)+e'"x+Y)] g2(A)dl 
- m  

and 

= exp ((- h2 c2)/2) c4 (h4 a4 - 6h2 g2 + 3), h €R1,  a2 > 0. 

Proof of Theorem 4.1. Let t > 0 be fixed. If f, (A), A I R1, is the spectral 
density of the stationary in x random field 5(t, x), t > 0, x€R1, then the 
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spectral densities fdi (A), -x < A <' n, i = 1, 2 ,  3 ,  o f  random fields Sdi (t , a), 
t. > 0, UEZ',  obtained from [ ( t ,  a) > 0,  a € R 1 ,  through discretizations 
(4.1)-(4.3), respectively, take the form (see Grenander [32], p. 250) 

where 
m 

K = fc(A) [ l  -l$(hA)l" dA, $ ( A )  = E exp (iAv,), I € R 1  
- w  

We note (see Mumford [65], p. 12, or Widder [96], p. 86) that the Jacobi 
theta-function may be defined as follows: 

(x, s) #(2mx,  O), m = O ,  f 1,  ..., 
and in this case the formula (4.4) is the Fourier series of a 2x-periodic function 
(5.15) (see Widder [96], p. 90). 

Now, apply (5.12) to the spectral density L(1) = g(A), R E  R1, given by (4.4), 
to obtain from (4.4), (424, (5.12) and (5.15) the formula (4.7). The last represen- 
tation in (4.7) is based on the product expansion for the theta-function 0 ( x ,  t) 
given, for example, in Widder [96], p. 92. Thus we have proved (4.7). Using the 
asymptotic relation 4sin2 ( 4 2 )  - ,I2, 1 -t 0,  we obtain (4.8). 

Next, let u ( x ,  s) = - 2a/axB(x, s). Using Theorem 2.1 of Widder [96], 
p. 88, we obtain from (5.15) 

a - 1 1 m 

-K(x ,  s) = -O(x, s)- C ( x  + 2kn)' eep - ( x  + 2kn)'/(4s)) 
ax s 2 s 2 f i k = - r n  

and 
m 

(5.16) (x + 2 k ~ ) ~  exp ( -(x + 2 k ~ ) ~ / ( 4 s ) )  
k = - m  
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because the theta-function 8(x7 s) is one of the fundamental solutions of the 
heat equation (see Mumford [65], p. 12). 

Put f, (A) = =(A),  A f R 1  {see (4.511, in formula (5.13). Then, in view of (5.16) 
with s = h2/(8pt), the Fourier series expansion for the theta-function yields 
(4.9). The relation (4.10) follows from (4.9) and Theorem 2.1 of Widder [96], 
p. 88. Formulas (4.11) and (4.12) may be proved by a similar argument, using 
(5.14) in place of (5.13)) and a direct calculation of the constant K in (5.14). We 
omit the details. 

Prmd of Theorem 42. The first part of (4.15) is a result of substitution of 
(4.13) into (5.12). The second part is the Fourier series for the first part because 
the series in the first part is a 27c-periodic function satisfying the Dirichlet 
conditions, and the Fourier coefficients of the function 

- 

41 

d(A,t)= C !P(A+2kn, t), 
k = - m  

are given by 

a, = J d (s, t) e-i"U ds = 1 J ep'm" Y(s+2kn, t)ds 
2x 0 2~ 

Then, as A + 0, 

A = s i [ l  2 
erp I-$} 
( 2pt(A+2k~)~}] + [A+  2knIU- exp - 

k*O h2 

lim F (A) 2)> 0. 
L-rO 

Thus (4.15) and (4.16) are proved. Similarly, if we substitute (4.13) into (5.13) we 
obtain (4.17), but in this case 

lim f 2;) (A) = lim - 
1-0 2-0 h&a[~il"ll 

The formulas (4.19) and (4.20) may be proved by similar arguments, using 
(4.13), (5.14) and direct calculations which are omitted. 
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We will precede the proof of Theorem 4.3 by quoting a result of Guyon 
[36], pp. 119-120, the proof thereof is based on the well-known WaId argument. 

THEOREM 5.1. Assume w H K (wo, w), w w ST (w), are Po-a.e. continuous, 
and that there exist Si + 0 such that lirnTd4) PO ( H T  ( l / i )  3 ai) = 0, where HT (E) 
is the modulus of continuity of ST(w), i.e., 

Then WT + wO in Po-probability, as T + a. 

Proof of Theorem 4.3. The proof is based on ideas of Walker [91], Ib- 
ragimov [48] and Hannan [3q, and for its completion it is suficient to verify 
assumptions of Theorem 5.1. 

Let h (E) = sup {If (A) - f 7 (lr)!: )A - A'( < E )  be the modulus of continu- 
ity of the function f (A). Defining 

n 

~ T I w )  = j rT(4f i1(n ,  w)daY 
-n 

we have 

sup{lV,(w)-k;.(w')l: w ,  W'E W, Iw-w'l a A{E)]  
A 

< h(s) I, (A) dA = 2nh (&)RT (O)? 
- X 

where R,(x) is defined by (4.21), and lim,,, h ( ~ )  = 0. This gives (5.17). 
Let us now prove that convergence in probability of the sample covariance 

RT (x) + R (x), T + oo (see the assumptions of Theorem 4.3), implies that 
S,(w) + S(w)  in Po-probability, as T -+ a, where ST(w) is defined by (4.23), 
and S(w) is defined by (4.25). Actually, it is sufficient to show that, for any 
continuous function q (A), 

in Po-probability, as T -r oo. Let M(A) = C sr e'" sv be an arbitrary trigo- 
nometric polynomial. Then, as T +  m, in 

Now, let q(A) be an arbitrary continuous function on (-n, x]. For any E > 0, 
one can find a trigonometric polynomial M (A) such that maxn lq (A) - M (A)1 $ E. 
Furthermore, we have 
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The first term on the right-hand side of (5.19) converges in Po-probability 
to zero, the second term is positive, and its expectation does not exceed 
2eS'Cnf,(l, wo) dl. Thus (5.18) is proved. 

From (5.18) it follows that, in Po-probability, ST (w)- ST (wO) + K (wO, w) 
as T -+ a, with 

because x-1 2 logx for x > 0 and x-1 = logx only for x_= 1. 
Now, (5.20) and the identifiability condition H imply that the function 

K (w,, W )  has a unique minimum at w = wo, and K (wo , w) >, 0. Thus K (wO, W) 
is a contrast function for the Gaussian Whittle contrast, which completes the 
proof of Theorem 4.3. 

Proof of Theorem 4.4 It follows from Theorem 1 in Reyde and Gay [38], 
[39] that under conditions K and L, as T -+ oo, 

- n  

where E(f,(lZ, w,)) is defined by (4.27). By the mean value theorem, under 
conditions L l  and L2 we obtain 

where Iw$-wol < ]wT-wOl, and V 2  = V -  V' = (8z/dwkawj)ls,,js,. Since w, is 
in the interior of F.t: Theorem 4.3 implies that, for large WT is also in the 
interior of W; and 

Since Vz ST (w) = (24-I  j:X VZ f (A, W) IT (A) dl, it follows from Theorem 4.3 
and condition L3 that, in Po-probability, 

X 

(5.23) V 2  ST ($1 + 2~ j fd (a, WO) CV2 f (1, ~011 d l  = (f (A, wO)), 
- X 

uniformly in w E because the function v2 f; (A, w) is jointly continuous in 
(A, w)' in view of condition L2. Remembering that, as T + a, 

= f i [  j ~ ( 1 ,  w)(lT(a)-f(l, W,))] d ~ + 0 ( 1 ) ,  
- A  

we obtain the statement of Theorem 4.4 from (5.22) and (5.21), (5.23), and (5.24), 
by Slutsky's argument. 



49 Stochastic Burgers' flows 

Proof d Theorem 4.5. There exist constants H and K such that 
0 < H < fo(A, w) 6 K < a, -x < A 4 n, and, from (4.7), (4.21) and (5.151, we 
can select 

So, the statement (i) follows from Theorem 4.3, and (ii) is a consequence of 
Dzhaparidze and Kotz's [20], Theorem 1, p. 113, and Theorem 2, p. 114. 

Proof of Theorem 4.6. By a standard argument (see, e.g., Hannan [37], 
Rice [66], Dzhaparidze and Kotz [20]) one obtains, as T 4 co, 

in probability, where Sy) is defined by (4.31). Thus Theorem 4.3 follows from 
Theorem 4.1. 

Proof of Tborem 4.7. It follows from (4.9, (4.1 l), and (5.4) that there exist 
constants H and K such that 0 < H < f # ) ( A ,  w) 4 K < 00, -n < A < X, 
i = 2, 3. For example, for i = 2 we can choose 

H = qh-2 (27~)~ exp { - 2pt ( 3 7 ~ ) ~  h - 2 )  

and 

Thus the results of Dzhaparidze and Kotz [20], Theorem 1, p. 113, and Theo- 
rem 2, p. 114, are applicable. 

Proof of Theorem 4.8. In the univariaie case, the c h i t i o n s  given by 
Robinson [68] are, in addition to condition M, reduced to the following ones: 

(1) There exist constants C > 0, v E(- 1, I), q ~ ( 0 ,  21, such that (A) = 
CA-'+ 0 (Aq-') as d + 0. 

(2) There exists a v E(- 1, 1) so that j", (A) diEerentiable and (d/dA) (A) = 
0 ( A - 1 - v / 2 )  in a neighborhood (0, E) of the origin. 

It follows from (4.40) that (1) and (2) are satisfied with v = 1 - a ~ ( 0 ,  1) 
and q = v. 

Proof of Theorem 4.9. Both assumptions of Theorem 4.3 are satisfied by 
the ergodicity and property (4.40). Thus we obtain statement (i). 

We also note that (4.26) is fulfilled for the spectral density f,, (A) given by 
(4.40). To prove statement (ii) we need to verify the rest of the conditions in 

4 - PAMS 21.1 
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Theorem 4.4. First, we note that in view of (4.40), as IAl + 0 (see the proof of 
Theorem 4.2) 

where 4b1 (1) = 0 (IIIa-I), 0 < m < 4b2 (A) 4 M < m. The constant that appear 
in the "big 0" may depend on the parameter w. 

All the first and second derivatives of the function fro'@, w)  with re- 
spect to WJ,  j # 1, are, by assumption, bounded and bounded away from 
zero on the compact set W So, we need to check the conditions L1-L7 for 
the first component of the function A (A, w) = - Vf ,-,1 (A ,  w ) =  (A , ,  . . ., A,)', 
where Al (A, w) = -(a/aaj f 2 (A, w). Using (5.25) one can prove that, 
as 111 -0,  

(5.26) f ~ o ' @ , w ) = O ( I i I ~ - ~ ) ,  ~ I O ( A ~ W ) = O ( I J I ~ - ~ ) ,  

Thus the condition I6 is satisfied, i.e., IllKfol (1, w) is bounded for some K, 
0 < K < 1, and A,(A, wjlill-'~ Lz( ( -x ,  n]). The rest of the conditions El-k5 
and L'7 are also satisfied as is easy to check using (5.2w5.29) and like ar- 
guments. We omit the details. 

f of Theorem 4.10. Part (i) follows directly from Theorem 4.3, while part 
(ii) is a consequence of a result from Dzhaparidze and Kotz [20], pp. 104-110. 
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