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Abstmct. The paper deals with continuous Banach-space-valued 
stationary random processes on linear spaces. From von Waldenfels' 
1131 integral representation of positive definite functions on a linear 
space S we derive an analogue of Stone's theorem for a group of 
unitary operators over 9. It is used to obtain spectral representations 
of a general Banach-space-valued stationary random process over 
2' and its covariance function. For the special class of Hilbert-Schmidt 
operator-valued stationary processes the expIicit form of Kolmogorov's 
isomorphism theorem between temporal space and spectral space is 
established and with its aid there are studied some prediction problems. 
Our prediction results are similar to those proved in [S ]  for multivariate 
stationary processes on groups. 

There have been many papers that generahe the theory of stationary 
sequences and stationary processes on the real axis. In our paper by "station- 
ary" we always mean "stationary in the wide sense". Generalizations are in two 
directions. On the one hand, there have been considered so-called Banach- 
-space-valued processes, i.e. processes whose values are bounded linear opera- 
tors from Banach space into a Hilbert space. On the other hand, the parame- 
ter set has been generalized: The integers or the real axis have been replaced by 
locally compact abelian groups or even homogeneous spaces. 

The present paper is devoted to the study of Banach-space-valued station- 
ary processes X on a linear space Y over R. The processes are assumed to be 
stationary with respect to the additive group of 9. If we equip 9 with the 
discrete topology, then we consider X as a stationary process on a IocaIly 
compact abelian group. But then we do not use the fact that Y bears a linear 
structure. The question arises whether it is possibIe to regard this additional 
property of 9. It turned out that it is possible if X has an additional continuity 
property; see Definition 3.2 of the paper. 

The starting point of our investigations is von Waldenfels' integral re- 
presentation of positive definite functions on 9, which generalizes the well- 
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-known Bochner theorem; see [13], Satz 3. Using this result in Section 2 of our 
paper we obtain a spectral representation of groups of unitary operators on 9, 
i.e. an analogue of Stone's theorem. If we apply our theorem to the group of 
unitary operators which corresponds to X in a natural way, we immediately get 
a spectral representation for X and for the covariance function of X; see Theo- 
rem 3.3. Unfortunately, the spectral representation for general Banach-space- 
-valued processes is not very useful in the prediction theory of such processes 
since up to now there has not been constructed a spectral space consisting of 
functions which is isometricalIy isomorphic to the Hilbert space spanned by the 
values of the process. Thus, in studying prediction problemswe restrict our 
attention to processes of the class CQS, i.e. to continuous Hilbert-Schmidt 
operator-valued stationary processes on 3; see Definition 3.4. 

For processes of the class CQS a spectral space can be constructed and 
Section 4 of the paper deals with the map of the space spanned by the values of 
the process onto the spectral space of the process. 

The result of Section 4 is an analogue of Kolmogorov's isomorphism 
theorem and makes it possible to study problems of linear prediction as ap- 
proximation problems in the spectral space. An isomorphism theorem of this 
type can be found in [9], Theorem 7.8; for some results in this direction see 
also [lo]. But since in our paper the space spanned by the values of the process 
differs from that introduced in [9], we give complete proofs of our results. 

Sections 5 and 6 deal with linear prediction problems of processes of the 
class CQS of the following type: Let 9 be the direct sum of some subspaces 
di4, and g2 and assume that g1 has finite dimension. Let Yl be a subset of Y1. 
Assume that the process is known on Yl + Y2 = (x, +x2: x1 E Y1, x2 E Y2). 
Construct the best linear prediction of an unknown value of the process on the 
basis of its values on Y1 + &. 

We show that such problems can be essentially considered as prediction 
problems for processes on The method to obtain our results is a direct 
integral representation of the spectral space of the process. An analogous 
problem was studied for multivariate processes on groups in [5]. The present 
results are simiIar to those in [5 ] .  

In our paper we use the following notation. By N and C we denote the set 
of natural and complex numbers, respectively. For two Banach spaces 9 and 59, 
k@(g 8 )  denotes the Banach space of bounded linear operators from 9 to 
3, equipped with the usual operator norm, and 93, ($8) denotes the space of 
bounded linear operators from 9 to 3, equipped with the strong operator 
topology. The norm in a Banach space 9 is denoted by I I - I I F  and the inner 
product in a Hilbert space A?' by (., -)*. If T is a linear operator, then T* 
stands for its adjoint operator and W (T) for the range of T. If X is a topological 
space, then by b (%) we denote the a-algebra of Bore1 sets. Let Y be a subset 
of a topological vector space g. Then L,Y denotes the closed linear hull 
of 9' in GY. 
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1. PBELliWiVARY FACTS 

Throughout the paper, let 2' be a Hilbert space and X be a separable 
non-trivial Hilbert space over C. The (possibly finite) dimension of X is de- 
notedbyq.WesetN,:= (1, 2, ..., q)ifq< m,andN,:=IVifq= co.Weomit 
the symbol X in the notation of classes of operators acting on X. Thus we 
write a for g(X, X), and gS instead of g,(X, X).  The identity operator on 
X is denoted by I. Let F be the Banach space of trace class operators on 
X and 9 (X, S) be the Hilbert space of Hilbert-Schmidt operators from X to 
2', i.e. TE 9 (x 2) if and only if T* T E S. We recall that the norm in Y is 
defined by 

HTlls : = tr(T*T)ll', TEX 

and the inner product in 9(X, 2) is defined by 

Here the symbol trT stands for the trace of an operator T E ~  i.e. 

where (ej)j ,N, denotes an orthonormal basis on X. The symbol T1I2 stands for 
the unique non-negative self-adjoint square root of a non-negative self-adjoint 
operator T The properties of the spaces 9 (X, 2') and F were studied in detail 
for example in (61. In particular, the spaces l ( X y  2') and F are separable 
spaces (cf. [6], p. 119). Moreover, the following simple but useful fact holds 
true. 

LEMMA 1.1. There exists a countable dense subset 9 in the Hilbert space 
9 of Hilbert-Schmidt operators on X .  Moreover, the set 93 is dense in W,. 

P r o  of. The first assertion is clear from [6], p. 119. Now, let T be a boun- 
ded linear operator on X and {P,),,, be a sequence of orthoprojectors on 
X with finite-dimensional range converging strongly to I if n tends to oo. Then 
the sequence {TP,),,N is a subset of 9 and converges strongly to T if n tends to 
oo. Hence 9 is a dense subset of 93,. Since the strong topology is weaker than 
the topology of the Hilbert space 9, the set 9 is dense in the set of Hil- 
bert-Schmidt operators on X, equipped with the strong topology. It follows 
that 93 is dense in 93,. 

We remark that if (Q, a, p) is a positive measure space and (Q,, a,) is 
a measurable space, then all relations between ( a ,  %,)-measurable functions 
f: D + 8, are to be understood as relations which hold palmost everywhere. 
Moreover, in the notation of the integration we will often omit the integration 
variable. Let X be a subset of a topological vector space. A map Z: 5Y is 
called an X-valued measure if Z is countably additive. 
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LEMMA 1.2. Let M: F be a 378-valued measure on the measurable 
space (a, a). Then M is a F-valued measure, 

P r o  of. We have to show that M is countably additive with respect to the 
Il.[lr-topology if it is countably additive with respect to the strong topology. 
Let { P , ] ,  be a sequence of finite-dimensional orthoprojectors on X tending 
to I in 8, if n tends to c ~ .  The mappings M, : = P, MP,, n G N, are countably 
additive with respect to the strong topology. But since the values of Mn can be 
considered as operators on the finite-dimensional space 9 ( P , J ,  the mappings 
M, are countably additive with respect to the 11-/IF-topology, On the other 
hand, for each A E 2l the sequence {Mn(A)}nEN tends to M (A) with respect to the 
11-lls-topology (see [a, p, 11 9, Theorem 6.3). According to [4], Theorem IV. 10.6, 
this yields the countable additivity of M with respect to the (I.llF-topology. 

Let 5' be the set of non-negative self-adjoint operators in F. Let M be 
a S"-valued measure on (a, a). Set p(A) := trM(A), A€%.  Then p is a non- 
-negative finite measure on (0, 8) and M is absolutely continuous with respect 
to p. Since the Banach space F has the Radon-Nikodym property, the Ra- 
don-Nikodym derivative dM/dp exists, and will be denoted by W The function 
W is a F" -valued (8, 5B (TI)-measurable function such that ( 1  W (o)l(, = 1 for 
p-a.a. o E W. We remark that from Lemmas 1 and 5 in 181 it follows that W1IZ 
is an (fl, 23 (9))-measurable function. 

Let d be the set of all (not necessarily densely defined and not necessarily 
bounded) linear operators on X.  Consider an d-valued function @ on D with 
the following properties: 

(i) The function dj W1I2 is defined and is a %valued Bochner-measurable 
function on 0. 

(ii) The integral { @W1I2 (@ W112)* dp exists as a Bochner integral. 
Two d-valued functions dj and Y with properties (i) and (ii) are called 

equivalent if QiW1I2 = lyW112. Let L2 (M) be the set of all equivalence classes of 
functions satisfying conditions (i) and (ii). As usual, we will work with represen- 
tatives, i.e. with functions instead of equivalence classes. 

THEOREM 1.3 ([9], Main Theorem 1, 4.19). The set L2(M) is a Hilbert 
space with inner product 

(9, !?')L2(w : = tr 1 @ W1I2 (Y W1I2)* d p  

= Str [@Wi12(lyW1/2)*] dp, 9 ,  Y E ~ ( M ) .  

2. STONE'S THEOREM FOR A GROUP OF UNITARY OPERATORS 
OVER A LINEAR SPACE 

Let 9 be a linear space over R and (9, +) be its additive group. We 
recall a theorem of von Waldenfels on the integral representation of positive 
definite functions on ( 9 ,  +). 
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Let be the one-point compactification of R, i.e. a:  = R u (a). A map 
cp: 9 -, R is calIed a quasi-linear functional on 9 if there exists a linear sub- 
space of 2' such that is a linear functional on Lf1 and the values of rp on 
Y\& are equal to a. By ( q ,  x )  we denote the value of a quasi-linear func- 
tional rp on the element x of 2' and by 9 the topological space of quasi-linear 
functionals on 9, equipped with the topology of pointwise convergence. We 
recall that 2 is compact. 

THEOREM 2.1 ([13], Satz 3). Let f be a positive definite C-valued function 
on (9, +) such that the map  R s A +  f (Lx) is continuous at 0 for each ~ € 2 ' .  
Then there exists a unique aon-negative finite regular Borel measure p on 3 (p)  
such that, for each X E ~ ,  we have 

~ ( ( c P E ~ :  { q , x ) = m ) ) = O  and f ( ~ ) = ~ e ' ( ~ ~ " > ~ ( d q ) .  
J 

Let v be a C-valued regular measure on B (2) and Ivl be its variation. The 
uniqueness property of the measure p in Theorem 2.1 yields the following 
general uniqueness result. 

COROLLARY 2.2. If  v is a C-valued bounded regular measure on 23 (d?) such 
that 

l v l ( ( c p ~ g :  ( q , x > = m J ) = O  and ~ e i { q ~ x } v ( d r p ) = O ,  ~ € 3 ,  
9 

then v is identically 0. 

Proof. We write v as a linear combination of four non-negative finite 
regular measures on b (p), i.e. v = vl - v2 + i (v, - v,). Let 

We have 

(2.1) fib) -f2 (4 + i ( f 3  ( X I  -f4 (4) = 0. 

Because of fj(x)* = fi (-x) we get 

Combining this with (2.1) we obtain f1 = fi and f, = f4y and by the uniqueness 
part of Theorem 2.1 it follows that vl = v2 and v3 = v4, whence v = 0. 

Let {U,; X E  9) be a unitary representation of (3, +) on the Hilbert 
space X,  i.e. we have a family of unitary operators U, acting on &' such that 
U, U, = U,,, for all x ,  YE 9. Assume further that for each x E 9 the map 
R3/2 + Uh is weakly continuous at 4 i.e. 
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We recall that condition (2.2) is equivalent to the fact that for each x E 9 the 
map R 3  h + Uh is continuous with respect to the strong operator topology. 

Using Theorem 2.1 we can prove an analogue of Stone's integral formula 
for unitary representations of locally compact abelian groups. 

THEOREM 2.3. Let dp be a linear spme aver R and {U,; x E T} be a unitary 
representation of the group (9, +) on the Hilbert space &'. Assume that {U,; 
~ € 9 )  has property (2.2). Then there exists a unique resolution of identity 
{ E  (B):  B s 8 (p)) such that 

(i) for arbitrary u, u E H the measure p,,, (-) : = (E  ( 7 )  u, v)* is a regular 
measure on %(g); 

(ii) f i r  each X E ~  and all u, o~ $? we have 

(2.3) l ~ u . v I  (Irp E 9: (9, X> = 4) = 0 

and 

(Ux  U ,  v)* = 5 ei<plx) (E  ( d q )  u, v ) ~ ;  
2 

(iii) a bounded linear operator on X commutes with every U,, x E 9, $and 
only ij it commutes with every E (B), 8 E 23 (9). 

Proof. Since the proof is similar to that of Theorem 2.2 in [Il], we will 
sketch it only. The assumptions of the theorem, Theorem 2.1 and the polariza- 
tion identity yield the existence and uniqueness of a C-valued bounded regular 
measure A,, on B ( 9 )  such that for all X E ~  the equality (2.3) holds and 

Moreover, the measure hvu is non-negative. 
From the uniqueness of the measure pug, it can be derived that for each 

B E  93 (g) the map (u, v) E $? x X -P p,, (B) is a semi-inner product on X. 
Since the sesquilinear functional p. , . (B)  is bounded, there exists a bounded 
non-negative self-adjoint operator E (B) such that p,,, (B) = (E (3) u,  v),, 
u, v E x, B E  3 (9). From the relations 

and from Corollary 2.2 it follows that 

1 ei("') (E ((d q) n B) u, v), = j ei('*y) (E (d q) u,  v)# 
2 B 

= ( E ( B ) u , u , u ) ~ ,  x , ~ E ~ P ,  U , V E Z ,  B E B ( ~ ) .  

On the other hand, we have 

(E (B) U,, u, v), = (u, u,  E (B) v), = j ei(q,y) ( E  (dq) U ,  E (3) u ) ~  
i? 
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and using Corollary 2.2 again we obtain 

Hence (E (B n 3) u, v ) ~  = (E  (B)2 u, v), , u, v E Sf', BE ?B (2). Thus E (3) = E (B)2 
is a projection operator and, consequently, {E (B): BE B (2)) a resolution of 
identity. Finally, for a T E  ( H ,  2) we have (U, Tu, v ) ~  = (TUX u,  u)* if and 
only if 

This means that T commutes with every E (B), BE 23 (2), by Corollary 2.2. The 
converse implication is obvious. 

1 BANACH-SPACE-VALUED AND HILBERT-SCWMIIIT OPEIPATOR-VALUED 
STATIONARY RANDOM PROCESSES ON LINEAR SPACES 

Let 9 be a linear space over W, a? a Hilbert space, F a Banach space over 
C and F* the Banach space of bounded linear functionals on 9. 

D E ~ T I O N  3.1. A Banach-space-valued stationary random process X on 
9 is a map X: 9 4~ BO(9, 8) such that the a (9, 9")-valued function de- 
fined by g(x, y): = X b)* Xl (x) depends only on the difference x - y, i.e. 

The function K is called the covariance function of the process X. For some 
of its properties, in particular its positive definiteness, compare [12], Sections 
1.1 and 1.2, and [I], Section 5. 

For a subset Y of 9 set X (9) : = E,(x (x) a : x E 9, a E 9). Particularly, 
the set X ( 9 )  is the subspace of &' spanned by the values of X. For x E 9 define 

The map U, can be extended to a unitary operator on X(9), which is also 
denoted by U,. It  is not difficult to see that the set (U,: ~ € 9 )  is a unitary 
representation of ( 9 ,  +) on X(9) with the property 

DEFINITION 3.2. A Banach-space-valued stationary random process X on 
9 is called continuous if for each x E 9 the map R 3 1 -, X (Ax) is weakly con- 
tinuous at 0, i.e. 

We recall that condition (3.2) is equivalent to several other continuity 
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conditions. In what follows we only need the property that (3.2) is equivalent to 
the fact: 

13-31 R EI A + UA, is weakly continuous at 0. 

Now we derive spectral representations for continuous processes and their 
covariance functions from Theorem 2.3. 

THEOREM 3.3, l e t  X be a Banach-space-valued stationary random process 
on 3 and B its covariance function. Then there exists a unique a,($, %)-valued 
measure Z and a unique B,(9, $*)-valued measure F on %(g) such that 

(3.4) (X (x) a, er)* = j ei('Plx> ( Z (dq)a, u)~, XEY, a ~ @ ,  UEX, 
2 

Moreover, for each a EF the measure (F (-) a, a) is non-negative. 

Proof. Using (3.1) and (3.3) we conclude from Theorem 2.3 that there 
exist regular measures A , ~  (-) : = ( E  (-) u, v), on 8 (2). We set Z ( a )  : = E (.) X (0) 
and F ( . )  : = X (O)* E (-)X(O) and see that (3.4) and (3.5) are satisfied. The unique- 
ness follows from Corollary 2.2. 

The measures Z and P are called the random and the spectral measures of 
the process X, respectively. 

For Banach-space-valued stationary random processes on locally compact 
abelian groups there have been proved several general prediction results (cf. 
1121 and [l]). Some of these results, for example the existence of the Wold 
decomposition of a process into its regular and singular parts, only depend on 
the fact that the underlying parameter set is an abelian group. Since (9, +) is 
also ai abelian group, such results hold also for processes on 9; we omit the 
details. 

In the following sections we will discuss special prediction problems for 
the class CQS of so-called continuous Hilbert-Schmidt operator-valued sta- 
tionary random processes on 9. 

DEFINITION 3.4. A continuous Hilbert-Schmidt operator-valued stationary 
random process X on 2' is a continuous Banach-space-valued stationary 
random process on 9 such that 9 = X is a separable non-trivial Hilbert 
space and the values of X belong to 9 (A'", A?). The class of such processes is 
denoted by CQS. 

Define z by z (3) : = tr F (B), B E 8 (p), and set G : = dF/dz. 
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THEOREM 3.5. The spectral measure F of a process % of the class CQS is 
a F3-uaiued measure. Farther, for the Y-valued function K we have 

P r o  of. The result follows immediately from Theorem 3.3 and Lemma 1.2. 
- 

From Theorem 3.5 it follows that for a spectral measure F of a process 
X of the class CQS one can construct the Hilbert space L2 (F)  as was done at 
the end of Section 1. It is called the spectral space of the process-X. The method 
of attacking linear prediction problems for a process X E  CQS is based on 
Kolmogorov's isomorphism theorem which enables us to study prediction 
problems for % as approximation problems in L2(F). 

Let q be the dimension of the separable Hilbert space X. Let Xq be 
the Hilbert space of all sequences (uj)jEN, =:(e( j ) ,  u~ES',  with the property 
I;=, 11 JI: < m. We recall that the inner product in X q  is defined by 

Let (ej)j ,Nq be an orthonormal basis in X.  Then for T E ~  ( X ,  2) the sequence 
(TeJ belongs to %'%cause we have 

Let X be a process of the class CQS and F its spectral measure. For a subset 
Y of 2' let O9 (X) be the right operator linear hull of the operators X(x) ,  x E 

i.e. 6, (X)  is the set of operators of the form 
I 

X(xk) T,, ~ ~ € 9 ,  T , E ~ ,  k = l , 2 ,  ..., n ,   EN 
A =  1 

Note that for an arbitrary u E X ,  u # 0, the set G,f TU: T E  0, (X)) coincides 
with X (9). Set Xq (9) : = E,, ((Tej):  T E O9 (X ) )  . 

LEMMA 4.1. Let XE CQS. Then for an arbitrary subset Y of 2' the spaces 
X ( Y ) q  and X, (9) coincide. 

P r o  of. Since, for each j E N,, z s ( ~ e j :  T E O9 (X)) coincides with X (Y), 
we have X, (9) G X (Y)q. NOW let (v j )  be an element of X (9)4 that is ortho- 
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gonal to X, ( 9 ) .  Then, in particular, 

Fix jo E Na and xo E 9 and choose the operator T such that Tej = 0 for 
j # j,, and Tejo = X (xo)* vjo. Then (4.1) simplifies to 

and hence X (xo)* vj, = 0. Since jo and xo may be arbitrarily chosen, it follows 
that for each  EM, vj is orthogonal to the range of all operators X(x) ,  XEY: 
and, consequently, ( v ~ ) ~ ~ ,  is orthogonal to X ( 9 ) q .  This proves the equality 
x, (9') = x (974. 

Let Oy be the operator linear hull of the functions e-  '{'.'> I ,  x E YY i.e. Oy is 
the set of functions of the form 

n 

e x p ( - i { - ,  xk))&,  x ~ E Y :  k = 1, 2, ..., n, n f N .  
k =  1 

The closure of U9 in is denoted by a,(F). Let 

be an arbitrary element of B9(X) .  We set 

THEOREM 4.2. Let XECQS and F be the spectral measure of X .  There 
exists an antilinear isometric operator Vfiom X , ( Y )  onto (F) such that (4.3) 
holds. Moreover, for an arbitrary subset Y of 9, the image of X,  (9) under the 
map V coincides with a9 (F). 

Proof. Let T E 09(X) be of the form (4.2). Then by Theorem 3.5 we 
have 
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Hence the map V defmed by (4.3) is isometric and can be extended to an 
isometric operator from X, ( 9 )  into L2 (F). This extension will also be denoted 
by K The antilinearity of V is clear and the relation VX4(9) = o,(F) is an 
immediate consequence of (4.3). It remains to show that the range of V coin- 
cides with L2 (F).  Let P be an element of ,!? (F) orthogonal to US (0. Choose 
a countable dense subset 5t of 9 (cf. Lemma 1.1). We have 

tr exp(- i (q, X ) ) D G  (q)lj2 (Y (q) ~ ( q ) ' l ~ ) *  t (dq) = 0, x E 9, D E 9. 
a 

From Corollary 2.2 it  follows that 

for z-a.a. q E 2 and all D €9. Fix q E 2 and choose (D, ) ,  G 99 which tends 
to Y (q) G(q) in 9 if n tends to co. From (4.4) we infer that 

and hence Y (y) G (q) = 0. This means that the kernel of Y (q) G (cp)lI2 contains 
the range, and hence the closure of the range of G(q)lJ2. Since X is the 
orthogonal sum of the kernel of G(cp)lI2 and the closure of the range of G (q)1J2, 
it follows that Y (cp) G(rp)'12 = 0. Since q was arbitrary, we obtain Y = O in 
L2 (4, which proves the assertion. 

5. SOIWE PREDICTION PROBLEMS AND THE SPACE L2(h') 

Let the linear space 2' be a direct sum of its subspaces 9, and $P2. 
Identifying an arbitrary x E Y of the form x = x1 +xz, xl E g1, xz E g2, with 
the ordered pair (xl , x2) we can and will consider 9 as the Cartesian product 
g1 x 9,. Let g(*)  be defined as 

For cp E PI0) define 

Then rpZ is a quasi-linear functional on $P2, i.e. belongs to P 2 ,  and 9, belongs 
to the linear space 9; of linear functionals on 9,. Moreover, we have 

Here we make the convention 1 + m = co for 1 ER. Conversely, if cpl E 8; and 
q2 E g 2 ,  we can define a quasi-linear functional cp E 9") by (5.1). Thus, we can 
identify each q E 9 ( 0 1  with the ordered pair (ql, cpz) and the set L?(O) can be 
considered as the Cartesian product 2'; x g2. 
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From now on, we will assume that the space TI has finite dimension d, i.e. 
LF1 and 9; can be indentified with the Euclidean space R ~ .  

Let 1Y be a process of class CQS. We deal with the following linear predic- 
tion problems : 

(A) Let gl be a subset of TI and set Y :  = Y1 x 9,. We ask the following 
question: when does the space X (9) coincide with X (P)? If both spaces X (9) 
and X ( Y )  are different we want to calculate the orthogonal projection of an 
element X (x) u, x E 9, u E H, onto X ( 9 ) .  , . 

(B) Let be an (Yl, +)-invariant system of subsets of PI, i.e. if x l  E T1 
and 9'l~JJl, then the set xl+Y1 belongs to f l .  Let f be the system 

y:=f1xdP2= {&xdP2: Y 1 ~ y l ) .  - 

The process X is cdled $-regular if 

(-) X ( 9 )  = 0. 
Y=B 

It is called f-singular if X (9') = X (9) for a11 9 E 3. How to decide 
whether a given process X is $-regular or f-singular? 

Let F be the spectral measure of X and T : = trF. From the proofs of 
Theorems 3.3 and 2.3 it follows that z ((q~ E g: (q, x) = m)) = 0 for each 
~€2'. Since the space Y1 is assumed to be finite dimensional, we obtain 

and hence z(g\g(O)) = 0. Thus we can restrict our considerations to gC0) 
without changing the spectral space L2(F) of X essentially. 

Denote by 23'') the product of the a-algebras 23(LZf) and B(9,): 

We have 23(O) E 23 (P(O)) and the inclusion can be proper in general. Let A4 be 
the restriction of F to 23''). Set p : = tr M and W: = dM/dp.  Since for fixed x E 9 
the function 

is (%('I, b(R))-measurable, we obtain an isomorphism theorem analogous to 
Theorem 4.2 with L' (F) replaced by (1M). Moreover, studying the behaviour 
of X(9) as a subspace of X(S) is equivalent to studying the behaviour of 
X ( Y ) g  as a subspace of X (LZIq. Thus, taking into consideration the results of 
Section 4 the prediction problems (A) and (B) can be formulated in an equiva- 
lent way as follows: 

(A') When does the space ag(M) coincide with L'(M) and how to cal- 
culate the orthogonal projection of a function e-'<',") I, X E  9, onto a,(M) if 

(M) does not coincide with (M)? 
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(B') How to decide whether rr ,  (M) = 0 or CTY (M) = L2 (M) for all 
YE$? 

In order to obtain some partial answers to the raised questions we write 
the space L2(M) as a direct integral. For the theory of direct integrals we refer 
to [3], A short account of all results necessary for our purposes can be found in 
[5], where the direct integral method was used in the study of analogous 
problems on locally compact abelian groups. 

6. DmECT MTEGRAL REPRESENTATION OF I? (M) - - 
AND SOME PREDICTION RESULTS 

We use the notation of the previous section. Let p1 and p, be the first and 
the second marginal measures of p, respectively, i.e. 

Pl(B1) : = ~.t Pl x 221, Bl f 23 w'i), 
and 

P2 (B,) : = P (9; x 321, 8 2  23 ( 9 2 ) .  

LEMMA 6.1. The measures p, and p2 are regular measures on B(8;) and 
S (gz), respectively. 

P r o  of. The regularity of p1 is clear since 3; is a finite-dimensional space. 
To verify the regularity of p2 it is enough to show that for each E > 0 and each 
B,E B (p2) there exists a compact set K2 s B, such that p, (B2\K2) < E. But 
since the measure z = trF is regular on 93(2), there exists a compact set 
K E B (p) such that K c 9; x B2 and z ((DEa; x B,)\K) < E (cf. [2], Proposition 
7.2.6). Since K is a subset of dp; x 2, = p(*), it even belongs to 23(9(')). Let 
n2 be the projection operator in 9") onto p2. From its continuity it follows 
that K, = n;, (K) is a compact subset of p2. Moreover, K 2  is a subset of B2 and 

LEMMA 6.2. There exists a function 

with the following properties: 
(i) For each B1 E 23 (Y1) the function g2 3 q 2  -, w (B1, q2) is (23 (gz) ,  

23 (R))-measurable. 
(ii) For each q , ~  gz thehnction B(Y;)3B1 + w(B1, q2) is a non-nega- 

tive regular finite measure on B (9;). 
(iii) For arbitrary B,  ~23(2'~) and B2 €23 (g2) we have 
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P r o  of. The result is a consequence of the theorem in Section 21.2 of [7]. 

For p,-a.a. rp, E g2 the function W ( - ,  p2) is Bochner-integrable with re- 
spect to w(., v,). Let M,, be a F2-valued measure defined as 

M,,(Bl) := 1 W(rp1, cpz)w(dv,, r p , ) ,  B l € % ( Y ; ) .  
31 

We wish to show that the Hilbert space L2 (M) can be identified with the direct 
integral 

In order to do this we have to show first that the direct integral 3 can be 
constructed. This demands the construction of a so-called fundamental system 
of vector fields (cf. [3], p. 164). 

Let 9 be a countable dense subset of 2 (cf. Lemma 1.1). Let 9f1 be a count- 
able dense subset of 2F1. It exists because P1 can be regarded as a finite- 
-dimensional Euclidean space Pr! For xl E TI and T E let %,,,, be a constant 
vector field on 9, defined by 

is. the values of %?xi,T are the functions 

independent of p2 . 
Let gg( be a countable set defined by 9, = x1 E B 1 ,  D E B}. TO 

verify that 9g forms a fundamental system of vector fields we have only to 
show that the functions of type (6.2) form a total set in each space L2(M$,), 
q2 E g 2 ,  if x1 and D run through g1 and 9, respectively. But this can be done 
as at the end of the proof of Theorem 4.2 if we additionally take into considera- 
tion that the functions 3 xl + exp (- i ( q l ,  x,)), ql E dP;, are continuous 
on Y1. Thus the direct integral $9 is well defined. 

Npw we introduce a map j by assigning to @ € L 2 ( M )  the vector field 

jQ) := (@(', 9 2 ) ) q Z E @ 2 .  

THEOREM 6.3. The map  j is a linear isometry of L2 (F) onto the direct inte- 
gral 9. 

Proof. For d k L 2 ( M ) ,  we have 
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and since the linearity of j is obvious, the map j is a linear isometry of L2(F) 
into 9?. Now assume that the vector field (Y ( . , . ~ I ~ ) ) , , , ~ , E  Q is orthogonal to 
the range of j .  Then, in particular, 

for all x, of a countable dense subset g1 of Sfl and all D of a countable dense 
subset 93 of 9. Since according to Lemma 6.1 the measure p, is regular, Corol- 
lary 2.2 implies that for p,-a.a. rp,~g, 

~ ~ P ( - ~ ( v I Y  ~I))DW(VIY V ~ ) 1 1 2 ( ~ ~ 9 1 7  ~?,)W(cpi~ ~ z ) l ' ~ ) * w ( d ~ ~ ,  ~ z )  = O  
Ji 

for all xl E g1 and D E 53. But since the functions of type (6.2) form a total set in 
L'(M,,) if x, runs through 9, and T runs through 9, it follows that 
!F(-, q2) = 0 in L2 (M,,) for p2-a.a. qz E p2. Hence 'P = 0 in %. 

Theorem 6.3 means that we can identify the space L'(M) and the direct 
integral 93. Let be a subset of 9, and Y = Y1 x 9,. Let P be the ortho- 
projector in (Ad') onto cry (MI. Let U9, be the operator Iinear hull of functions 

Let a,, (M,3 be the closure of 0% in L2 (Mp,). Let P(cpz) be the orthoprojector 
in p(M,,) onto a,, (M,,). The following theorem is basic for establishing our 
prediction results. 

THEOREM 6.4. The operator P can be identiJied with the direct integral of 
opera tors 

Pro0.f. The proof is divided into several steps. 
Step 1. The direct integral P : = J;~ P ( ~ ~ ) ~ ,  (dq,) can be d&ned. 
According to [3], Proposition 11.1.9, it suflices to show that there exists 

a countable subset of elements of 3 such that for p,-a.a. rp, E g2 the values at 
q 2  of the elements of this subset form a total subset of a,, (M,,). Let 9, be 
a countable dense subset of Y1 and $3 a countable dense subset of BS (cf. 
Lemma 1.1). Let 9% : = x1 E g l ,  D E 91, where % ,,,, is defined by (6.1). 
Fix q2 E 2'. Assume that Y E  a,, (M,,) is such that 

13 - PAMS 21.1 
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for all xl  and D €9. By a continuity argument, (6.3) is true for all 
x1  E Y1 and DEB. For an arbitrary T E  Bs let {D,),,,., G 9 be a sequence 
converging to T in gg if n tends to a. Since the operator norms of (D,), ,  are 
uniformly bounded, we easily obtain 

112 * 
(6.4) (tr (exp (- i<cpl, X I ) )  4 W(gr1, 82)"' (y(%) W(gr1 , 4%) ) )I 

G c II Y I I L ~ ~ + , ~ )  

with a constant c independent of xi and n, Moreover, according to [dl, p. 119, 
we have - 

and hence 

Relations (6.4) and (6.5) show that the Lebesgue dominated convergenoe theo- 
rem can be applied. Consequently, (6.3) is true for all x 1  E Yl and T E  a. This 

I 
1 shows that 9% is total in a,, (M,,), ~ , E P , .  

Step 2. The operator P" : = P (q2)  p2 (dCP,) is M orthoprojector. 

1 
This is an immediate consequence of the fact that the operators P(cp,), 

c p 2 €  p 2 ,  are orthoprojectors and of Proposition 11.2.3 in [3]. 
Step 3. The ranges of P and P" coincide. 
Let Y E  L2 (M) be orthogonal to 9 (F). Then 

for all ( x l ,  x2)  E 9 and T EB. Thus 'P is orthogonal to a, (M) = 9 (P), and 
hence W (P)  E 3 (p). 

Let f EW (F) be orthogonal to W (P). Then (6.6), Lemma 6.1, and Corol- 
lary. 2.2 imply that for pa-a.a. ~ ~ € 9 ~  we have 

112 * j exp(-i ( ~ 1 ,  x l ) ) D W ( v l ,  q2)l12(Y(cp1, q 2 )  WCq1, 9 2 )  ) w(dv1, ~ 2 )  = 0 
y i  

for all xl of a countable dense subset 5T1 of Yl and all D of a countable dense 
subset 9 of Bs, and hence for all elements of 9%. But since 9% is total in 
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cr, (M,,), it follows that Y I., q2) = 0 in LZ (M,,) for ,u,-a.a. q2  ~2,. Thus 
Y = 0 in p ( ~ )  and W ( P )  = $218. 

Now we use Theorem 6.4 to establish some prediction results. The results 
of Theorem 6.5 are immediately clear from Theorem 6.4. 

THEOREM 6.5. Let PI be a subset of T1 and Y = Yl x LZ2. Then 
ay(lM) = L'(M) i f  and only. if a,,(M,,) = L~(M,,) for p2-a.a. ~ ~ € 2 , .  If 
a,  (M) # (MI, then the orthogonal projection of Y EL' ( M )  onto a, (MI is 
equal to 

where P(rp2) is the orthogonal projector onto ayl (M,,) in L2 (M,,), qz E p2. The 
distance from !F to g~p(M) is equal to 

To obtain criteria for 9-sindarity or 3-regularity we have to impose 
some restrictions on the system #. 

We will say that the system fi of subsets of LF1 is countably generated if 
there exists a countable subset $; such that for each Yl ~ f - -  there exist an 
9'; €9' and x1 such that Yl = x1 +Yi. 

THEOREM 6.6. Let yl be a countably generated (PI, +)-invariant system of 
subsets of and 9 : = {Y1 x dP2 : Yl E El). Let X be a process of class CQS 
and let M be the restriction of its spectral measure to B(O). Then X is y-singular 
if and only if there exists a set B2 €%(g2) suck that p2 (3,) = 0 and 
ayl (M,,) = L2 (M,,) for all Y1 E A and all q2 E 22\~2. 

P r o  of. If the system f-  consists of countably many sets, then from Theo- 
rem 6.4 it foIIows that X is ,f-singular if and only if there exists a set 
B2 E B (p2) such that p2 (B,) = 0 and a,, (M,,) = L2 (M,,) for all Yl E 
and all ~ ~ , E P ~ \ B ~ .  Now note that ifY1 = xl+Y1, xl~2P1, Yl~Y1, ~ ' ~ E J P ; ,  
then cf9, (M,,) = L~ (Mpz) if and only if aspi (M,,) = L2 (Ad+,), q2 E&. 

THEOREM 6.7. Assume that the system $, contains a countable subsystem 
(Yo: j~ N )  such that 

&I 

n (MI = n asp[l) (w, 
YEP j=  1 

where YG) denotes the set 9(') := Y y  x P2,  EN. Then under the assumptions 
of Theorem 6.6 the process X is $-regular if and only if 

m 

(l uspp) (M,,) = (0) for pz-a.a. q2 E p2. 
j=1 - 
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Proof. If P, and Pa are orthoprojectors in a Hilbert space, then the 
orthogonal projector onto 9 (PI) n B(P2) is the strong limit of the sequence of 
operators {(PI P2)n},,,. Using Propositions 11.2.3 and 11.2.4 of [3] we infer by 
induction that the orthogonal projector in d (M) onto r);=, a,~, ( M )  can 
be written as the direct integral of operators Q = I:, Q (q2) p2 (drp2), where 
Q (q,) is the orthogonal projector in L2 (M,3 onto nT= =, uyp) (M,,). It follows 
easily that 

m 

n ~ S P I M )  = 10) = n cpu, (MI - 
Y e #  j= 1 

if and only if 
m 

uyy (Mp, )  = {O) for p2-a.a. q2 E p2. 
j =  1 

Remark 6.8. U s i n g  Theorems 6.6 and 6.7 and prediction results for sta- 
tionary processes on R one can obtain more concrete prediction results for 
processes of the class CQS if the space 9'' is one-dimensional. We omit the 
details and refer to Section 5 of [5] where analogous results were obtained for 
multivariate processes on groups. 
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