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Abstract. We consider the problem of estimating the tail of the 
distribution of the supremum of scaled Brownian motion ~ ( j ( t ) )  pro- 
cesses with h e a r  drift. 

I 
Using the local time technique we obtain asymptotics and 

bounds of 

which are expressed in terms of the expected value of the local time of 
B(f ( t ) ) - t  processes at level u. 

As an application we obtain upper bounds for the tail of dis- 
tribution of the supremum for some Gaussian processes with stationary 
increments. 
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1. Hntroducdon We consider the problem of estimating the tail of the 
distribution of the supremum for scaled Brownian motion B (f (t))  with linear 
drift: 

where B(t)  is a standard Brownian motion and f(t) is the scale function. 
It is well known that i f f  (t) = t ,  then P (sup,, , (3 ( t )  - t )  > u) = e-2". Dqbi- 

cki et al. [5 ]  considered (1.1) for the scale function f ( t )  = t2B, where H E  (0, 1). 
Using local time technique they obtained the upper and lower bound of (1.1) 
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and proved the asymptotic 

P(s~p,,0(3(t*~)-t) > U) 
lim = 1, 
u+ m tt=,o (4 

where l t l ~ , o  (u) = ELF (u; ( 3  (sZH)-s; s 2 0)) is the expected value of Iocal time 
of the process B(t2=)-t at level u. 

The aim of this paper is to generalize this result and to prove that the tail 
of the distribution of the supremum for scaled Brownian motion 3 (f (t)) with 
linear drift behaves as the corresponding expected value of local time for 
a much wider class of scale functions 5 - 

/ 

The paper is organized as follows. In Section 2 we introduce the idea of 
local time for scaled Brownian motion and present Lemma 2.2, which is of 
crucial interest for the method of proof. In Section 3 we obtain upper and lower 
bounds of (1.1), which are expressed in terms of the expected value of local time 
of B(f(t))-t. Section 4 deals with the asymptotic of (1.1), which is given in 
Theorem 4.1. We give some applications of obtained results in Section 5, where 
the class of Gaussian processes with stationary increments is considered. 

The distribution of (1.1) is related to the distribution of the supremum of 
Brownian motion with appropriate nonlinear drift. In particular, if f (t) is 
strictly increasing and f (0) = 0, then 

where g(t) is the inverse function to the function f (t). In Section 6, using (1.3) 
and geometric approach, we find exponential bounds of (1.1). 

2. Local times for SBM processes. In this section we introduce the concept 
of local times for scaled Brownian motion (SBM) with linear drift. Namely, we 
consider (B (f (t)) - t; t 2 01, where 3 (t) is a standard Brownian motion. We 
assume that the scale function f (t) satisfies: 

B1: f (t) E C1([O, a)) is a strictly increasing function of t. 

. B2: There exists E,, > 0 and to such that, for all t 2- to, the function 
- -- 

X2-m 

f (t+x)-f(t) 
is an increasing function of x 2- 0. 

Dgbicki et al. E5] considered SBM processes with the scale function of the 
form f (t) = tZH for HE (0, 1). Note that this class of scale functions belongs to 
the family of functions satisfying B1 and B2. 

The following function will play the crucial role in the sequel: 

1 "  1 (t + 
lfnr0 (u)= - J - exp ( --) 

f i t o m  2f (0 
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Let 

Z ( u ; { X ( t ) ;  f L to)) = 4 , ( u )  = limii l [X(O~(u-8 ,  u+6)]dt 
6 4 0  2s t ,  

be the local time of the process { X ( t ) ;  t 2 to )  at level u, where the limit exists 
almost surely. The existence of 2 (u; {X (t); t 3 to))  for X jt) = B (f (t)) - t can 
be proved following papers of Geman and Horowitz [ I  11, Berman [3] (see also 
Dqbicki et al. [S]). Moreover, there exists an explicit formula for the expected 
value of 9, (u). 

Remark  2.1. Note that by B2 we have H Y ( u ; ( B ( ~  (s))-s; s 2 to])  < m. 

Let 

be the hitting time of level u by B(f (t))-t after time to and v,(-) be its dis- 
tribution (note that v, is defective). By vz( . )  we denote the conditional dis- 
tribution of z(u) under the condition that z(u) < co. Consider jointly 
(9,, (u), .t (u)) under the condition that z (u) < a. Let E (2, (u) I r (u) = t )  de- 
note a version of the conditional probability of E(6P,(u) I ~ ( e r ) ) .  

The following lemma plays an important role in the sequel: 

LEMMA 2.2. If BB and B2 hold, then for a12 u 2 0, t 2 to ,  

where EO is  defined in B2. 
Before proving Lemma 2.2 we need the following result: 
LEMMA 2.3. If the function f ( t )  satisfies conditions B1 and B2, then: 
(i) for each t 2 to the function 

is strictly increasing fiorn 0 to co; 
(ii) it follows that 

for all z 0, t 2 to and deJined by B2. 
Proof. ti) is a consequence of assumption B2 and can be verified by 

standard calculations. We show only that y,(O) = 0. To see this notice that 

(2.2) 
z2 22 

lim yt2 (z)  = Iim = lim - = 0, 
z+o z -of(z+t)- f ( t )  z -*of l ( t )  

where (2.2) follows from the 1'HBspital theorem. 
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To prove (ii) note that from assumption B1 we have 

for all z 2 0, t 2- to. So we have only to show that 

- - 
From assumption I32 we obtain for all z 2 0, t 2 to 

which implies 

for all z 3 0, t 2 to. Hence 

where inequality (2.6) follows from (2.5). This completes the proof. FA 

Now we are prepared to prove Lemma 2.2. 

P r o  of of L emma 2.2. Let t 2 to be given. Since the process B(f (t))  - t 
has independent increments, we obtain 

In (2.7) we substitute 
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Note that from Lemma 2.3 it follows that the function 

is strictly increasing from 0 to m. Hence there exists an inverse zr(y). We have 

(2.8) E ( g o ( u )  I r (u) = t )  = J 
I 

Jz;; 0 J f m  

l a  =-I f - f  erp(-Y)dy 6 0 f ( x + f ) - f  ( t ) - fx f ' (x+d  

Now from Lemma 2.3 we obtain 

and 

This completes the proof. 

3. Bounds of distribution of the supremum of SBM. In this section we apply 
Lemma 2.2 to derive bounds of (1.1). 

THEOREM 3.1. If the function f ( t )  satis$es B l  and B2, then for each u > 0 

where E~ is defined in B2. 



Proof.  The idea is to consider 

E,t* (4 - - E g o  (4 
(3.2' 

P (sup,,, ( B  (f (t)) - ct) > u) P (sup*>, { B  (f (0) - ct) > u) 

We obtain (3.1) inserting the result of Lemma 2.2 into (3.2). a 

Dqbicki et al. [5 ]  used the local time technique to obtain bounds of (1.1) in 
the case off (t) = t2" for H E  (0, 1). The following corollary extends the result 
obtained in [5]. 

COROLLARY 3.1. Let f ( t ) ~  C2 (10, a)) be increasing arid such that there 
exists 1 > E > 0 such that far all t  > to 

Then for each u > 0 

Proof. Let E be such that (3.3) holds. By Theorem 3.1 it suffices to prove 
that the function f  ( t )  satisfies condition B2. In fact, we show that for each 
x>O, t > t o  

a x2-= 
- 
ax f ( t+x)-f  (t) a 

We have 

d x2-E - ( 2 - € ) X I - = ( f  ( t f  x)-f ( t ) ) -x2-=f f ( t+x)  (3-4) z f ( t  + x )  -f (t) - ( f  (t + x) -f 
Set 

F,(x) = (2-&)( f  ( t f ~ ) - f  I t ) ) - ~ f l ( t + ~ ) .  

The idea is to prove that Ft(x) 2 0 for all x > 0, t  > to. 
Let t  > to be given. We have 

Notice that 
* if f" ( t  + x) < 0, then, by (3.6), 
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if f" (t + x) 2 0, then, by (3.3), 

Hence F, (x) 3 0 for all x > 0, t > to, which completes the proof. m- 

Remark 3.1. Note that if f ( t)  E C2 ( [0 ,  a)), f ( t)  is increasing and con- 
cave, then Corollary 3.1 holds, which follows from the fact that f "(x) < 0 in 
this case. 

I 4. Asymptotic of distribution of the snprernum. Thorem 3.1 gi;es an upper 
l 

and lower bound of (1.1). In this section we give conditions under which the 
exact asymptotic of (1.1) can be expressed in terms of the expected value of the 
local time. 

We assume that f ( t)  satisfies Bl, B2 and moreover that 
I I 

I 

I B3: There exists a function T ( t )  + rn such that 
I 
I 

(4.1) 
I- (0 + m  f o r t + m  

Jf (t +I- -f ( t)  

and 

14.2) f f  (t + XIK' (t) + I 

uniformly for x E [0 ,  T (t)] when t + co. 

Note that the class of scale functions of the form f ( t)  = t2H,  H E (0, I), 
satisfies B1-IS3 for Y ( t)  = t("")/? In Section 5 we give other examples of scale 
functions that satisfy B1-B3. 

The main result of this section is given in the following theorem: 

THEOREM 4.1. If the function f ( t)  satisfies Bl-B3, then 

lim P (SUP. r to ( B  ( f ( t ) )  - t )  > u) 
= 1 ,  

u- m If,, (4 
i Proof. Following the proof of Lemma 2.2 we have 

!f,to (4 - EYl ,  (4 
P (sup, ,, { B  (f (t)) - et ) > u) - P (supt, ( B  (f (t)) - ctJ > u) 

where 



does not depend on u (J: (x) was defined by (2.1)). Since for tk + cc the mass of 
the measure &(dt) is moving to +m, it suffices to prove that 

Note that from the proof of Lemma 2.2 and (4.1) we obtain 

z; ' (Y (t)) = 
r ( t )  

-'a, Jf (t + (~1) -f ( t )  

which implies that for any y 2 0 there exists t* such that T ( t )  > z, ( y )  for t > t*. 
Hence to prove (4.5) it suffices to show that 

uniformly for x E [ O ,  T (t)] for t + CQ. This is a consequence of the following 
chain of transformations: 

where (4.7) follows from Taylor's formula with g ( t ,  x) E [0, x]  c [O, Y ( t)] ,  and 
(4.8) is a consequence of assumption B3. This completes the proof. rn 

Now we give two corollaries that will be of special interest in next sections. 

COROLLARY 4.1. Let f ( t)  E C2 ([O, CO))  be increasing and convex. If there 
exists 1 > E > 0 such that for all t > to 

then 

Iim P (SUPS 2 to (B (.l(t)) - t )  > U) 
= 1. 

u+ m b , t O  (4 
P r o  of. By Corollary 3.1 it suffices to prove that assumption B3 holds for 

the function f (t).  Let T ( t )  = tl-'/'. 
First we show (4.2). Note that f' (t) is increasing, so it suiXces to prove that 



Asymptotics of the supremum of scaled Brownian motion 207 

To show (4.11) notice that 

and 
t + t l  - i / e  

f ' ( t + t l - l i e ) - f r ( t )  = l f"(s)ds 
# 

#+ti - ' /r  

(4.13) f ' (4 < j (1-E)-ds  - 
# S 

t + t l -  l/e f ' (4 1 -as 
t s  

(4.14) = Iog ( t  + t" -13 f' (t  -I- t1  - I /")  -log ( t)  f f  ( t)  
t+t l -  ~ I E  

- j Iogts) f " (s) ds 
t 

< log (t + t1 - l'"f' (t  + t1  - I f ' ) -  log ( t )  f  ' ( t )  
t + t l - l l e  

-log ( t )  1 f" (s) as 
t 

= f '  ( t  + t 1  - l'") log 
( t  + t: - l ie )> 

where (4.13) follows from (4.10), and (4.14) is a consequence of integration by 
parts. Hence we get 

f' ( t  + t1 - I/") 1 

f '0) < 1 as t + m ,  
1 - log ((t + t1 - li"/t) 

which gives (4.1 1).  
To prove (4.1) notice that for t + oo 

I- ( t)  ( t)  

Jf ( t  + r (t)) -f ( t)  J f f  

where inequality (4.16) follows from (4.2). Equality (4.17) is a consequence of 
assumption B2. This completes the proof. a4 



C O R O L ~ Y  4.2. If f (t) E C2 ([0, a)) is increasing, concme and 

Proof. By Remark 3.1 and Corollary 3.1 assumptions BP and B2 are 
satisfied for J: To prove that B3 holds we take - 

To prove (4.1) we consider 

Notice that f ' ( t )  is decreasing (because f (t)  is concave), so it sufices to 
show that 

From ~aylor's expansion we obtain 

where e (t) E 10, Y(t)]. Hence it suffices to prove that 

But. from (4.19) we have 

f' (t) f" (t) 
- I = / ~ - o  f" (0 S'(t) 

as t-a. 

This completes the proof. at 
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5. Application to Gaussian integrated processes. Dqbicki et al. [ S ]  con- 
sidered the asymptotic of 

(5.1) P (SUP BH (t)  - t > u), 
$30 

where B,(t) is a fractional Brownian motion with tbe Hurst parameter H. For 
such a class of Gaussian processes with stationary increments, under the con- 
dition that HE (+, I), Dqbicki et al. [S] obtained an asymptotical upper bound 

- 
lim sup 

u-r m 

where 02, (t)  = D2 (BH It)). 
In this section we obtain an analogous result for another class of Gaussian 

processes with stationary increments which are important in Gaussian fluid 
models. Namely, we consider q (t)  = 1: Z (s) ds, where Z (t) is a stationary cen- 
tered Gaussian process with the covariance function R (t)  = Cov(Z (t), ~ ( 0 ) ) .  
We assume that R(t )  > 0 and is continuous. Let 

1 S 

nf (t)  = D2 (Y, It)) = 2 ds 1 ~ ( v ) d v ,  
0 0 

Note that a: (t)  E C2 [0, a) is increasing and convex. 

PROPOSITION 5.1. If Z ( t )  is a stationary centered Gaussian process with 
a positive and continuous covariance function R (t)  = Cov (2 (t) ,  Z(0)) such that 
tR ( t ) -0  as t-, co, then 

(5.3) lim sup 
P(sup,,ov(t)-t > u) < 

u+ m lo;,o (4 
Proof. Since the variance function a: (t)  of q(t)  is convex and q(t)  has 

stationary increments, we have the following relation between the covariance 
function r,(s, t)  of q(t)  and the covariance function rsc,a,(s, t )  of B(02 (t)): 

r,, ( s ,  t )  < rB{02) (s, t)  for each s, t 2 0. 

Moreover, r, (t, t) = r,(,;, ( t ,  t )  for each t >, 0. Thus from thg Slepian theorem 
(see Piterbarg [13]) we have 

15.4) ~ ( s u p q ( t ) - t  > u) 6 ~ ( s u p ~ ( o ~ ( t ) ) - t  > u). 
rBO t 3 O  

Since for each T >-0 



to obtain (5.3) it sdlices to verify assumption (4.10) of Corollary 4.1, that is to 
prove that for E = 1/2 there exists a point to such that for t > to 

6; (t)/&Z (t)  2 t/( 1 - 4). 
This follows from the fact that 

Hence the proof is completed. 

Proposition 5.1 covers mainly the case of short range dependence struc- 
ture of q (t). Another important class of Gaussian integrated-processes, that are 
considered in the theory of fluid models, are processes which have long range 
dependence structure. Recently Dgbicki and Palmowski [6] analyzed processes 

( t )  = fi Z(s)  ds, where Z (t)  is a stationary centered Gaussian process with 
covariance function R (E) = tZH-* L (t) for HE ($, I), where L (t) is slowly vary- 
ing at a. 

The following proposition deals with such a class of processes. 

PROPOSITION 5.2. If Z ( t )  is a stationary centered Gaussian process with 
positive and continuous covariance function R (t) = Cov (2 ( t ) ,  Z (0)) such that 
R (t) = t2H-2 L (t)  as t + oo and HE($, I), then 

lim sup 
u+ m 

P r o  of. The proof goes analogously to the proof of Proposition 5.1. Name- 
ly, it suffices to verify assumption (4.10) of Corollary 4.1. Since R(t) = tZH-' L @), 
from Karamata's theorem (see 141) we obtain 

- 2  ' t Z H - l ~  a, (t) = --- 
L 

2H-1 ( t ) ,  a: ( t)  = 
(2H - 1)  2H 

t2= L(t) 

far t 4 m. Consequently, there exists a point to such that for 0 < E < 2-2H 
and t > to 

6; (t)/ii,2 ( t)  2 t / ( l  - E )  , 

which completes the proof. 

6. A geametric approach. The distribution of P (supt3, 3 (f (t))- t > u) is 
related to the distribution of the supremum of Brownian motion with an 
appropriate nonlinear drift. In particular, if f ( t )  is strictly increasing and 
f (0) = 0, then 
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where g ( t )  is the inverse function to the function f (t). In this section, using (6.1), 
we find an exponential upper bounds of (1 .1 ) .  

For a given continuous positive function f (t)  define 

This function plays the main role in the sequel, 

T m m  6.1. Iff ( t)  E C1 (LO, a)) is increasing, concave and f (0) = 0, then 
for each u > 0 - 

(6.2) P (sup (B (f(f)) - t )  > u) 3 exp (- Mf (u)). . 
130 

P r o  of. Let g (t) be the inverse function to f (t). Note that g ( t )  is increasing 
and convex. 

The proof is based on the observation that k, ( t)  = g' (x) t + g ( x )  - g1 ( x )  x is 
the tangent function to g ( t )  at point x (x > 0).  Using a geometric approach we 
have 

2 P (sup {B (t)  - k, (0) > u) 
t B O  

for all u > 0. Inequality (6.3) is a consequence of concavity of g(t) .  Inequal- 
ity (6.4) follows from the fact that the function - 29' ( x )  (g (x )  - g' (x)  x + u) 
takes its maximum at xu such that g (xu) - g' (xu) xu + es = 0. Moreover, since 
f ( t )  is the inverse function to g (x), we obtain - 2g' (xJ (g ( x 3  - g' (xu) xu + u) = 

= -Mf(u) .  

Remark 6.1. The supremum of the Brownian motion with nonlinear 
drift B(t)-t11(2H) for H E ( O ,  1)  was studied by Debicki et al. [5] .  Other papers 
with nonlinear drift are Ferebee [9], [lo] and Jennen [12]. 
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