PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 21, Fasc. 1 (2001), pp. 231—251

ON ¢-DEFORMED QUANTUM STOCHASTIC CALCULUS
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PIOTR SNIADY* (WROCLAW)

Abstract. In this paper we investigate a quantum stochastic cal-
culus built of creation, annihilation and number of particles operators
which fulfill some deformed commutation relations.

Namely, we introduce a deformation of a number of particles
operator which has simple commutation relations with well-known
g-deformed creation and annihilation operators. Since all operators
considered in this theory are bounded, we do not deal with some .
difficulties of a non-deformed theory of Hudson and Parthasarathy
[8]. We define stochastic integrals and estimate them in the operator
norm. We prove Itd’s formula as well

1. INTRODUCTION

The aim of this paper is to construct a quantum stochastic calculus in
which all operators are bounded and which would unify classical examples we
mention below.

1.1. Classical examples of quantum stochastic calculi. The fundamental
observation which inspired the development of Hudson—Parthasarathy sto-
chastic calculus [8] was that a family of commuting self-adjoint operators and
a state 7 induce (by the spectral theorem) measures which can be lnterpreted as
jOlIlt distributions of a certain stochastic process.

" The most important examples are B(f) = A(t)+A* (t), which corresponds
to the Brownian motion, and P,(t) = \/_ B(t)+ A(t)+It1, which corresponds to
the Poisson process with intensity /. Quantities A (t), A*(t), A(t) (¢ = 0) called
annihilation, creation and gauge processes, respectively, have values being
unbounded operators acting on some Hilbert space called a bosonic Fock
space. .
For all s, t > 0 they fulfill the following commutation relations:

1) L4(), A(s)] = [4*(@), A*(5)] =0,
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) | [4(), A()] =0,

@) [4(), A*(s)] = min(z, 5)1,
@ [4(®), A(s)] = A[min (, 5)],
'(3) [A (), A*(s)] = A* [min (¢, 5)].

In the Fock space there exists a unital cyclic vector £2 such that A (t) Q2 = 0. The
state 7 is defined as follows:

1(8) = <R, SQ.

Stochastic integrals with respect to the Brownian motion or Poisson
process can therefore be written as integrals with respect to creation, annihila-
tion and gauge processes. A stochastic calculus in which such integrals are con-
sidered was constructed by Hudson and Parthasarathy [8]. However, the fact
that operators considered in this theory are unbounded causes serious tech-
nical problems. For example, equations (1)~(5) can be treated only informally
and have to be clarified in a more complicated way. Moreover, a product of
two stochastic integrals (considered in It6’s formula) is not well defined and has
to be evaluated in the weak sense.

The second important example is a fermionic stochastic calculus (see [1]
and [2]) in which in equations (1)-(5) commutators were replaced by anticom-
mutators. )

The third group of examples is connected with free probability in which
the notion of classical independence of random variables was replaced by
a noncommutative notion of freeness. Biane and Speicher [3] considered in-
tegrals with respect to the free Brownian motion which are a generalization
of I1t6’s integral. On the other hand, the approach of Kiimmerer and Speicher
[9] is rather related to the calculus of Hudson and Parthasarathy: a free Brow-
nian motion is represented as a family of noncommuting self-adjoint operators
B(t) = A(t)+ A*(t) (t = 0), where A(t), A*(¢) fulfill only a relation

6 - A(t) A* (s) = min (t, 5)1

for all t,s >0 and a state 7 is defined as 7(S) = {(Q, SQ) for a unital cyclic

vector Q such that A4 (t) Q2 = 0. Stochastic integrals are evaluated with respect to
A(t) and A*(t) separately.

1.2. Overview of this paper. In order to avoid problems of Hudson and
Parthasarathy’s theory we postulate that all operators considered in our sto-
chastic calculus should be bounded. Therefore, we shall replace commutation
relations of Hudson—Parthasarathy’s calculus by some deformed analogues.

We start with the g-deformed commutation relation which was postulated
by Frisch and Bourret [7]:

(7) a(¢)a* () = qa* W) a($)+<¢, ¥>
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for all ¢, Yy e, where # is a Hilbert space, a(¢), called an annihilation
operator, and its adjoint a* (¢), called a creation operator, are operators acting
on some Hilbert space I. ’

If in equation (7) we take g = 1, we obtain a bosonic commutation relation
(3), for g = —1 we obtain a fermionic anticommutation relation, and for g = 0
we obtain a free relation (6). Therefore g-deformed commutation relation uni-
fies these three basic cases.

In Section 2 we shall repeat Bozejko and Speicher’s [6] construction of the
g-deformed Fock space Iy and bounded operators a(¢), a* (¢) which fulfill (7).
Furthermore, we construct a bounded operator 4, which acts on I'y and is
a deformation of the Hudson—Parthasarathy gauge operator and an auxiliary
operator y,: Iy — I, which is a deformation of the identity. We show com-
mutation relations fulfilled by these operators. It turns out that these com-
mutation relations allow us to write any product of these operators in a special
order which is a generalization of Wick or normal ordering.

In Section 3 we define stochastic integrals with respect to four basic pro-
cesses: annihilation A (t), creation A* (t), gauge A, (t) and time T'(t). Since in the
noncommutative probability the integrand does not commute with the in-
crements of integrator, we have to decide if the integrand should be multiplied
from the left or from the right by the integrator. In fact, we shall investigate
even a mote general case, namely after Biane and Speicher [3] we consider
so-called bioperators and biprocesses, so that the increments of integrator are
multiplied both from the left and the right by the integrand.

Just like in the classical theory we first define stochastic integrals of simple
adapted biprocesses and then by some limit procedure we extend stochastic
integrals to a more general class of biprocesses.

In Section 4 we show that (under certain assumptions) an integral of

a stochastic process in again an integrable stochastic process and that such an
iterated integral is continuous.

Section 5 is devoted to the central point of this paper, It6’s formula, which
can be viewed as an integration by parts.

2. DEFORMED CREATION, ANNIHILATION
AND A NUMBER OF PARTICLES OPERATORS

2.1. Fock space. Let 5# be a Hilbert space with scalar product (-, ->.
Elements of s will be denoted by small Greek letters: ¢, y, ...

We shall denote the standard scalar product on s#®" by (-, D¢, and call
it a free scalar product. #®" furnished with this scalar product will be denoted
by # 2. By I'tree (#) or simply I',.. we shall denote the direct sum of # 2%,
neN = {0, 1, 2, ...}. The space # ®° which appears in this sum is understood
as a one-dimensional space CQ for some unital vector €.
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If E: D (E) > Igyeo for D (E) S I'ge is a (possibly unbounded) strictly posi-
tive operator, we can introduce a new scalar product <-, ->g = {*, E*)¢e and
a Hilbert space I'y(#) or simply I'g, which is a completion of 2 (E) with
respect to {-, *>g. The norm in I'y will be denoted by |[‘||g.

We choose now a parameter of deformation ge(—1, 1) which will be fixed
in this paper.

For ne N we introduce after Bozejko and Speicher [6] a g-deformed sym-
metrization operator P™: s#®" — #®" which is a generalization of a symmet-

rization (for g = 1) and antisymmetrization (for ¢ = —1) operators:
P(")('h@---@‘//n) = Z qmm Vo)®. .. @V s(m»
0eSn
where inv(0) = # {(, j): i,je{l, ..., n}, i <j, 6(i) > o(j)} is a number of inver-

sions in permutation o.
THEOREM 2.1. P™ is q strictly positive operator.
The proof can be found in [6]. =

By P: 2(P) - Igree (2 (P) < I'g,.e) We shall denote a closure of the direct
sum of P™, and by I we shall denote I'p. Since it does not lead to confusions,
by <, -> we shall denote both the scalar product in # and the g-deformed
scalar product (-, ->p in the Fock space I', and by ||-|| both the norm in I" and in
# . Elements of the Fock space will be denoted by capital Greek letters: &, ¥, ...

From now on #®" will denote the tensor power of # furnished with
g-deformed scalar product (-, *). ‘

Let IT;: I > #®/ denote the orthogonal projection on #®.

The state = which plays the role of a noncommutative expectation value is
defined as t1(X) =<Q, XQ) for X: I'—>1T.

2.2. Operators of creation and annihilation. For ¢ € # we define actionA of
operators a(¢), a*(¢): Iy — I on simple tensors as follows:

@) a* (D)1 ®...QY,) = ¢BY1®...QYn,

O aDE®... @) = 3 4D VOO Bl 1@V ® BV

2.3. Number of particles operators. Now we need to introduce a deformed
analogue of a number of particles operator known also as a gauge operator or
a differential second quantization operator. For this deformation we require
the operator to be a bounded operator and to have simple commutation rela-
tions with a(¢) and a* (¢).

For a bounded operator T: # — 3 we are looking for A(T): I, — I'y the
action of which on simple tensors is defined as:

ADW1®...0%) = 3 [0)Y:®...0%  BTHI®Yi: 1 ®.. B
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Except the factor f(n) this definition coincides with a non-deformed gauge
operator. This factor was added in order to make A(T) a bounded operator. As
will be proved in Lemma 2.3, this holds if and only if sup,|f(n)|n < co.

The choice of f(n) = u" for a complex number u (Ju| < 1) seems to be the
easiest solution. Therefore we define

10) AN B = 3 K8 BYi 1O THIOV::1®... O,

As we shall see in Section 2.4 in order to interchange the deformed number
of particles operator with creation or annihilation operators we need to in-
troduce for |u| <1 an operator y,: I, — I'y as follows:

11 T ®...0%,) = 'Y ®...QY,.

This operator is a deformed identity operator and for u = 1 is equal to identity.

THEOREM 2.2. For ¢pesf, |u| <1 and a bounded T: # — H#, operators
a(¢), a*(¢), A,(T) and y, are bounded and

ligll
” ull = 1, = [|a* “ S —F,
Vall lla ()l = lla* (¢) =]

4, (DIl < Tl supn |ul".
neN
Operators a*(¢) and a(¢) as defined in equations (8) and (9) are adjoint as the
notation suggests. Furthermore we have

[ (D)]* = 2a(T*), 7% =7
Proof. It is obvious that for |u| <1 the operator y, is a contraction.
The second inequality will be proved in a more general context in Sec-
tion 3.3.

Since #°®" are mutually orthogonal invariant spaces of 4, (T), from Lem-
ma 2.3 it follows that

I (Dlir-»r = sup 14, (Dllseon-s sron = 5up 14, (Tl etn ez < I Tl supr |uf"
- neN neN neN
The proof of the fact that a(¢) and a*(¢) are adjoint can be found in [6].
Proofs of the remaining two equations are straightforward. =

LemMMA 2.3. Suppose that v; (i = 1, 2) are vector spaces. ¥; furnished with
scalar product {:,-); is a Hilbert space denoted by A;.

If Pi: #y— A, are strictly positive bounded operators, we can furnish
¥ with another scalar product {-, P;»;, and the resulting Hilbert spaces will be
denoted by A7.

Then operator norms of S: Ay — A, and S: A{ — A, are equal for every
operator S: ¥y — ¥, such that SP, = P,S.
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Proof. For any polynomial f(x) we have Sf(P,)=f(P,)S. Therefore,

by approximating the square root by polynomials, we obtain S./P; = /P, S.
Note that for ve¥] we have

ISoller, = [/P2 Stll, = IS /P tllr, < 1St ssea [P vl = [1Sllgi oty -
Consequently,
(18117 5 < 1Sl o02-
If in the preceding calculations we replace ¢; by # (and vice versa) and
replace P; by P; !, we obtain the converse inequality. m
2.4. Commutation relations.

THEOREM 2.4. For ¢, ye#, a bounded operator T: # — H# and for
lul, |l < 1, the following equalities hold:

(12) a(p)a* () = qa* (p) a(@)+<o, ¥,

(13) a(@)y, = wypa(9),

(14) Yua* (@) = pa* (9) v,

(15) a(P) 4,(T) = pd, (T) a(@)+ py, a(T* ¢),

(16) Au(T) a* (¢) = pa* (¢) A, (T)+ pa* (T) v,

17) Aa(T)yy = 72 (T) = A (T),

(18) YWy = Ve

If bounded operators Ty, T,: # — A commute, then '
(19) I (T4 () = A(T3) A, (Ty).

The proof is straightforward and we omit it. m

Since y, is equal to identity, we see that in the limit g, 4 — 1 relations (12),
(15), (16) and (17) correspond to non-deformed relations (3), (4), (5) and (2).
- ‘Note that contrary to the non-deformed case among these commutation rela-
tions there is none which would allow us to interchange the order of adjacent
two creation or two annihilation operators.

2.5. Algebra 7. Suppose # = A @A+ and #"* is an infinite-dimensional
separable Hilbert space. We denote by . (#) an algebra of bounded ope-
rators acting on ¥, generated by operators a(¢), a*(¢), v, 4.(T@0) for
all pe’, |yl <1 and bounded operators T: A — . We shall denote by
Ay (H#) the completion of &g,y (#) in the operator norm.

2.6. Normal ordering. In algebras generated by (bosonic, fermionic or g-
-deformed) creation and annihilation operators one introduces normal or
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Wick’s ordering where in each expression one writes creation operators on the
right-hand side and annihilation operators on the left-hand side. Now we in-
troduce an analogue of such an ordering in algebras &y,.

THEOREM 2.5. Every element S of an algebra of ¢, can be written as a finite
sum of products of the following form: on the left-hand side — creation operators,
some A,(T) operators, a y, operator (for some p, |u| < 1), and on the right-hand
side — annihilation operators:

(20) §= Z a* (¢i1)- . .a* (Pin)) Avyy (Tin)- - -llvm, (T Vma(Wir)...a (l//'_im,-)-

Proof. Note that an expression is in the above-mentioned form if and
only if it does not contain any subexpression being the left-hand side of one of
equations (12)18). If it does not hold, by replacing the left-hand side of the
appropriate equation by the right-hand side, we obtain an expression (or a sum
of expressions) which is either shorter or has the same length but a smaller
number of disorderings. We can easily see that this procedure has to stop after
a finite number of iterations. =

By «#*" we shall denote the completion of the space of operators which
can be written in the normal ordering (20) with exactly k& creation operators
a*(-) and [ annihilation operators a(-). Let

A*) = P g* and A =P L*D,
: leN keN
For an integer number n e Z we define .o/ to be a completion of the space
of operators which (not necessarily in the normal ordering) contain exactly
n more creators than annihilators,

A= @ %D,
kkl!IE g n ‘
For Seof, ne Z, let S" e o™ be a part of S which contains exactly n more
creation than annihilation operators. More precisely, -

S["] = Z Hi+nSH,'.
icZ
i20,i+n20

Note that ||S™]|| < ||S|| because
IS P2 = leﬂi+nsni PII? < Z“SHi P’ < ||SI|ZZ|IHi P(12 = |ISHI1%11°.

2.7. Extension of operators.

LemMMA 26. If #=ABYF, and Hp= A DL, where &L and &,
are separable infinite-dimensional Hilbert spaces, then there exists exactly
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one continuous *-isomorphism V: sy (#,) — Ay (#,) of Banach algebras, which
maps operators a(¢p), a*(¢), 4,(T), v, € Ay (H#}), respectively, on a(¢p), a*(¢),
Ay(T), y €y (3H,). Moreover, this x-isomorphism is an isometry.

Particularly, if #, < #,, then this =-isomorphism assigns to an operator
S € oty (H#,) its extension Se o, (H#,) (since no confusion is possible, we shall
often denote both operators by the same letter).

Proof. Let U: 3#, — 5, be an isometry such that U limited to X" is equal
to identity. Such an isometry exists because %, and %, have the same dimension.

We define now a second quantization of U, ie. an isometry I' (U): Iy, = Iy,
by the formula

rO)U:®...0¥,) =U@W)®...0U ¥,).
The required #*-isomorphism is
Ay (#,)3 S T'(U) ST (U)* € sty (3,).

The uniqueness of such an isomorphism follows from the fact that it is
uniquely defined on a dense subspace ¢,. =

The lemma remains true if in the formulation we skip the assumption of
separability, the proof of this fact is however more complicated.

3. STOCHASTIC INTEGRALS

Since we are interested in stochastic calculus, from now on we have
# = %% (R,). We also introduce the notation: o/ = oy, #, = £2(0, t) and
Ay = Ay,

We shall investigate stochastic integrals with respect to four basic stochas-
tic processes with values in the algebra «/: annihilation A4 (¢) = a(y,,), creation
A*(t) = a* (X0, gauge A,(t) = 4, (o) and time T'(t) = t1, where y;e # de-
notes a characteristic function of a set I = R, and II;: #£?(R.)— £*(I) de-
notes the orthogonal projection.

. 3.1. Bioperators and biprocesses. If S: R, — o is a measurable function, we

" shall call it a process. If for almost all te R, we have S (f)e o, we say it is adapted.

Elements of &/ ®.o¢ will be called bioperators. A bioperator can be mulfi-
plied by an operator from the left or the right and the result is a bioperator: for
F, G, Seof we define

(F®G)S = F®(GS), S(F®G)=ESHN®G.

Furthermore, we define a “musical” product of a bioperator by an operator such
that the result is an operator:

(FR®G)#S = FSG.
We shall introduce a convolution: (FRG)* = G*QF*.
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If R: R, » S/ ® is a measurable function, we shall call it a biprocess. If
for almost all te R, we have R(f)e ,®.,, we say that R is adapted. If for
almost all teR, we have R()e o/, &« or R(t)e A R, we say that R is
left-adapted or right-adapted, respectively.

A simple biprocess is a biprocess of the form R(r) = ZL . Bixr, (t), where
B;e /@ and I; are intervals.

3.2. Stochastic integral of a simple biprocess. A stochastic integral of a sim-
ple biprocess is defined as a Riemann sum

j'(zn: Biyr,(2)) #dS = i B#[S(s)—S(t)], where I, = (s;,;ti).
i=1 i=1

3.3. Stochastic integrals with respect to the creation and annihilation process.

3.3.1. Tensor product ®,. For ¢, ¥4, ..., ¥, # we define a tensor prod-
uct ®; as .

¢1®“‘®¢k®¢®wk+1®- '-®¢m k < n,
0, _ k>n,

¢®-k(‘lll®®w") = {

and an operator 1®, P‘"’ HEmHD _, 4p@m+1) which for n > k is defined as
1@ P (V1 ®...0U @Y+ ®...Q%,)
=3 ¢ 1)®.. . OV @OVt 1y® ... Y iy

ageSy

and is a modification of a g-deformed symmetrization operator, which does not
move the factor on the k+1 position. For n < k we take 1®, P® = 0.

LeMMA 3.1. There exists a positive constant w(q) such that for each n
PO 1 1QP™, 1QP™ < 1 _— _pl+l)
1—|ql @(q)
There exist positive constants Ckq and dy, such that for each n>k
PO € 1@, PP, 1®, P™ < 4y , PP Y.

‘Proof. The proof of the first two inequalities can be found in [4]. Now
we show the third one:

1 1
P(n+ 1) < ®P(n) 1®(k+ 1)®P(n—k)
—lq| (1 (1—lqF*?
1 -
— Wf1®k [1®k®P(n k)]
d) k—1
\(l_lélq)1+1l®k[l®(k 1)®P(" k+1)] A (1 (q )k+11®kP(n)

The last inequality can be proved similarly. m

-
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COROLLARY 3.2. For any WeI we have

1Pll1e01p < /i 1Pl
If furthermore ¥ e @®,., #®", then

1] <€ v/ CkqIPll1@sp-

For every ¢pes# we have
la (@l = lla* @)l < 12
1—|q|

Proof. The last inequality holds since for each YeI' we have

1 1 <
lla*(¢) P|| € ———==lla* (¢) Plligr = — Y. =
a I T~ a*(¢) Pllier 1_lqlllcbllll I

3.3.2. Properties of Q. Let S € o (5#) and let ¢ be a unital vector perpen-
dicular to #. By Lemma 2.6 there exists an operator S: # ®¢ — # @ ¢ which
is an extension of S: 3¢ — #.

It is easy to see that for each @ eI}, there exists an element of I, denoted
by Q,(S)® such that :

@1 ' Q1[04 (S) @] = (1,Q, 1) Sa* () P,

where I1, denotes the orthogonal projection on the subspace spanned by ¢,
and I1,®,1 is an operator which on tensor products of not more than k vec-
tors acts as 0 and on longer tensor powers acts on the (k+1)-st factor by IT,.
Of course, Qi (S): I' » I is a linear operator. We shall prove that Qy(S) is
an element of the algebra o7, (#) and that this operator in the normal ordering
has exactly k creation operators, ie. Q,(S)e %" (H#).
Indeed, if S is of the form

S =a* (¢1) ..a* (d)l) }'w (Tl) . -Aw (‘Ii)yﬂ a(‘pl)- . a(‘pj):
then a simple computation shows that

qv1 yuS  if k=1,
if k+#1,

Qi(S) =

and therefore Q,(S)e L&) ().
The general statement follows from the fact that Qy: oy (#) > oy (K) is
a continuous map:

22) 118k (S) ZIl = 9@ [Qu(S) ¥lhewr = ILT;®x 11Sa* (9) ¥lhro,r

d
< [ISa* (@) Plhigwr < +/diqlISa* () Pl < I—kTqI IN(NE4E

In the following we shall often use the notation Qy: &y (#)@ Ly (H) —
— oy () defined on simple tensors by Q,(P®R) = Q,(P)R.
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3.3.3. Norm of an integral with respect to the creation and annihilation
processes.

THEOREM 3.3. If R: R, » &/ ®</ is a simple left-adapted biprocess, then

If R (@)#dA* @ P < 3cua [ 110 LR (@] 11 ).

Proof Let R(t) = Zi Biyr, (t), where I; are disjoint intervals. Since R is
left-adapted for any ¥ eI, we have

Z Bta* (1) ¥ = ;ZXH@k [Qx(B) ¥]. o
Therefore

”Z Bi#a* (x1,) lI’” < Zk‘, ”Z x5, @ [ (By) ‘P]”,
1% 1@+ [04(B) PII1° < crg [ 7@+ [04(B) e

= Ck,q;”Qk(Bi) I lxrll® = cx.q § I1Qx LR (] P11 dt,

which completes the proof. m
Now we shall define appropriate seminorms on the space of biprocesses:

1/2

lIRI]e= = qu f |0k LR @)1 dt) IRIL4 = IR*|L4».

THEOREM 3.4. Szmple adapted (respectively, left-adapted or right-adapted)
biprocesses are dense in the space of adapted (respectively, left-adapted or right-
-adapted) biprocesses in seminorms ||'||4 and ||*]| -

The proof of an analogous fact can be found in the paper by Biane and
Speicher [3]. =

Therefore we can define an integral with respect to the creation (or an-
nihilation) process of a left-adapted (or, respectively, right-adapted) biprocess
R (¢) with finite seminorm ||-|| 4 (or ||||.,) as a limit of integrals of a sequence of
simple biprocesses.

We have the following

THEOREM 3.5. If R: R, - A ®/ is a left-adapted biprocess and Vel
then
I R (eytdA* @] < IRl 4o,
1/2

I Re)y#dA* (2) P|| < T (cra § 110 [R (] P11 dt)

16 — PAMS 21.1
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If R: Ry - AR is a right-adapted biprocess, then
|If R (2) #dA (¢)|| < lIRI|4-

3.4. Stochastic integral with respect to the gauge process. For an operator
§: I' - I' and subspaces ¥, #" of I', we shall denote by ||S|ly~ the operator
norm of S defined as
ISlly+w = sup sup K@, S¥)|.

DeW, ||| =1 Pe¥,||¥| =1

For |u| < 1 we introduce a gauge seminorm of a bioperétbr Be A, ®@H,:

||B||}.,‘ = SUp +/ "m”B“-y (H(z,oo))”x’sn—»a?em;

n,meN

and if a biprocess R is adapted, we introduce its gauge seminorm as

R[4, = sup sup /nm||R ()%, (I, c)llsp0m s spom-
teR + n,meN
THEOREM 3.6. If R(t) is a simple adapted biprocess, then the following es-
timation holds:

If R @) $d 4, @)|| < IRIl4,.-

As we shall see in the sequel the assumption that R is simple can be
omitted.

Proof. Let us consider a Hilbert space #@ .2 such that there exists an
operator U: #@®H# — # D, which restricted to # is a unitary operator
U: # - # and restricted to # is equal to 0. We introduce a process
A, ) =2, (I o,y), where II;- denotes the orthogonal projection on the sub-
space U[£2(I)] for a set IcR,.

For any operator X: #@H# —» #@®H we define A1(X)= A, (X). Of
course, this operator is not bounded, and therefore any manipulations with it

_ have to be done carefully. Lemma 2.3 ensures that 1(U) on #®" is bounded

and its norm equals \/ﬁ
Let IV =) ¥,, Ix3® =) &,, where ¥,, $,€ #®". For any measu-
rable set M we have

|<¢,,,. j‘;R(t)#dA,,(t) P = KA ., (R $d A, (D) A(UILy) Y

< \/; I@ull 112 (U ) Zll || R (2) # dA, (1) scnpopom— aanpopem-

Let R(t) = Z B; x1,(t), where I; are disjoint intervals. For different values of i,
operators B;#,(II;;): 1 (U) # on — I'(# @) have mutually orthogonal im-
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ages and cokernels. It follows that

”Z B; “n 1 17)”.1((1).#@'"-;.(0)#@" = max ||B; ¥4, (1 (:i,ao)-)lh(v);f@m—»z(U).#@n ’
i . i
< max [IB; “u I (t,~.m)~)||(aéei)am_.(xe;a?=)an
= max ||B; #4, (., )|l ¢ @ #yom-> (o @ yon = miax |1B: #4, (I 1y, o))l | 0 0m s 0m5
1

where in the last equality we used Lemma 2.3 and in the last but one éqﬁglity
we used the fact that the second quantization I'(U+U*): I'(#@H)—
— I'(# @) of unitary operator U+ U* defined as

TU+U%(6:®...0¢) = U+ U ($)®...® U+U% (4,
is again unitary and
B4, (L g2y ap) = I (U + U [Bi#A,, ()] I'(U+U%).

Hence
23) Ko, 1{{ R(2) #dA,(t) P))|
< ZIalIA UI0) ol /n U 1B1 24, Ur)lrom-gon
< LIl 1@l /1 sup 1B 82, (1) per-ron < NP 121 IRlLs, @

We would like to extend the definition of a stochastic integral with respect
to the gauge process to all biprocesses with finite seminorm ||| 5, by taking the
limit. However, since this seminorm is of #® type, the space of simple bi-
processes is not dense in this space. However, we may have the pointwise
convergence.

" THEOREM 3.7. For each adapted biprocess R(t), |[R||4, < oo, there exists
a sequence of simple adapted biprocesses R;, ||IRil4, <|Rll4,, such that
R;(t) > R(¢) (convergence in the seminorm ||| 4,) for almost all t.

The proof of this theorem follows the well-known proofs in the classical
theory of stochastic integration and we shall omit it.

THEOREM 3.8. If (R)) is a sequence of simple adapted biprocesses such that
sup; [|Rll 4, < 0o and R;(¢) converges to some R (t) in the seminorm ||-|| 4, , then the

sequence [R;#dA,(t) converges in the strong operator topology.
Proof. It is enough to prove that for each ¢ > 0 and all vectors PeI”
lim sup ||[[R;—R;]#dA,(t) P|| < e.

N—w i,j>N
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Let M;; = {t: |IR;(t)—R;(®)lls, > &/2}. We have
FLR:(8)— R; ()] #dA,(t)
24) = [ [R(®)—R;(014dA,(0)+ | [R:()—R;()]14dA,(1)
Mi; R+\My;

and the operator norm of the second summand does not exceed &/2.
We shall use the notation introduced in the proof of Theorem 3.6. Since
(v U, ;> Mi; has measure 0, we obtain

lim sup [|A(Ully,) Pull = -

N-2wi,j>N

for any fixed vector WYer.

If we rewrite inequality (23) replacing M by M;; and R(t) by R;(t)—R;(?),
we see by the majorized convergence theorem that the first summand in (24)
tends strongly to 0. =

The preceding theorems allow us to extend the definition of an integral
with respect to the gauge process to all adapted processes with finite norm
|1l 4, and to remove from the formulation of Theorem 3.6 the assumption that
the integrand is simple.

3.5. Integrals with respect te time. For a biprocess R we introduce its semi-
norm

IRllz = § IR #1|| dt.
0

Of course, we have
If R#T ()] < IIRl|-

4. ITERATED INTEGRALS

Lemma 4.1. If R: Ry —» A ® is a biprocess such that there exists an
integer number j such that R: R, — @ ;<; &, then for any process S: R, — o
we have

HRS||4,» ISRl4, < +/j+1(2j+1) fllilp NG
Proof We have

ISRIls, < ). supsup./nm||S @) R (&) 44, (gL pon-sspom

(i <j1eR+ nm

2. supsup / sv/nm—1lis OFIIR (2) #2, Ll spons spatm-0

|,|<]teR+ n,m

< Vi+1@+DISIIRIL,

because m—i>1 and m/(m—i) <j+1. =a
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LeMMA 4.2. For any biprocess R(t), a process S(t) and Y eI we have

IRS]]¢» < |IR]| 4+ sup [|S @I

teR +

[fR @) S (2) #d4* (1) P|| < lIR||e+ sup IS (2) .
1eR
Proof. It is enough to notice that Q,[R(t)S(t)] = Q+[R(t)] S(¢) and re-
call the definition of the norm ||'||, and Theorem 3.5. m

LeMMA 4.3. There exists a constant C,, such that if R(t) is-a biprocess
such that R()e @<, A" '@ and S(t) is a process such that S(f)e
@isnd(l"% then

ISRIl4 < Coq[IRIL4»sup IS @)l

If R is a biprocess such that R(t)e @;<, " and a sequence of processes S;(t)
converges strongly to 0 and fulfills S;(t)e @<, L") and sup;sup,||S; ()] < o,
then integrals {S;({)R(t) #dA*(t) converge strongly to 0 as well.

Proof. For a unital vector ¥ orthogonal to # we have (see inequal-
ity (22))

10, [S (&) R (6)] Pl < /i IS () R (2) #a* () P},
IR (2) #a* (¢) || = ”E ¢ QIR P|| < ¥ /eI [R @12,

I<n
and therefore for some constants C,, C,, C; which depend only on ¢ and n we
have

12 LSO RN < C.US@N X QLR @],

l<n

12« [S@OROII* < C2ISOI* X 1Q:[R (t)]llz,r

I<n

ISRILe = Y, (ceafIQLSOR@Z )" < C3sup ISOI(Y. fIQ[R@TIPde)' . |
k<2n teR + 1<n :

The second part of the lemma follows from the majorized convergence
theorem. = B

THEOREM 4.4. Let the following assumptions be satisfied:

1. 7,: Ry — R, is a sequence of measurable functions, 0 < 1,(t) < t and func-
tions 7,(t) tend to t uniformly;

2. 8, S, are processes, S;€{A*, A, A,, T}, S,e{A*, 4, A,, T};

3. Ry, R,: Ry —» o/ are adapted biprocesses and their appropriate norms
are finite: |[Ryll s, lIRzlls, < 003
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4. if S, = A,, then there exists j such that for each teR., we have

fRz #dS,e @ AU,

il <j

5. if 81 = A, then there exists j such that for each teR, we have

Ri(e® A4 RA4) and j'RZ#dSze@d‘”

isj isj

6. if S, = A,, then there exists j such that for each te R, we have

le $dS,e @ 1,
lil <y

7. if S, = A¥*, then there exists j such that for each teR, we have

Rz(t)e@d(i'.)®d and le #dsle@.!ﬂ(l
isj <j

Then

Tn(t)

le(t) [ij(s)#dSz(s)]#dS () = lim _le(t)[ J Ra 58S, (5] 445, 9,

0 "-'n(s)

f[le ()4dS1 ()] Ry (5)#S5 (5) = lim j[ j R, () #dSy (O] R, (s) #4S, (5).

Proof For S, # A,, functions ||j'w)R2 #dS,(s)|| tend uniformly to 0.
Therefore by preceding lemmas appropriate norms of biprocesses
R,(®) [j'i"m R, (s)#dS, (s)] tend to O, which proves that the limit in the first
equation holds in the operator norm.

For S, = A, and S, €{T, A*} for each ¥ e, functions ||f. , R, (s)#dS,(s) ¥||

n(t)

by Theorem 3.8 tend uniformly to 0, and Theorem 3.5 shows that the limit in

the first equation holds in the strong operator topology.

For S; = A, and S, = A*, Lemma 4.3 and Theorem 3.8 assure that the
limit in the second equation holds in the strong operator topology.

For §; = A,, S, = A,, we introduce a Hilbert space #®H# D such
that there exist operators U and V which restricted to # @ # are equal to
0 and which map isometrically # onto J# and J, respectively. In the fol-
lowing, for I ¢ R, we denote by II.. and II;. the orthogonal projections
onto U[‘,ff2 (D] and V[#£2(I)], respectively. Furthermore A, 2 (O) = A, (I 0,9~

and A, (t) = A, (I o 4.
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We have

8

@5 [[ [ Ri()#dA, 0] Ry(s)4dA, ()

n(s)

= A(V*)A(U*) [}: R, (t)#dA,(1)] 10 A(UH, (5.5) R (s) #d A, (5) A(V).

Note that even though A(U) and 4 (V) are unbounded operators, the right-hand
side of this equation is well defined on the domain I'(5#) (see the proof of
Theorem 3.6).

For each n we consider a sequence t,; = k/n and a bounded operator

w: AW AT (#) > A(U)A(V) T (F)

[K4]

defined as

Eﬂ = Z A (H(un.i.tn,i + 1)"’) A (H(tn,htn.i + 1)")’
i

where u,; = infy .. ..., T,(x). It is easy to see that the sequence (Z,) tends
strongly to 0, and since

8

ij AT, 5),9- U) Ry (5) 444, (5) A (V) = &y | AT cy9,5- U) R2 (5) #d4, () A(V),

(=]

the expression (25) tends strongly to 0, which proves the first equation.
All the other cases can be obtained by taking the adjoint of considered
cases. =

5. ITO’S FORMULA

5.1. Properties of P,. We introduce a map Py: oy (H#) > Ay (H#) as
follows. Let ¢ be a unital vector perpendicular to . The map P,(R) is an
operator defined by

Py(R)¥Y =a(¢)Ra*(p)¥ for all Pell,.
It is easy to see that for v
R = a*(§)...a* (@) b, (T)... oy (B) 3, [a(01)....a ()]
we have
Po(R)=q'*iv,...v;uR,
and therefore P, (R)€ oy ().
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5.2. Ité’s formula.
THEOREM 5.1. If assumptions 2-7 of Theorem 4.4 are fulfilled, then

26) [ Ry ()4dSy (5] [ Rz () #dS2 (9] = J Ry () %45, (w)] [R, () $4S, ()]
+Ry(5) [; R, (t)#dS, (t)] #dS1 (5)+ [j Ry (s) %S, (5)] R, () #dS, (),
. 0 0

where the first summand on the right-hand side is defined as follows:
27)  [[R:(w)#dAW][R, (u) #dA* w)] = [1®Po®1) (R, () R; (u))du,
(28)  f[Ry(u)#dA, )] [R (u) #dA* )] = [[Ry () #7,] R, () $dA* (u),
(29)  [[R;(w)#dAW][R, (u)#dA, )] = {[Ry )[R, () #7,]] #dA (),
(30)  f[R;(w)#dA, (W] R, (u)#dA, ()] = [[Ry (W) 1] R, (u) #d4,, (),
(31) f[R;(u)#dS; m)][R,(u)#dS, ()] =0 for other values of S, S,.

Informally, we may write this as follows:

ds,
dA dA* da, dT
dA 0 dT ddy, 0
s, | da* 0 0 0 0
s, 0 v.dA* | dA,, 0
dT 0 0 0 0

Proof. Forn=1,21et R, = ZRm‘Xn be simple adapted biprocesses. We
assume that intervals (I;) form a partition, i.e. that they are disjoint. Note that
we can replace the partition (I,) by a refined partition (I¥) so that max; |[I?] < e.
We have

(32 [[Ri(s)#dS, (9] [J R () #dS, (9]

(33) = Y [RyHS, ()] [RocS, (1)

(34) +3 Y [Ry:#8;: (1)1 [R2; #S, ()] +Z' Y. [Ry:#S1 (I)1[R;#S.(I)].
ji<j i j<i
The second and the third summands tend by Theorem 4.4 to the second
and the third summands of the right-hand side of (26). We shall find the weak
limit of the first summand when the grid of the partition tends to O.
If S; = T or §, = T, then it is easy to see that the term (33) tends strong-
ly to 0. '
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If §; = A*, Theorem 3.5 gives

¥ CR s $a* (1)1 LRy 88 (1)] ]| < X (g 21101 (R 1) [Ros 8, (1)1 VIR L)

k i

= ||Ry|[.ex S‘:P [[R2: %S, (1)) PIl,

which tends to 0 as the grid of the partition (I;) tends to O. .

By taking the adjoint we see that if S, = A, then the term (33) tends
weakly to 0 as the grid of the partition (I;) tends to 0. - A

The cases we have already considered show that equation (31) holds.

IfS; = Aand S, = A*, then we can split the normally ordered form of the
expression [Ry;#a(I;)][R,;#a*(I;)] into two parts: the first which does not
contain operators a*(I;), a(I;) and is equal to [I](1®Py®1)[Ry; R,;], and the
second, which contains these operators in this order. The sum over i of
the second part tends in operator norm to 0 as the grid of the partition tends
to O because it is of the form (33) for S; = A* and S, = A, which proves
equation (27).

If S; = A4, and S, = A*, then we can split the normally ordered form of
the expression [Ry; ¥4, (I})] [R,; #a*(I))] into two parts: the first part equal to
[Ri; #y,][R2 #%a* (I)] and the second one which contains operators a*(I;),
A4 (I;) in this order. The sum over i of the second part is of the form (33) with
S; = A* and S, = A,, so tends strongly to 0 as the grid of the partition tends
to 0, which proves equation (28).

By taking the adjoint of (28) we obtain equation (29), i.e. the case S, = 4,
S, = A4,.

If S; = A,, S; = A,, we introduce a Hilbert space # @ # @ such that
there exist operators U, V which restricted to ##@®J# are equal to 0 and which
map isometrically # onto s and S, respectively. We have

<_Y’= Z [R1: #4, (1)1 [Ry: 4, (I)]1 )
=¥, Z(U*)A(V*) [§ Ry (2) #d 4, (0)] [ R2(s) A, (5)] [% AU L) A(VITL)] &
+ <Y’, Z [Ry; #Yp] [Rj: 4, (HI,-)] ¢>-

It is easy to see that, as the grid of the partition (I,) tends to 0, the operators
Zk,l(U II)A(VII;,) tend strongly to O; therefore the first summand tends
strongly to O, which proves (30).

Now it is enough to notice that any biprocesses can be approximated by
simple biprocesses. =
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Particularly, we can obtain It6’s formula for noncommutative Brownian
motion:

B() = A()+A* (),

and Poisson process with intensity ! and deformation parameter u:

Pui(®) = /1 A®+4*() v#)+AT(t)+ £y,
We have - -
ds, s,
dt| dB(y) dt| dP,,()
dsy | a4t J0j O s, dt 0 0
dB(t) |0 dt dp,,®) |0 4P..¢)

6. FINAL REMARKS

In this paper we have presented foundations of g-deformed stochastic
calculus. The lack of space does not allow us to present its applications, among
them the connection between g-deformed stochastic integral and noncommuta-
tive local martingales. Especially interesting is the possibility of interpolation of
classical Brownian motion and Poisson process by their bounded g-deformed
analogues for g — 1, where new tools are useful. There are also many questions
concerning deformed Poisson process.
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