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Abstract. Let E,, be a uniform empirical process and A (respec- 
tively, v3 the unique location of its maximum (respectively, midimum). 
We establish a "liminP' iterated logarithm law for (a-v,(.  
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8.  Introdmction. Let {U,),,, be a sequence of independent variables uni- 
formly distributed on (0, 1). Consider the associated empirical process 

For each t ~ ( 0 ,  I), we define 

(1.31 v,=inf{O<t< 1: u,(t)= inf a,(s)). 
O S s C 1  . 

In words,.-p, and v, denote locations of the maximum and the minimum, 
respectively, of the empirical process over LO, I]. We are interested in I&- v,l, 
the time difference between the locations of the maximum and the minimum of 
~ ( t ) .  It is easily seen that lirninf,,, Jp,-v,j = 0 almost surely (a.~.). A natural 
question is to find the rate of growth f (n) of the time difference, so that 

lim inf f (n) lp, - v,l = 1 a.s. 
n+ m 

Our result determines the exact rate of growth of the "lirninf". 

THEOREM 1. Let p, and v, be deJined as in (1.2) and (1.3), respectively. Then 

lirn inflog; (n) Ip, -v,l = x2 a.s. 
n'm 



Let us say a few words about our method. Recall that a Kiefer process 
{K(t, n), 0 < t < 1, n 2 0) is a mean-zero Gaussian process with covariance 

E(K(t, n ) K ( s ,  m)) = (min(t, s)-ts)min(n, m). 

Our basic tool is the following strong approximation theorem due to 
Komlbs, Major and Tusnady 131 (see also Csorgo and R6vksz [I], p. 141): after 
possible redefinitions of variables, there exists a coupling for u,(t) and the 
Kiefer process K (t, n), so that 

Although (1.4) does not indicate how close the locations of the maxima of 
a, (t) and K ( t ,  n) are to each other, our method, which is based on fine analysis 
of the sample paths of the Brownian bridge, reveals that accurate knowledge 
upon the location of the maximum (respectively, minimum) of the Kiefer pro- 
cess yields useful information upon p, (respectively, v$. This was also observed 
in Shi [4] in the study of the almost sure asymptotics of p,,. 

The lower bound in Theorem 1 is proved in Section 2 and the upper 
bound in Section 3. 

Throughout the paper, C > 1 and > 1 denote constants, C, > 1 and 
c, > 1 denote constants which only depend on E. Their values may vary from 
one line to another (but not within the same line). 

2. Proof of the lower bound in Theorem 1. The main ingredient in the proof 
of the lower bound in Theorem 1 is the following estimate: 

LEMMA 1. Let (B (t), 0 6 t 6 1) be a standard linear Brownian bridge, and 
deJine, for 0 < u < 1, 

E ~ E ( u ) = { ~ ~ E [ ~ , ~ - u ] ,  sup B(t)- inf B(t)2BR-uZ),  
x < t < x + u  x < t < x + u  

where BR = sup,, st < B ( t )  - info < < B (t), Then, for any 0 < E- < 1, we have 

P (E)  6 C, exp ( -- "2"). 
Proof.  We only need to consider small u. Recall that the Brownian 

bridge can be realized as {B (t) = W (t) - t W (1)) st < , where W is a standard 
Brownian motion. Moreover, {B (t)Io <,< is independent of W (1). Therefore 

In the event (1 W (I)[ < u) ,  

sup B ( t ) -  inf B (t) 6 sup W(t) - inf W(t) +2u2, 
x < t < x + u  x < t < x + u  x < t < x + u  x d t d x f  u  



Extreme ualues of the emairical orocess 59 

and BR < WR + u2, BR ), WR - u2, where WR = sup,, , , W(t) -in&, , , , W (t). 
Hence 

<P(~xE[O,I-U],  sup W(t)- inf w(t)>wR-3uZ)  
x 4 t d x + u  x d t d x f u  

=P( sup sup I W ( S + ~ ) - W ( S ) ~ > W ~ - ~ U ~ ) .  
0 6 . ~ 6 1 - u  Odtdu 

Let us fix an integer P SO that u - I  < 2' < 2u-', and let, for any positive num- 
ber s, (s), = [2's]/2'. Then 

It follows from (2.2) that 

Let us define a constant y so that 0 < y < ( ~ / 8 ) ~ / ~ .  Hence, if WR > yu1i4, we 
have E(W, - 3u2) > €WR/2, so that 

We first estimate A , .  Let us define ti = i/2' for any integer i, so that 
0 < i < 2'-2. Since 2-' < u < 2l-', from the Markov property it follows that 



where 

XI = sup I W (t)l, X2 = sup (W (1- w ( t i  - inf (W(t) - w (ti)), 
O G t G f j  t j G t < t i + u  t i < t < t i + u  

x,= sup IW(1)-W(t)l. 
t ] + u g t q l  

Recall that (see Shorack and Weher  [ 5 ] ,  p. 34) 

4 " (-1y-l (2k - 112 n2 
(2.5) P ( sup I W(t)I < x) = - exp(- B1;2 ),= x > 0. 

O S ~ S ~  IT,=, 2k-1 

Consequently, for any x > 0, 

P ( W , < x )  6 B (  sup IW(t)l cx) 
O < t < l  X 

Hence, by putting 

and conditioning upon X, combined with the independence between X,, X, 
and X3, it follows that 

~no the f  application of (2.5) combined with the fact that ui > 4 (for any i) yields 
that 

Putting this into (2.4) we obtain 

To estimate A 2  note that supo,,,, l(s+ t),+j+ -(s + t)r+jl < 2-(rfj+1) 
and that W ((s + t),, j+ ,) - W ((s + t),+i) is a Gaussian variable with variance 
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( ~ + t ) , + ~ + ~ - ( s + t ) ~ + ~ .  For any random xj  > 1, we have 

gZ'+jf'maxP IW(4+1)-W(f9l> 
J.Z;riri 

. 
i 

where < = i / 2 ' + j + l .  Let us define 

" 

We choose now 

Let us defme Y1 = ~ u p , ~ , ~ , ~ I W ( t ) l  and Y2 = sup,~+tGtGl IW(t)-W(tf+l)l. One 
can mention that W, Yl and Y2 are clearly independent. Furthermore, using the 
inequality WR 3 max (Yl , Y2Fz) and the Markov property we obtain 

Therefore, 

Furthermore, it is easily seen that 
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Since I.- d 2', we have 

In the event {WR > yult4], el& < WJ8. Hence 

- 

Let us focus now on the estimate of PI. By conditioning upon (Yl, Y,) and 
using Mill's ratio (see, for example, Shorack and Wellner [S ] ,  p. 850) combined 
with the independence between Y1 and Y,, we obtain the eiistence of an ab- 
solute constant C so that 

Expectations in the previous equation can be easily'bounded by using the 
following statement for any positive number A: 

2 

E ( ~ x P ( - A (  sup l ~ ( t ) l ) ' ) )  s C j e x p ( - ~ x ~ ) d x  G Cexp(-1). 
O Q t S l  1 

Combining this with the scaling property we get 

Putting this into (2.7) and using the fact that t:+l -G < 1/2, we obtain 

Hence, taking the sum we have 

where A = 2czjW= 2jexp ( - ~ f i :  j/2). 
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Combining (2.3), (2.9) and (2.10) we obtain 

As far as A ,  is concerned, an application of (2.5) combined with the defini- 
I tion of y yields 
I 

i 
- 

Going back to (2.2) and using (2.31, (2.6), (2.11) and (2.12) we get 

P ( E ,  IW(l)l < u) G Cexp ( - " ' l ~ ) + ~ e x p ( - ~ ) + ~ e X P  (-5) 

Going back to (2.1) and applying the inequality P(I W(1)I < u) es exp (-u2/2)/2, 
we have 

2ce 7c (1 - 3&/2) 
PIE) <-exp - exp 

26 (:) (-  ex^(-^(^^'). 
I Replacing E by ~ / 2  and taking large values for C and C, we complete the proof 
i of Lemma I. H 

I Proof of the  lower bound i n  Theorem 1. Fix a small number 
1 ~ ( 0 ,  1). Then one can easily find a positive number E > 0 so that 
1 

Let furthermore define, for k 2 1 and m 2 1, 

(1 - 5~1) n2 
nk = [exp (kl -Ei)j + 1, u (m) = 

1%; (m) ' 

and 6 so that 

log n 
log k+4F. 

nk 

Let 

E k = ( 3 x ~ [ O , 1 - ~ ( ~ ) ] ,  SUP K(t,nk)- inf K(t,nk) 
x<t<x-!-u(nr) xdfdx+u(nk) 

2 sup K(t,nk)- i d  K(t, n3-6&) 
O d t < l  O < t < l  



64 Y. Randjiou 

By means of Lemma 1 (noticing that 6 6 u2(nk)) we have 

which is summable for k. Then, according to the Borel-Cantelli lemma, almost 
surely, for k sufficiently large, we have, for any x E [O , 1 - u (nd], . 

sup K(t,nJ- inf K(t,nk)< sup K(t,nd- inf X(t,p*)-6&. 
x<tSr+u(n r l  x<t<x!-u(q)  O < t Q 1  O C r d l  

At this step of the proof, we need to show that oscillations of-the Kiefer process 
between nk and nk+l are relatively small. Let {W(t, y), 0 6 t d 1, y 3 01 be 
a two-parameter Brownian sheet. Then applying Corollary 1.12.4 of Csorgo 
and RCvbz [I] to T = nk+ , and a, = (1 -el) T(log T)-"L/(' -"I) we obtain (no- 
ticing that n k + ~  -nk - ( l - ~ ~ ) n ~ +  (lognk+l)-eli('-E1) as k + m) 

lim sup (2 (q + - n~ log k)- lt2 max sup ] W(t, n) - W (t, nk)l < 1 a.s. 
k + a  n k b n < n k + i  O Q t S l  

In particular, 

lim sup (2 (n. + - n~ log k)-'I2 rnax IW(1,n)-W(l,nk)l<l a.s. 
k+ a n k < n < n k + i  

Since the Kiefer process K (t , n) can be realized as K (t , n) = W (t, n) - t W (1, n), 
combining this with the previous estimates we obtain 

lim sup ((nk + - nk) log ii)- 'I2 max sup IK (t, n) -K (t, nJ 4 $ as. 
k+ m n k < n < n k + r  0 6 t < l  

Let nk < n < nk+ ,. Then we have, for any x E [0, 1 - u (n)], 

sup K(t,n)- i d  K(t,n) 
x<tdx+u(n) xCt<x+u(n )  

<- - sup K (t , n) - inf K (t , n) 
x < t < ~ + u ( n k )  x< t<xf  ~ ( n k )  

< sup K (t, nk) - inf K (t, n,) + 2 sup IK (t, n) - K (t, nk)l 
x<t<x+u(nk) x<t<x+u(nk)  O < t < l  

4 sup K(t, nk)- inf K(t, ~ - 6 , / & ~ 6 J ( n ~ + ~ - n ~ ) 1 o % k .  
O Q t < l  O < t < l  

Consequently, for all x E LO, 1 - u (n)], we have 

sup a, (t) - inf ol, (t)- ( sup an (t) - inf an (t)) 
x < t < x + u ( n )  xStCx+u(n) O < t < l  O d t < l  

<n- ' j2(  sup K(t,n)- id K(t,n) 
x< t<x+u(n )  x d t d x + u ( n )  
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-( sup K (t, n)- inf K (t, n))) +4n-l1410gn 
OGtSl O < r <  l 

This yields that Iprr - vnl 2 u (n). Hence 

Letting E tend to 0, and then taking el close to 0, we complete the proof 'of the 
lower bound of Theorem 1. 

- 

1 Praof of t b  upper bound in Theorem I. The proof of the upper bound is 
based on the following lemma: 

LEMMA 2. Let {B(t), 0 < t < 1) be a standard linear Brownian bridge, and 
deJim, for O < t r  < 1 ,  

F ~ F ( u ) = (  max B ( t ) >  rnax B(t)+u, 
l/ZGtC1/2+u t$[l/z,l/Z +=I 

min B(t) < min B(t)-u}. 
1/2<t< 1/2+u @rl/z.l/2+ul 

Then, fir any 0 < E < 1, we have 

Pr o of. Let (W(t), t 3 0) be a Wiener process. Then recalling that 
{B(t) = W(t)-tW(l)},,,,, we have 

rnax B,> rnax w-(1/2+u)u, 
1/2<t<1/2fu l/2drd l/2+u 

max B z d  rnax w + u ,  
te[1/2,1/2f uT t#[l/Z,llZ +ul 

min Bt<  min K+(1/2+u)uY 
1/2<r<1/2+u 1/26t81/z+~ 

min B,L min K-u. 
t#ill~,l/Z+ul te[1/2,1/2 f ul 

Hence 

(3.1) P(FYIW(1)1<u)2P( rnax > rnax m+4u, 
1/2<tSl/2+u t$[llz,l/z+ul 

min w <  min K-4uYIW(1)1<u). 
1/2StQ1/2+u t+[l/Z,l/Z+uI 

5 - PAMS 21.1 
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Let O < e  < l , O < u < u o  and A =  ~ ( u ) = x & / 4 ,  whereuo=uo(s) >O, is so 
small that 
k 

We also define the following measurable events: 

E l = { - ( l + & ) A <  inf W(t) ,  sup W ( t ) < ( l f ~ ) A ,  - 
O < t G l / 2  OdtSljz 

W ( 1 / 2 ) ~  [A, (1 +&)Al) ,  
Ez= ( W ( ~ / Z + E U ) E [ ( ~ + ~ E ) A ,  (1+3~)A]) ,  

E3= (W(1/2+(1-&)u)€[ - ( l+3&)~,  -(1+2~)A]),  

E4= { W ( 1 / 2 + u ) ~  [-(I + & ) A ,  - A ] ) ,  

E,={ - (1+2&)A< in€ W(t) ,  sup W(t)<(l+Z&)A,IW(1)1<u) 
1 / 2 + u d t d  1 1 / 2 + u d t G l  

In view of (3.1) and (3.21, we have 

Using the Markov property, it is easily seen that 

where 

(14-2&) A-x g5 = E5 (x) = < inf W ( t ) ,  sup W (t) < 
O S t 6 1  JG 

w ( I ) ~ [ ~ ~ ,  1/2- J- I}. 
Iterating this procedure we obtain 

5 

P (  n E~) 3 i d  P(E,) inf 
i =  1 =[-(I +&)A,  -A] XG[- (1  + 3e)A, -(1+2e)A] 

P (E4) 

x inf 
@(I + Ze)A,(l+ 3 ~ ) A 3  x ~ [ A , ( l  +e)A] 
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where 

- 
Let us begin by estimating P(E",). For notational convenience we define 

Then, recalling the joint density of the infimum, supremum and the terminal 
value of Brownian motion (see It8 and McKean [2], p. 31): for all a > 0, b < 0, 
y ~ [ b ,  a], c a-b, 

1 
inf W(t) ,  sup W ( t ) < a ,  W ( 1 ) ~ d y )  

O < t < l  O < t < l  

Accordingly, we have 

where 

Recalling a and c defined in (3.4) and (3.6), respectively, and given the fact that, 
for all x e [O,n/4], sin (x) 5 x/@? a/c < 1 - &/2 and u/A < E ,  we have. 

XU 11 
and sin( ) 2 -. 

2(1+2~)A 3A 
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On the other hand, by (3.3), 
rn 2kz2 exp (- 2n2/c2) 

n 6 k = 2  exp(--) 2c2 6 l-exp(-x 

Thus 

AS a consequence, - 

Similarly, by means of (3.7) and using the scaling property, we have 

It is easy to estimate P(E,) for 2 < i < 4. Indeed, we have, for any 
X E [ - ( ~ + ~ E ) A ,  -(1+2~)A], 

1 c-~-x)i& EA 
p(E4) = - 1 exp ( - v2/2) dv 3 - ( '~+"A+X")  

f i ( - ( l  +E)~-x)/& fi& 2&u 

Hence, it follows that 

(3.10) inf 
XE[-(I + ~ E ) A ,  - (1 + 2e)Al 

A .  similar argument yields 

E A  
(3.11) inf y 

X E [ ( ~  + 2e)A.(1+ 3&)A] u 

Combining (3.8H3.12) we obtain 
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Since A = x&/4, the expression on the right-hand side is 

Replacing E by .9/4 readily completes the proof of Lemma 2. 

Proof of the  upper  bound in  Theorem 1 .  Fix a small number 
E E ( O ,  1). Then one can easily find a positive number > 0 so that 

o2 ( 1  + E )  ( 1  + ~ ~ ) / ( 1 +  < 1 .  - 

Let us furthermore define, for k 2 1 and m 2 1 ,  

Let 

id ~ , ( t )  < inf ~ ~ ( t ) - u ( n ~ ) & - ~ - ~ ] y  
112St6  l/Z+u(lr*) f$[1/2>1/2 + ~ ( n k ) l  

where K,(t) = K ( t ,  nk ) -K( t ,  n,-,). For each n 3 1, t - (n , -nk- , ) -1J2Kk( t )  is 
a Brownian bridge. It follows from Lernma 2 that 

P (Fk) 2 C, exp ( -- (s) 2 C & X - ~ ~ ,  

which is the general term of a divergent series. Since the F ~ s  are independent, 
by the Borel-CaantelIi lemma, almost surely there exist infinitely many k's so 
that 

Furthermore, applying Corollary 1.15.1 of Csorgo and Rkvksz [I] to y = nk - 
yields 

~imsu~(n~-,lo~~(n~-~))-~~~ sup J K ( ~ ,  n k - l ) ~  = I/& a.s. 
k+ co O S t S l  

Combining this with (3.13) and (3.14) we obtain 

sup K ( t ,  nk) > sup . K ( t ,  nk) 
1 / 2 < t S  112 +u(n3 t$C1/2,1/2 +u(nk)l 
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inf K ( t ,  n,) < inf K ( t ,  n,) 
1 / 2 $ t G  112 +u(nd t$[1/2 ,1/2  +u(nk)l 

+2Jn. - , log ,  (nk-i)-u(nk)J=- 
Consequently, 

2 nc ( sup K ( t ,  nk)- inf K ( t ,  nk) 
1 / 2  < t <  112 + u ( H ~ )  1/2<t< 112 + u ( H ~ )  

- ( sup K It, nk) - inf K (t , ti,))) - 4n; log nk 
t # I 1 / 2 , 1 / 2 + ~ ( n k ) ]  t e [ l / ~ , l / 2  fu(fik11 

B > 0. 

This yields that Ipn - v,l < u (n).  Hence 

lim inf log: (n) Ip, - v,l < (1 + 5 ~ ~ )  x'. 
n+ m 

Letting E tend to 0 and then letting s1 also tend to 0 we complete the proof of 
the upper bound of Theorem 1. 
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