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Abstract. Let (5,J be a sequence of random vectors with values in 
a Banach space X with distributions pen weakly converging to a given 
distribution p. We characterize a general form of a distribution of 
a weak limit of 9, in Banach space L, (X) of Bochner integrable vec- 
tors. We show that the weak convergence of random vectors [<,J in 
L, (X)  implies that 11{,,(w)- ((w)ll+ 0 stochastically. Moreover, the con- 
ditions lit,, (OJ) - < (w)II -) 0 stochastically and (t, (m)- < (a), x*)  + 0 
stochastically for any x*EX* are equivalent. 

1991 AMS Subject Classilication: 60Bl1, 46B09. 

Key words and phrases: Distributions in Banach spaces, weak 
limits of random vectors, weak limits of distributions. 

1. INTRODUCTION 

The main goal of the paper is to investigate some general relations be- 
tween weak convergence of Banach space vdued random variables and their dis- 
tributions. The advanced theory of probability in a Banach space often depends 
on its geometry. We formulate rather elementary results not depending on 
additional geometric conditions. 

For a Banach space (X, [I - 11) the notion of weak convergence of X-valued 
random vectors has several aspects. For example, the following situations seem 
to be quite meaningful. For a sequence (5,) of random vectors in X it may 
happen that 

(i) for any X*EXI*, <(,(w)-c(w), x * )  + 0 for almost all w; 
(ii) for any X* E X*, (tn- r, x*) -) 0 stochastically; 
(iii) assuming that r ,  t, are Bochner integrable, for any x* E X* and real- 

-valued bounded random variable f, we have the convergence of expectations 

w r , - e ,  x*>f  +o; 
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(iv) assuming that 5, 5 ,  E L1 (X), where L1 (X) is the Banach space of Boch- 
ner integrable vectors, 5, tends to in the weak topology in L1 (X). 

Interesting reIations appear when we assume that distributions p ~ , ,  (of the 
vectors en) converge weakly to a distribution p in X. Under this assumption we 
characterize all possible distributions of weak limits of en (Theorem 4.1). We 
show that the weak stochastic convergence (condition (ii)) implies the norm 
stochastic convergence (Theorem 3.3). Moreover, the weak convergence in 
L1 (X) (condition (iii) or (iv)) implies the stochastic norm convergence (Theo- 
rem 3.1). - 

Throughout, X is a real separable Banach space (with the norm 11 11) and 
X* is its dual. For a probability space, say (In, 9, P), we use the foIlowing 
notation. Lo ( a ,  P;  X) denotes the space of all X-valued random vectors 
ton(i-2, eP)7i.e.themaps(: ~ + X ~ u c h t h a t 5 - ~ A ~ F f o r A ~ B o r e l X ( X i s  
always equipped with the norm topology). p, denotes the probability distribu- 
tion of <, i.e. pg (A) = P(5- l A) for A E  Bore1 X. L1 (62, P ;  X) stands for the 
space of those vectors in Lo { Q , F ,  P; %) which are P-integrable in the sense of 
Bochner. We shall also write shortly L1 (X) or k1 (a, X). The notation L ,  (X*) 
or Lm (9, X*) or L,  ( a ,  P; X*) will be used for the completion of the space 
of linear combinations 

under the norm /lgllm = supess (Ilg(w)llx.; ~ E Q ) .  We do not refer here to tensor 
products of spaces keeping all considerations in a rather elementary language, 

For the norm in L1(Q, X )  we set llrlll = E IISII = jyllt((o)ll dP. 
The spaces L1 (X) and L, (X*) are in natural duality gven by the formula 

- (5, = j (514, ? ( ~ ) ) P ( d w )  for l ~ L 1 ,  VEL. 
P 

For 5, S,, E L1 (9, X), we say that 5, tends weakly to 5 if (C,, g)  + (5, q) for any 
q E L, (Q, X*). In other words, 5, -+ 5 in the CT (L ,  (X), L, (X*))-topology. 

For 5 (a, 9, P; X )  and any a-field 3 c 9, there exists a conditional 
expectation E (5 [Q) uniquely defined, like in the classical case, by the con- 
ditions 

l<dP = S E ( ~ I B ) ~ P  for A E B .  
A A 
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The conditional expectation is a bounded linear operator 

enjoing nice properties analogous to those which are well known in the clas- 
sical case. 

3. CONVERGENCE THEOREMS 

TE-~ROREM 3.1. Let C,, < E I,, (a, 9 ,  P; 4. Let us assume that p,=,* py (weak- 
ly) and that &, + [ in the a (kl (X), L, (X*))-topology. Then II~.(w)- t'(m)ll+ 0 
stochastically. 

In the proof we shall use the following result due to Pratelli. 

THEOREM 3.2 ([5], see also [2]). Let t,, 5 be real-valued integrable random 
variables. If pb - pt (weakly) and en + C weakly in Ll (R), then lit, - CII, 4 0. 

P r o  of of Theorem 3.1. For simplicity, we assume that Pg ((6)) = 0. We 
leave to the reader an easy rnoditication of the proof when 0 is the atom of p S .  
From the assumptions it follows in particular that, for any x* EX*, we have 
p ( ~ , ~ >  * p<~,* )  and (t., x*) -, (5, x*) weakly in L1 (R). By Theorem 3.2 we 
have 

~ 1 ( ~ n , ~ * ) - ( 5 , ~ * ) l d P + 0  for a n y x * ~ X * .  
R 

Then also 

J [(t, I,, x*) - (51B, X*)I d~ + o for BE P 
R 

and, consequently, for any X* E X*, we have 

Thus the characteristic functionals of random vectors t, 1, converge to the 
characteristic functional of (IB, which, together with the tightness of measures 
ptnla, ra = 1, 2, . . . , gives the weak convergence of measures pcnlB - pCIB for 
any B E 9. Since ptn - pt and pg ((0)) = 0, for any E > 0 there exists a compact 
set Z ,  c X such that 8 $ Z,, p(5, E Z,) > 1 - E for n large enough, and 
p (t EZJ > 1 -E. By a rather standard procedure we can find, for any 6 > 0, 
a partition (A,, . .., A,) of Z ,  such that Aj are continuity sets of pg (i.e. 
pt @Aj) = 0) and the points z,, . . ., Z, EX satisfying the conditions 
 sup,,^, Hx-zill < 6 (i = 1, . .., N). 



4 R. Jajte and A. Paszkiewicz 

Let us put 

Let E > 0 be futed, and put 6 = &/4. We shall show that 

P (lltn - ( 1 1  > E )  < 3.5 for n large enough. 

Indeed, we have 

~ ( l l t n - F n l I  > 6 )  < E and P ( l l t - W I  > 4 < 

(since P (Cn $ ZJ < E and P ({ $ ZJ < 8). Let us note that 0 4 A implies 

Moreover, if 86 A and A is a continuity set of pr, then also A is a continuity set 
of PC,, for any BEK Thus, by the choice of the sets Aj ,  we have 

Ptnla (AjI + P < I ,  (AjI, 

which means that 

J l (< .~Aj l  ~ E I  dP S l(TEAj) lB dP for any B E K 
n R 

But this implies that 

~ ( < , E A  j) -) l(&A1) weakly in Ll 

which, together with P (l, E Aj) + P ( (  E Aj), gives 

by Theorem 3.2. Thus, we have the estimation 

3 N  < - C llzjll 1 [ Ir; lA, - lg- lAj l  dP < E for n > no. 
E j = 1  Q 

Since, clearly, 

we get 

P ( ] l c n - t l l  > E ) <  3~ for n >  no. 
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The other conditions implying the stochastic convergence in norm are 
formulated in the following theorem: 

THEOREM 3.3. Let X be a Banach space and let 5, (, E Lo (a, P; X )  be 
such that the distributions (pen) are tight. Then the weak stochastic convergence of 
(, to ( implies the stochastic convergence in norm, i.e. 

({, - c, x*} -, 0 stochastically for each x* E X * ,  

implies I ] ( ,  - ell + 0 stochastically. 

Proof. The algebraic sum of two compact sets in X is compact, so the 
sequence (pen-$ is tight. Moreover, the characteristic functionals of en- 5 tend 
to 1. This completes the proof. 

4 CII[ARACTERIZATION OF DISTRIBUTIONS OF WEAK LIMITS 

In this section we show that some classes of probability distributions on 
a Banach space X coincide. For the convenience and clarity of formulations the 
random X-valued vectors appearing in different conditions will be defined on 
possibly different probability spaces. 

Let p be a given probability distribution on X. We show the coincidence of 
the following four classes each of which is naturally related to the distribu- 
tion p. The first one consists of all possible distributions of weak limits of 
random vectors 5, with PC,, * p .  The second one consists of all possible dis- 
tributions of conditional expectations of random vectors with distribution p. 

The third one is the class of all possible distributions of almost sure limits 
of arithmetic means n-l(l ,+..-+tn) for some 5, with pg, p .  

The fourth class consists of all possible distributions of almost sure limits 
of the ergodic averages n-I (5 + 5 o T+ - a -  + o T n - l )  for some 5 with p5 = p ,  
T :  D + 9 being an arbitrary measure-preserving bijection of 9. 

Formally, we have the following theorem: 

THEOREM 4.1. Let p be a probability distribution on a Banach space X with 
{,l/xllp(dx) < co. Then the following classes of distributions on X coincide: 

%= ( q ;  P < ~ * P , P < = ~  

for some (,, 5 with <, + in the a (L1 ( X ) ,  L, (X*))-topoiogy); 

gP = (q;  p = PC,  q = p ~ ( ~ ( ~ )  for some random vectors 5, q ) ;  

for some random vectors t,, c}; 
4 = { q ; p = p 5 y q = p s , n - 1 ( ~ + 5 0 T + ~ ~ ~ + ~ o T n - 1 ) + y  a.s. 

for some 5 E Ll (0, R P ;  X )  and measure-preserving bijection T :  B -, 9). 
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Proof. It is enough to show the following inclusions: eP c Wp, Wp c VP, 
WP c 4, Ap c WP. We do it in separate steps. 

Step 1. %', c Wp. 
Let X E E,  (a, S, P; IY) and let Y EL, (a, 9, P; X). It is enough to 

prove that there exist a probability space ( M ,  A, p) and random vectors 
t., E kl ( M ,  A, p; X) such that 5, -+ 5 in the n ( ~ ,  ( M ,  X), L, (M, x*))-to- 
pol~m, with PC. = PX (n = 1, 2, . . .) and pp = P E ~ X ~  Y,. 

Let us put M = [0, I] x X, A' = Borel M ,  p = I x p,, where R is the Le- 
besgue measure on [0, I j. For y g%, BE Borel X, let q (y, 3) bea  regular con- 
ditional probability distribution for X, given Y = y, i.e. for any y E X, q Cy, .) is 

I 

a probability measure on Borel X, and for any 3 E Bore1 X, q (y, 3) = 
P (XE B 1 Y= y) pp,-a.e. In particular, we have E (X I Y = y) = J, zq (y, dz). 
We shall also write P, ( .  ) instead of P ( a  I Y = y). Let a map j from [0, 11 onto 
X be a fixed Borel isomorphism (see 131, p. 227). By the same letter j we denote 
the isomorphism of the Borel field of [0, 11 onto the Borel field of X. Then, for 
every y E X, 0 < a < 1, F Cy, a) = Py ( j  [O ,  a)) is a distribution function of a mea- 
sure concentrated on the intervaI [0, l]. For any y E X, we denote by g ( x ,  y) 
the rearrangement (%verse3') of the distribution function Fly, a), i.e. for 
0 < x 6 1 we set 

, Let us put 

h(x, Y) =jog(x,  y) and t,(x, Y) = h(zAx, Y) ,  

where z is a fixed measure-preserving mixing transformation of ([0, 11, A). Then 
I 

we have 

Pr, (A) = p, (A) for A E Borel X .  

Indeed, since j is the isomorphism of Borel structures, it is enough to show the 
above formula for A = j([O, a)), 0 < a < 1. In this case we have . 

Let us put 
I 

t ( x , ~ ) = E ( x I Y = y )  

(so 5 does not depend on x). It is easy to check that 

P5 = PE(XIY). 

Indeed, let us define rp: X + X by putting rp (y) = E(X I Y = y). Then we have 
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E (X Y) = rp (Y). Consequently, for A E Bore1 X, 

Let us remark that 

Indeed, for P,-almost every y, we have g ( - ,  y) = P(X E .  I Y = y). Fixing such 
a y we can look at g(x, y) as a random variable with distribution function 

so the random variables g over ([0, 11, A) and j - l  o X (over (W, P,)) have the 
same distribution function. Consequently, the random variables j o g  and X have 
the same expectation, which means that the formula (1) holds. Let us remark that, 
by the mixing property of z, for u E Ll ( [ O ,  1],1; K) and q E L, ( [ O ,  I], A;  X*), 
we have 

Indeed, it is enough to check it for q = f x* with x* E X* and f E L, ([0, I], R), 
and then to pass to the limit with suitabIe linear combinations. 

To complete the proof, let us take a $ E L ,  (M, A, p; X*). Then we have 

Step 2. Wp c SP. 
Let 5, t,, E Ll (My A, p; X) and let 

(2) t,, + 5 in the o(L1 (My p; X), L, (My p; ~ * ) ) - t o ~ o l o ~ ~ .  

Assume that p5. =. p (weakly). It is enough to prove that there exist a probabili- 
ty space (9, 9, P) and random vectors X, YE Lo (Q, P; X) such that p = px 

and pg = PE(x[Y). 
Let us note first that j, llxll p(dx) < c ~ ,  . Indeed, by the weak convergence 

of to 5, we have sup, II&I1,,(M,x, = K < oo. Thus, for any c > 0, by the weak 



8 R. Jaite and A. Paszkiewicz 

convergence of pen to p we obtain 

SII~clldp(x) G K < 
X 

Put (9, F) = (X x X, Borel(X x X)) .  Let P, be a probability distribution of the 
vector (&, t), n = 1, 2, . . . Taking a subsequence if necessary, we can assume 
that P, * P for some probability measure P, so a probability space (A2, F, P) is 
defined. For X(x, y)  = x and Y(x, y) = y, we have obviously p = p,. In par- 
ticular, E llXll < a. The equality pg = p,(,l,, is a consequence of the following 
Iemma. 

LEMMA. Let 5,,  EL, ( M ,  A, p; X) satisfy (2). Assume that p, = p(e,,,tl - p (weakly), ?%en, f i  the coordinates X (x, y) = x, Y (x, y) = y on (X x X, 
Borel X x X, p), the equality E (X I Y) = Y holds. 

PI. o of. By assumption, pn 5 p (weakly) and for any x* E %* the sequence 
((.&(0), x*)) weakly converges in L, (R). This implies that for any A E Borel X 
we have 

(3) ( 5 Xdp,, x*) = j <X, x*)dp,+ S <X, X * ) ~ P  = < S xdp,x*)-- 
(YEA) (YEA] (YEA) (YEA) 

Indeed, let us fix an X* EX*. Then, for c > 0, we get 

j < X l  x*) ~ ( [ ( X , X * ) ~ S ~ )  dpR + s (X, x*) l ( I ( ~ , x * ) j  be) dp. 
(YEA) (YEA) 

Moreover, by the uniform integrability of <en, x*), we obtain 

1 (X1 x*) ' ( I<X,~*)~  >cl d n  = 5 < t n ,  x*) l ( l<m,~)l  d~ 
(YEA) (&A) 

< 1 1(5,, x*)l d p  -+ 0 as c + co , uniformly in n. 
(1<5".~"l >c) 

Also, 

MI the above estimations easily imply (3). On the other hand, for any x* E X*, 
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which together with (3) gives 

j Xdp = j Ydp for A E Borel X. 
(YEA) (YEA) 

It means that E ( X  I Y) = X 
The proof of Step 2 is completed. 

Step 3. qp c g,. 
Let p = pt and q = ps(cld for 5,  q defined on some probability space 

(Q, 9, P). Obviously, one can assume that E (< I q) = pl. Let us take a new 
probability space (fi, g, with fi = O x X", 

for any BE g, A{~Borel X. One can prove by a rather standard argument that 
the probability measure P" is uniquely defied on the product s-field 
# = 9@9, B being the a-field generated by the cylinders in lYZ. The demand- 
ed random variables can be defined as g"(w, (xi)) = q (o) and %(w, (x i ) )  = x0 
for any sequence (xJkZ€XZ. The bijection T can be defined as a shift (w, (uJkz) 
+ (o, (ai,,)iEz). By the strong law of large numbers for random vectors in 
Banach space (used conditionally), we have 

The relation '%, c 8, is shown. 

Step 4. A'c Wp. 
Now, let pEm = p ,  p,, = q, n-' + + tn) -+ q a.s. for some random varia- 

bles c, en on a probability space (a, P). Let us define fi = l2 x [0, I), 
@ = P@Borel[O, 11, P" = P@A, and cn(co, t) = %(w, Z n t - [ r t ] )  with 

& (w, t) = . . . . . . . . . . . . . . . . . I 4;, (w) for t E [(n- l ) / n  , 1). 

By a rather standard argument, the convergence 5", + fin the s(L, (6, $ P"; X), 
L, (0, P"; X*))-topology is equivalent to the convergence 

for any sets A E  9, BE Borel LO, 1). 
For f(w, t) = ~ ( c B ) ,  (w, t ) ~ a ,  the convergence (4) can be obtained by an 

approximation of a Borel set B by a sum of dyadic intervals. The relation 
A, c "t& is shown. 
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5. FLPtTAL REMARKS 

Remark 5.1. Our Theorem 3.1 is closely related to the results of 
L. Pratelli. One of them is quoted as Theorem 3.2. In fact, it is a special 
case of Theorem 3.1 for X = He1. The second result of L. Pratelli [5] is the 
following. 

Let en, t EL, (9, P; X) satisfy the condition: 
(a) for any f - real, bounded and Bore1 on X, and any x* E X*, 

- 

Then the convergence (, 4 in L1 is equivalent to the weak convergence of 
distributions pen * pe and the uniform integrability of (11{.11). 

In Theorem 3.1 we show that the convergence of distributions ptn pC 
implies the stochastic convergence of II<,-ell to 0 under the assumption of the 
convergence of <, to in the a(L1 (X), L, (X*))-topology (condition (iii)). 

PrateUi's condition (a) is even less restrictive than the a (L,  (X), L ,  (x*))- 
-convergence but it is used together with the uniform integrability of Iltll to 
show the L, (q-convergence. 

Remark 5.2. The characterization of distributions of weak limits given 
in Theorem 4.1 in the case of X = R was obtained in [2]. 

Remark 5.3. Concerning the conditions formulated in the Introduction 
it is worth noting that for a separable space X the equivalence of (iii) and (iv) 
can be shown by a rather standard argument. Clearly, the conditions (i) or (ii) 
for a sequence (l,) with uniformly integrable norms llcnll imply the conditions 
(iii) and (iv). 

Remark 5.4. The class of measures described in Theorem 4.1 coincides 
with the class of measures q subordinated to the distribution p (cf. Theorem 
T.53 in F4], Chapter XI). Namely, q < p if and only if j fdq 2 1 fdp for any 
concave positive function J: 
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