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Abstract. We prove the existence and uniqueness theorem for 
stochastic differential equation8 with bounded coefficients driven by 
the renormalized square of white noise. These equations are inter- 
preted as sesquitinear forms on the linear span of the exponential 
vectors (of the first order white noise) and the existence theorem is 
established on the space of these forms. 
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1. INTRODUCTION 

Linear quantum stochastic calculus is associated with the stochastic dif- 
ferentials dB (t) = b (t) dt, dB+ (t) = b + (t) dt, and dN (t) = b + (t) b (t) dt correspon- 
ding to white noise functionals b and b+ satisfying the commutation relation 
[b (t), b + (s)] = 7 - 6 (t - s), where y > 0 is the variance of the quantum Brownian 
motion defined by B and Bf, and 6 is the delta function (see [2] and [S]). It 
was developed in the case when y = 1 and the annihilation, creation, and 
number operators B, Bi, and N, respectively, act on Boson Fock space in [9]. 
A general, representation free, quantum stochastic calculus which includes that 
of [9] and all other known examples of linear quantum noise was developed in 
141 (see also [I] and [2]). 

Related to non-linear quantum optics, Accardi and Volovich have recently 
considered in [7] the quantum stochastic differential equation 

dU (t) = - i [c (t) d t  + g (t) dB; (t) + g ( t )  dB2 (t)  + w (t) d N  (t)] U (t) , 
(1.1) 

U(0) = 1, 

where c ,  g, and w are complex-valued functions of time t, dB, (t) = b (t)'dt, and 
dB: ( t )  = bi (ty dt. 

* The author wishes to thank Professor Luigi Accardi for his support and for the hospitality 
of the Centro Vito Volterra of the Universit6 di Roma TorVergata on several occasions. 
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I 

i This required the extension of quantum stochastic calculus (see [ 5 ]  
and [6 ] )  to include normally ordered nonlinear stochastic differentials of the 
form dB(,,nI = b + (t)" b (t)" dt, where m, n E { O ,  1, , . .) and the noise functionals 
b+ and b are defined as follows: Let Lfy,(dln) denote the space of square- 
-integrable functions on IF symmetric under permutation of their arguments, and 

I let F = @Jnm=, gym (R"), where: if $ = ($(A)],"= ,, E F, then E C, $(n) E I$,, ( R 3  
and 

Denote by S c I? (RR) the Schwartz space of smooth functions decreasing 
at infinity faster than any polynomial and let 

; For each ~ E W  define the linear operator b(t):  D F by 

and the operator valued distribution b+(t) by 

1 " 
(bi(t)$)(')(s,, ..., s.) = - C d ( t - ~ J $ ( " ~ ) ( s ~ ~  ..., iil ..., s.)~ J;; i =  1 

where " denotes omission of the corresponding variable. 
Then 

t t t 

B(t)=jb(s)ds,  B+(t)=Sb+(s)ds, and N(t)=jb+(s)b(s)ds 

are, for each t, operators acting on D. Since L$,(Rn) = L&,,(R)@", we can 
identify F with the symmetric (Boson) Fock space over S. In the case when the 
elements of S are defined on [0, + a) we denote the Fock space by r(S+). If 
$ = ((n!)-'I2 f @"), we denote $ by $lf). We have 

For an adapted process X = (X (t) 1 t 3 0) we d e h e  its stochastic differen- 
tial dX = (dX( t )  1 t 2 0) by 

For two adapted processes X and Y we have 
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The renovrnalized It6 table derived in [6] corresponding to dt, dB, dB+, 
dB,, dB; and dN is of the form: 

We couple r{S+) with a system Hilbert space H o ,  we define an adapted 
process A = (A(t) ( .t >, 0) to be a family of operators on H o  €4 T (ST)  such 
that, for each t, A(t) = A, @ 1, where A, acts on Ho r(S+) and 1 is the 
identity operator on r (ST), where 

If, for each t, A(t) = A 1, where A is an operator on H ,  and 1 is the identity 
on T(S+) ,  then A is a constant process. If, for each t, A(t) is a bounded 
operator, then A is a bounded process, etc. In what follows we identify B(t), 
Bf(t), B,(t), Bl(t), and N(t) with l@B(t), l@Bf(t), 1@B2(t), 1@B$ (t), and 
l@N(t), respectively, where 1 is the identity on H o .  For a constant adapted 
process A = (A(t) I t 2 0) we denote A(t) simply by A. 

Stochastic integrals with respect to dt, dB, . . ., dN are defined in Proposi- 
tions 1 and 2. Once a quantum stochastic calculus has been constructed, one 
usually considers the problem of finding conditions under which stochastic 
differential equations driven by quantum noise admit unitary solutions. To 
simphfy expressions let N ,  (t) = t -  1, N2 (t) = B (t), N ,  (t) = B+(t), N ,  (t) = 3, (t), 
N ,  (t) = B i  (t), N ,  (t) = N(t), where, with * denoting the dual operator, 
NT = M I ,  N: = N 3 ,  N: = N s ,  N z  = N 6 .  

Under the assumption of existence of a unique adapted process 
U = (U(t) I t 2 0) satisfying 

where the coeficients Al, A,, . . ., A ,  are bounded, constant adapted processes, 
it was shown in C33, with the use of the renormalized It6 table and the linear 
independence of the stochastic differentials dt, dB, . . ., dN,  that necessary 
and sufficient conditions for the unitarity of U (i.e. in order for U (t) U* (t) = 
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U* (t)  U( t )  = 1 for each t E [ O ,  TI )  are: 

Al+A:+A2A:y  = 0, 

A 2 + A ~ + A q . A ~ 2 y + A 2 A ~ 2 y + A 2 A ~ y  = 0 ,  

A4+ A:+ A4 A: 2y = 0 ,  

A,+A,*+A4Az4y+A6A,*y  = 0, 

A : + A l + A : A 3 ~  = 0, 

A i + A z + A : A 6 ~ + A ; A 3 2 y  = 0 ,  

A S + A 4 + ~ T ~ s 2 y  = 0,  

A ~ + A ~ + A $ A ~ ~ ~ + A ~ A ~ Y  = 0. 

The same conditions with the same proof are also valid in the case when 
the coefficients A,, .. ., A, are time dependent. It was dso shown that if 

and 

MW, AS = M* ('$")'", - 

where L, H, M are bounded operators with H self-adjoint, and M are 
unitary operators satisfying 

where R denotes real part, then Al,  ..., A, satisfy (1.5). 
In the case of the Accardi-Volovich equation (1.1), letting Al = -icy 

A4 = - ig, As = -ig, A = -ice, A2 = A3 = 0 in (1.5) we infer that the solu- 
tion of (1.1) is unitary if and only if the functions c, g, co satisfy 

where 3 denotes imaginary part. 
-In this paper we prove that the assumption made on the existence of 

a unique adapted process U satisfying (1.4) is valid even for time-dependent 
coeficients A,, . . ., A6. We also provide a direct proof of the fact that if 
A,, . . ., A, are, in general, time-dependent and satisfy (1.51, then U is bounded 
and in fact unitary. These results extend those obtained in [9] for stochastic 
evolutions driven by linear noise only. Finally, we show that our results imply 
the unitarity of the solution of a quantum stochastic differential equation re- 
cently considered in [7]. 
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The main result of this paper is: 

MAIN THEOREM. Let the co@jcient processes A,, i = 1, . . ., 6, be adapted 
and such that 

Then the quantum stochastic differential equation 

or in its equiualent integral form 

where Uo is a bounded operator an Ho@T(St), cadrnits a unique adapted strongly 
continuous solution U = {U (t) I 0 d t < T < + CQ) defined on span {u@$Cf)),  
where If (s)l < 1 for all S E  [O, TI. 

Moreover, if the Ai's satisfy (1.5) and Uo = 1, then U = ( U ( t )  ] 0 < 
t 6 T < + oo) is a unitary process, i.e. U It)* U (t) = U (t) U(t)* = 1 for all t E [0, n. 

The proof of the above theorem is provided in Section 3. 

2. TNE BASIC ESTIMATES 

The following propositions are non-linear noise analogues of those of 
linear quantum stochastic calculus (see [9]). We assume that the coefficient 
processes Ai ,  Ci, i = 1, 2 ,  . . ., 6, are such that the right-hand sides of (2.1)-(2.3) 
and (2.5) make sense. 

P~OPOSITION 1. Let n (t)  = C: J', A, (s) dNi (s), let u, v E HO andf ,  g E St. 
Then: 

and 

10 - PAMS 22.1 
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where 

I f (s), i = 2 ,  g (4 y i = 2, 
s (sly i =  3, f is), i =  3, 

ai (s)  = - and e i ( s )  = 
f (s)2,  i = 4, I- g (s12 , i = 4, 

Proof. Proposition 1 follows directly from (1.2). rn 

and kt u, VEH*, f, ~ E S + .  Then: 

t S 

+Sej(s)  1 ai (st )  <Ai(s')u@$ Cf), C j ( ~ ) v @ $ @ ) >  ds'ds 
0 0 

where ai, e j  are determined as in Proposition 1 and 

i =  6 ,  j = 3 ,  

i = 6 ,  j = 5 ,  

rf%s(t), i = j = 6 ,  
otherwise. 
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Proof. By (1.3), 

When, for example, i = 3 and j = 6, then by (1.2) and the fact that, by the 
renormalized It8 table, dN,*.  d N ,  = d N ,  d N ,  = ydN, the expression in brack- 
ets equals 

The rest of the terms are computed similarly, and the result follows by 
integrating (2.4) from 0 to z. 

PR~POSITION 3. Let nl, l7,, u, v ,  f, g, ai, ej and oh be determined as in 
Proposition 1 .  Then: 

6 

+ C ej(s) < n ~  (s)u@$Cf), cj(s)v@$ (g))  
I j= 1 

6 

+ C w!j(s) <Ai (s) u Q $  (f), Cj (s) v@$ (s ) ) ]  ds. 
i.j= 1 

Proof. As in the proof of Proposition 2, by (1.3), (1.2) and the renor- 
malized It8 table, we have 
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and the result follows by integrating from 0 to z using Dl (0) = 112(0) = 0. rn 

COROLLARY 1 .  In the notation of Proposition 2 we have 

Proof. The corollary follows from Proposition 2 and the fact that 
f = g * e j = c j .  . 

COROLLARY 2. In the notation of Proposition 2 we have 

where 

and for p = 1 , 2 ,  ... 

IlAill?; = [E I I A ~ ( ~ ) ~ B $ W ) I I ' ~ ~ I  l". 
0 

Proof. By Corollary 1 we obtain 
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which by the Cauchy-Schwartz inequality is less than or equal to 

from which the result follows by applying the Cauchy-Schwartz ingquality to 
the last parentheses. a 

COROLLARY 3. In the notation of Proposition 2 suppose -that Ai(s) = 

ai (s) fl  (s), where, for each i, ai is a bounded adapted process on H o @ r  ( S  +) such 
that,for all t 2 0, ~ u p , ~ , ~ ,  / loci  ( $ ) I t  < m, and fl  is a strongly continuous adapted 
process, i.e. s E [ O ,  t ]  + f l  (s) u@$ Cf) is continuous for all u E H o  , f E S +  . Then for 
O < t < T <  +co 

Ilni (tlu@$Cf)l12 G K y , ~ .  T SUP 1 1 f l ~ ~ ) u 6 ~ d f ) 1 1 ~ ,  
O<s<T 

where 
6 6 

K q , ~  = [2 tluill2,7' SUP llai (s)1I2 + II~b112,~ SUP IIai (s)II SUP Ilaj(~)II] 
i= 1 O C s C T  i j =  1 O C s C T  O S s S T  

Proof. In the notation of Corollary 2 we have 

IIAill?$ < IIAill?;'T < TIt2  sup Ilai(s)ll SUP 118(s)uQ$(f)ll 
O S s S T  O S s S T  

and 

and the result follows from Corollary 2. H 

COROLLARY 4. In the notation of Proposition 2, if If ( $ 1  d 1 for all 
SE[O, TI (as in [8]) and the AiS are as in Corollary 3, then 

Ilnl (t)u@$df)t12 < L ~ , T .  T SUP llfl(~)u@$df)11~, 
0 4 s d T  

where 
6 

' 7 , ~  = (2+4~)  T C sup Ilai(s)l12- 
i = l  O d s b T  

Proof. The corollary follows from Corollary 3 and the definition of 
oi and w3. rn 
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COROLLARY 5.  In the notation of Proposition 2, i f l f  (s)f < 1 for all 
SE[O, and the Aias are as in Corollary 3, then 

where 

- 

Proof. As in the proof of Corollary 2, (2.6) implies 

which by the Cauchy-Schwartz inequality is less than or equal to 
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3. PROOF OF THE MAD4 TEEOREM 

Define a sequence of adapted processes {Un)F=o by Uo (t)  = U o  and, for 
n >  1 ,  

6 t 

un (t) = UO + 2 J Ai (s) Un - I (s) dNi (s). 
i = 1 0  

Then for O < t r < t < T <  t m  we have 

from whch we conclude by induction that ( U n } ~ = o  is a sequence of strongly 
continuous adapted processes. Moreover, 

and so 

from which we conclude that 
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By the completeness of H o 8 r ( S + )  the above series also converges nonab- 
solutely, and so we may define 

where the limit is uniform for t E LO, TI. As a strong limit of adapted processes 
U is also adapted. By the uniformity of convergence, U is strongly continuous. 
Moreover, 

The first term of the above goes to zero as n -, co by the definition of U. 
The second term is equal to zero by the definition of U,. The third term is, by 
Corollary 4, less than or equal to 

which goes to zero as n + m by the uniformity of the convergence in the 
definition of U.  Thus 

i.e. U is a solution of (1.4). 
If V  = ( V ( t )  I 0 6 t < T) is another process such that 

then by Corollary 5 we have 
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from which we conclude by Gronwall's inequality that 

Hence U = V on the exponential domain, thus proving uniqueness. Turn- 
ing to unitarity we notice that for u E H,,, and f E S +  with If (s)l < 1 on [O, TI, 
by the integral form of U, 

which by Propositions 1 and 3 is equal to 

Let K = [ C : = ~ D ~ ( S ) A ~ ( S ) + X ~ -  J-1 ~ . ( s ) ~ j ( s ) + ~ ~ = , w ~ ( ~ ) A ? ( s ) A j ( s ) ] .  .I w e  
will show that K = 0. Using the definition of ai,  ej and w& and collecting terms 
we have, by (IS), 
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Thus (U(tlu@@ Cf), U(t)v@@ (g ) )  = (u@$( f ) ,  v@$(g)> and by the to- 
tality of (u@$Cf)) it follows by Proposition 7.2 of [lo] that U(t) extends to 
a unique linear isometry on Ho@r(S+) .  Similarly, b y  considering the dual 
equation 

we conclude that U(t) extends to a coisometry on Ho@r(S+) ,  thus proving 
unitarity. - 
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