TR

PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 22, Fasc. 1 (2002), pp. 141-154

STOCHASTIC EVOLUTIONS DRIVEN BY NON-LINEAR WHITE NOISE
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Abstract. We prove the existence and uniqueness theorem for
stochastic differential equations with bounded coefficients driven by
the renormalized square of white noise. These equations are inter-
preted as sesquilinear forms on the linear span of the exponential
vectors (of the first order white noise) and the existence theorem is
established on the space of these forms.
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1. INTRODUCTION

Linear quantum stochastic calculus is associated with the stochastic dif-
ferentials dB(t) = b(¢)dt, dB* () = b™ (t)dt, and dN () = b™* () b(t) dt correspon-
ding to white noise functionals b and b* satisfying the commutation relation
[b(t), b* (s)] = y-6(t—s), where y > 0 is the variance of the quantum Brownian
motion defined by B and B™, and & is the delta function (see [2] and [5]). It
was developed in the case when y =1 and the annihilation, creation, and
number operators B, B*, and N, respectively, act on Boson Fock space in [9].
A general, representation free, quantum stochastic calculus which includes that
of [9] and all other known examples of linear quantum noise was developed in
[4] (see also [1] and [2]).

Related to non-linear quantum optics, Accardi and Volovich have recently
considered in [7] the quantum stochastic differential equation

dU () = —i[c(t)dt+g(t)dB3 (t)+g(t)dB, () +w (t)dN ()] U (1),
voy=1,

(1.1)

where ¢, g, and o are complex-valued functions of time ¢, dB, (t) = b (t)* dt, and
dB3 (t) = b* (t)* dt.

* The author wishes to thank Professor Luigi Accardi for his support and for the hospitality
of the Centro Vito Volterra of the Universitd di Roma TorVergata on several occasions.
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This required the extension of quantum stochastic calculus (see [5]
and [6]) to include normally ordered nonlinear stochastic differentials of the
form dB,., = b* (t)"b(t)"dt, where m, ne {0, 1, ...} and the noise functionals
b* and b are defined as follows: Let L2, (R") denote the space of square-
-integrable functions on R" symmetric under permutation of their arguments, and
let F=@  Lin(R"), where: if = {y”};2oeF, then y©eC, yPell (R
and

11> = W O)* + Z J W™ (1, 8o dsy .. ds,.

n=1R"

Denote by S = I?(R") the Schwartz space of smooth functions decreasing
at infinity faster than any polynomial and let

D={yeFlYy"es, i ny™)? < wo}.
n=1

For each teR define the linear operator b(t): D » F by
BOY) " (51, ...r s0) = /A LYV, 54, .., 51)

and the operator valued distribution b*(¢) by
E*O¥)” 15 s 5n 3 8=V D (51, o s 5,
\/ﬁl

where " denotes omission of the corresponding variable.
Then

B(t) = jt'b(s)ds, B*(t) = _sz*'(s)ds, and N(@)= jb*(s)b(s)ds

are, for each t, operators acting on D. Since L2, (R") = L2, (R ®n we can
identify F with the symmetric (Boson) Fock space over §. In the case when the
elements of S are defined on [0, + c0) we denote the Fock space by F(S+) If
Y = {(n!)~12f®"}, we denote ¥ by Y (f). We have

bOY ) =fOY(), bW ()= f(t)zlll(f)

(@), b OPAY () = 9 () £ O WY @), ¥ (N

For an adapted process X = {X ()|t > 0} we define its stochastic differen-
tial dX = {dX ()|t >0} by

dX (t) = X (t+dt)— X (¢).

(1.2)

For two adapted processes X and Y we have

(1.3) dXY)@)=dX (@) Y@)+X@)-dY(®)+dX (1) -dY(¥).




Stochastic evolutions driven by non-linear white noise 143

The renormalized Ité table derived in [6] corresponding to dt, dB, dB™,
dB,, dB3, and dN is of the form:

dt dB dB* dB, dB} dN
dd {0 0 0 0 0 0
dB|0 0 +ydt O 2ydB* +vdB
dB*{0 0 O 0 0 0
dB,|0 0 2ydB 0 4ydN 2ydB,
dBjlo 0 0o o 0 0 -
AN |0 0 ydB* 0 2ydBf ydN

We couple I'(S ) with a system Hilbert space H,, we define an adapted
process A = {A(t) | t > 0} to be a family of operators on Ho, ® I'(S%}) such
that, for each t, A(f) = A, ® 1, where A, acts on Ho® I'(S;) and 1 is the
identity operator on I'(S?), where

59 = {f‘X[o,z] | fES} and S¢ = {f‘X(:,+oo) | fES}-

If, for each ¢, A(t) = A ® 1, where A is an operator on Hy and 1 is the identity
on ['(S4), then 4 is a constant process. If, for each ¢, A(t) is a bounded
operator, then A is a bounded process, etc. In what follows we identify B (z),
B*(#), B,(t), B3 (t), and N (t) with 1®B(t), 1® B* (), L®B, (1), 1®B; (t), and
1®N (t), respectively, where 1 is the identity on H,. For a constant adapted
process A = {A(t) | t > 0} we denote A(f) simply by A.

Stochastic integrals with respect to dt, dB, ..., dN are defined in Proposi-
tions 1 and 2. Once a quantum stochastic calculus has been constructed, one
usually considers the problem of finding conditions under which stochastic
differential equations driven by quantum noise admit unitary solutions. To
simplify expressions let N (t) = ¢+ 1, N, (t) = B(t), N3(t) = B (t), N4(t) = B, (¢),
Ns(t) = B3 (t), Ng(t) = N(t), where, with * denoting the dual operator,
NT =N1, N; =N3,- Nz =N5, Ng =N6'

Under the assumption of existence of a unique adapted process
U={U()|t=>0} satisfying

dau@® =] i AidN; (0] U (1),
(L4) i=1

U)=U,, 0<t<T<+o,

where the coefficients A, 4,, ..., A¢ are bounded, constant adapted processes,
it was shown in [3], with the use of the renormalized It6 table and the linear
independence of the stochastic differentials dt, dB, ..., dN, that necessary
and sufficient conditions for the unitarity of U (ie. in order for U@ U*(t) =
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U*(t)U(t) =1 for each te[0, T7]) are:
A +A¥+A4,A4%y =0,
Ay + A5+ A, A2y + A, A5 2y+ A, Ay =0,
Ay + AT+ A4, 452y =0,
Ag+ AE+ AL AT Ay + Ag AEy =0,
AT+ A+ A5 A5y =0,
A+ A, + AT Agy+ A2 A32y =0, ~
Af 4+ A+ AT Ag2y =0,
AY+ Ag+ AT Agdy+ A Agy = 0.

(1.5)

The same conditions with the same proof are also valid in the case when

the coefficients A4,, ..., A¢ are time dependent. It was also shown that if
wW—-1
Ay = iH—%L*L, A= —L'W, As=L Ac=—p-

and

1__ 1/2 I—ER 1/2
A4=—(—9'1V) MW, As=M*( ZW) ,

8y? 8y

where L, H, W, M are bounded operators with H self-adjoint, and W, M are
unitary operators satisfying

F(1—W)+./2(1—RW)2 ML =0,

where R denotes real part, then A4,, ..., A¢ satisfy (1.5).

In the case of the Accardi-Volovich equation (1.1), letting 4; = —ic,
Ay = —ig, As = —ig, Ag = —iw, A, = A3 = 0 in (1.5) we infer that the solu-
tion of (1.1) is unitary if and only if the functions c, g, w satisfy

Jc=0, 230+|gldy+lofPy=0, Jg+yjo =0,

where 3 denotes imaginary part.

‘In this paper we prove that the assumption made on the existence of
a unique adapted process U satisfying (1.4) is valid even for time-dependent
coefficients A, ..., As. We also provide a direct proof of the fact that if
Aj, ..., Ag are, in general, time-dependent and satisfy (1.5), then U is bounded
and in fact unitary. These results extend those obtained in [9] for stochastic
evolutions driven by linear noise only. Finally, we show that our results imply
the unitarity of the solution of a quantum stochastic differential equation re-
cently considered in [7].
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The main result of this paper is:
MAIN THEOREM. Let the coefficient processes A;, i=1, ..., 6, be adapted
and such that

sup HA4; ()]l < + 0.

€SS

Then the quantum stochastic differential equation
6
dUu@) =3 4®dN;@®]U ), B
i=1

U©O)=Uy, 0<t<T<+o0,

or in its equivalent integral form

U@ =Uy+ i iAl-(s)U(s)dN,-(s), 0<t<T <+,
i=10

where Uy is a bounded operator on Hy®1I' (S ..), admits a unique adapted strongly
continuous solution U ={U(t) | 0 <t < T < + oo} defined on span {u®y (1)},
where |f(s)] <1 for all se[0, T].

Moreover, if the A;s satisfy (1.5) and Ug=1, then U={U(@)|0<
t < T < + oo} is aunitary process,ie. Uy* U (t) = U@ U @)* = 1 forallte[0, T].

The proof of the above theorem is provided in Section 3.

2. THE BASIC ESTIMATES

The following propositions are non-linear noise analogues of those of
linear quantum stochastic calculus (see [9]). We assume that the coefficient
processes A;, C;,i=1, 2, ..., 6, are such that the right-hand sides of (2.1)(2.3)
and (2.5) make sense. 4

ProPOSITION 1. Let I1(t) = le j:) A;(s)dN;(s), let u,veHy and f, ge S, .
Then:

Q1) uy (), HHvY(9)) = Z g 0:(8) Cu®Y (f), Ai(5) v®y (g)) ds
and

6 t
22) {O@®)u®Y (), v®Y (9)) = _Zf 1(5) Cu®Y (f), AF (5)v®Y (9)) ds,

10 — PAMS 221




146 L. Accardi and A. Boukas

where
1, i=1, (1, i=1,
ﬁs_), i=2, g(s), i=2,
o;(s) = < ]%2’, :_= 431: and  ;(s) = < J;((?)’Z’ := i:
g,  i=S5, [ 62, i=35,
f©)gls), i=6, S g6, i=6.

Proof. Proposition 1 follows directly from (1.2). =

PROPOSITION 2. Let

6 t 6 t
I, (t) = Z gA i(8)AN;(s), Hy(t)= ) E‘;Cj(S)de(S)’

; i=1 i=1

and let u, veH,, f, geS,. Then:
23) <O (OuY (f), IO v®Y (9))

Z [I m(s)I 0;(5) < A: () u®Y (f), C;(s) v@Y (g)y ds' ds -

i,j=1

+ e,-(s>i 01(5) <A (5) u®Y (f), C;(5) vV (g)) d ds

+£w?j(8) {Ai () u®VY (f), C;(s)v®VY (9)) ds],

where ¢;, g; are determined as in Proposition 1 and

r

Vs i=j=3,
21 (8), i=3,j=5,
?g(t)’ i= 3:] = 6a
2yg (1), i=35,j=3,
df(gl), i=j=S35,
ol ) = yf()zg() P=i=

| 2yg (t)*, i=5,j=6,
Yf(t)’ i=6’j=37
2yf (1)?, i=6,j=235,
'}’f(t)g(t), l=.] = 65
0, otherwise.

-
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Proof. By (1.3),
24) A (u®Y (f), 12 () v®Y (9)> = Ldll, () u®VY (f), 11, (t) v®Y (9)>
+ 1 () u®Y (f), dI1,(£) vQY (9)) + dII; () u®V (f), A1, (£) vQ®Y (9))

Z [{4:(®)dN: () u®Y (f), IC () dN;(5)v®Y (9))

L,j=1

+<£ A;(5)dN; (5)u®Y (f), C;())dN;(t) v®Y (9))

+{4:())dN: () u®Y (f), C;(O)dN; () v®VY (9)) ).

When, for example, i = 3 and j = 6, then by (1.2) and the fact that, by the
renormalized It0 table, dN§ - dN; = dNg*dN5 = ydN the expression in brack-
ets equals

g(t)gm). g(5) (A3 @) u®Y (f), Co () v®¥ (g)) ds' dt

+[g(5) {43 () u®Y (f), Co (1) vV (9)) dsf (t) g () dt
0

+7:9 (1) (A3 (D) uRY (f), Cs () vQY (g)) dt.

The rest of the terms are computed similarly, and the result follows by
integrating (2.4) from 0 to z. =

ProPOSITION 3. Let II,, II;, u, v, f, g, 6;, ¢; and w}; be determined as in
Proposition 1. Then:

25) I, @) uy (f), I, () @Y ()
g [ Z 0:(5) {4: () u®Y (f), I (5) v @Y ()

i=1
6

0;(s) I11 (5) u®Y (f), C;(s)v®Y (g)>

H

j=
6

+ Y ofi(s) (A u®Y (f), C;(s)v®¥ (9)>] ds.

i,j=1

Proof. As in the proof of Proposition 2, by (1.3), (1.2) and the renor-
malized Itd table, we have

d<I1, () u®Y (f), T2 () v®Y (9)> = <dII, (1) u®Y (), I, (1) v®Y (9)>
+<I1; () u®Y (f), Al () v@Y (9)) + I, () u®Y (f), dIT (&) v®Y (9)>

= ;1 0;(t) CA: () u®Y (f), 12 (£) vY (9)) dt
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6
+ ; e; ()< ) u®Y (f), C;(®)v®Y (9)) dt

6
+ Y, of() <4 u®¥ (f), C;0)v®Y (9)>] dt,

i,j=1
and the result follows by integrating from 0 to z using I1;(0) = II,(0) =0
COROLLARY 1. In the notation of Proposition 2 we have

1 () u@y (NI* = Z [IG (S)IG (5) <A (5) u®VY (f), A4;(5) u®Y (f)) ds' ds

1]1

+f51(3) f 0;() {Ai (S u@Y (), A; () u®Vr (f)) ds' ds
0 0

T [h(8) <A u®Y (), Ay () u®Y (1)) ds].
0

Proof. The corollary follows from Proposition 2 and the fact that
f=g=0;=6;. =
COROLLARY 2. In the notation of Proposition 2 we have

Iﬂl(t)u®!//(t)||2<2[2 llodla. 411" + Z lleofillz.e I1ANIEF 1A%,

i,j=1
where

llodl2,e = [g o ()2 ds]"%, Nz = [J‘ g (s)I ds],
and for p=1,2,...
llAdld = [j 14:(s)u®@ ()17 ds] .

Proof. By Corollary 1 we obtain
26 |, (t)u®l!l (f)ll2

Z [IIGI(S)I ll4;(s) u®y (f)llflcr (N4 () u@Y ()il ds’ ds

i,j=1
+ g |65 () [14;(s) u@y ()] (f) lo; () 114: () u@r ()l ds’ ds
+f|w7-(S)I 114 (5) u®@Y (Nl 114;(5) u@r (f)ll ds]

Z [25101(8)| 14: (5) u®y (f)IIdSI lo; ()] 114 (s) u@y (f)ll ds

111

+(I) |} ()1 14: (5) @Y (NI 14, (5) u®Y ()]l ds]
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which by the Cauchy-Schwartz inequality is less than or equal to

): [2 (j | (s)|? ds)'"? (jIIA () u@y ()| ds)™

i,j=1

x((j) lo; ()| ds)''* anj(s)u@w (NI? ds)

+{ () ds)'" (}nAi(s)u@n//(f)uz||Aj(s)u®w(f)||2ds)”2]
0

from which the result follows by applying the Cauchy-Schwartz inequality to
the last parentheses. m

COROLLARY 3. In the notation of Proposition 2 suppose that A;(s) =
o;(s) B(s), where, for each i, o; is a bounded adapted process on Hy®I (S ) such
that, for all t > 0, supg<s<: || ()|l < o0, and B is a strongly continuous adapted
process, i.e. s€ [0, t]1 - B (s)u® (f) is continuous for allueHy,f €S, . Then for
0<tT< 4+

11, (O u®Y (NI* < K,,r- T sup [IB)u®Y (HI?,

0<s<T
where

K,r=[2 Z lodlz,r sup llo(S)I*+ Z llofllz,r sup lle(s)ll sup [l (s)I]-

0<s<T i,j=1 0<s<T DESES

Proof. In the notation of Corollary 2 we have
4137 < l4llsh < TY? sup [l (s)l sup 1B (s)u®@y (N
0<ssT 0ss<T
and
Al < 14dlEE < TY* sup |l ()l sup IIﬁ(S)u®lﬁ(f)|I

0<s<T 0ss<T

and the result follows from Corollary 2. =

COROLLARY 4. In the notation of Proposition 2, if |f(s)| L1 for all
se[0, T] (as in [8]) and the A;’s are as in Corollary 3, then

T, @) u®Y (NI* < L,r- T sup B u@y (NI

0<s<T

where

6
Lr=@Q+4)T } sup llog(s).

i=10<s<T

Proof. The corollary follows from Corollary 3 and the definition of
o; and of. ®
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COROLLARY 5. In the notation of Proposition 2, if |f(s) <1 for all
se[0, T] and the A;s are as in Corollary 3, then

L@ u@v (DI < My.Ti||ﬁ(s)u®n//cf)nz s,

where

6
M,z =QT+4)[Y sup lluGI]*

i=00<s<T

Proof As in the proof of Corollary 2, (2.6) implies

T, @) u®Y (N> < Z [ZIIIA (S)u®¢(f)IIdSIIIA (S)u®l/1(f)llds

i,j=1

+4V£IIAi(S)u®t// NINIA; () u@yr (f)ll ds]

Z [2I llots (s) B (s) u @y (Nl dSI lloe; (5) B (s) u @y (f)ll ds

1]1

+4v,f||¢xi(S)Il lloe; (S)II11B (s) u @y (NI ds]

Z [2 sup ()l sup o (S)IIIIIB(S)u®l/I(f)IldS

i,j=1 0ss<T 0<s<T

+4y sup [la;(s)| sup Ilot,(S)IIIIIﬁ(S)u®¢(f)II2dS]

0ss<T 0<s<T

which by the Cauchy-Schwartz inequality is less than or equal to

2 [2T sup llo(s)| sup || a,(s)nm(flw(s)u@n/z(f)uz s)2

hji=1 0<s<T 0<s<T

+4y sup |l (s)ll sup |l (S)IIIIIﬁ(S)u®l//(f)I|2dS]

0<s<T 0<s<T

< @QT+4y) Z sup |lo;(s)]| sup Ila,(S)IIIIIﬁ(S)u®¢O’)IIZdS

Li=0 0<s<T 0<s<T

- My,Tij(s)u@W)nst. .
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3. PROOF OF THE MAIN THEOREM

Define a sequence of adapted processes {U, } ~o by Uy (t) = U, and, for
nzl, :

6 t
Uy@) = Up+ Y, [A:i(s) Up—1()dN;(9).
=10
Then for 0 < t'<t< T < 400 we have

6 t
LU ()= Un @)1 @Y (NI = || 3 [ 4:(5) Un 1 (5) AN (s) u@¥ )|

i=1t

< L,r(t—1t) sup ||U,—;1(s)u®y (NII* (by Corollary 4)

0ss<T

from which we conclude by induction that {U,}.~, is a sequence of strongly
continuous adapted processes. Moreover,

LU ()= Un- 1 01 4@ (I
[ ; gAi [Un-1 () = Un-2 (1)1 dN; (01w ()]

M'y,Tj‘”[Un—l(tl)_Un—Z(tl)] u®y (f)*dt; (by Corollary 5)
: -

t i

< (M, 1) | JILUA- 3 (t2) = Un-3 (t2)]u@®Y (NI e dts
0o

t1 6 th-1

< (M, 1) 1,”' j ”Z I A;(9)UydN; (s)u®t//(f)|| dt,y...dty

tt th-1

< (M, )" UG [u@Y (NP § ... | dsdt,—s...dt,
00 0

< (M, 2 IVl @Y (P,

and so
n/2

ILUw(®)— Un-1 @Tu®Y (Nl < M) [Uoll- lu@¥ (NI \t/ﬁ

from which we conclude that

3. U, 0~ U1 O4@¥ () < o.
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By the completeness of Ho®I' (S ) the above series also converges nonab-
solutely, and so we may define

U@®uey (= lim U, (6) u®¥ (f),

where the limit is uniform for te[0, T]. As a strong limit of adapted processes
U is also adapted. By the uniformity of convergence, U is strongly continuous.
Moreover,

||[U(t) Uo— 2 j'A () U (s)dN;( s)]u®l//(f)||

i=10

— [V = Uns1 @+ Uns2 0= Uo— ¥ § 4:6) Un®)dN:(®

i=10
6 t t
_g: | 4:() U, (s) dN; (s)— 21 (5) A;(5) U (5)dNy(s)] u®y (f)
< LU ()= Ups1 @] 4@y ()]
+[[Uns1=Uo— Y. §A4:i(s) Un(s)dN(5)] u®¥ ()]

i=10
6 t
+]| Y § 46 [Ua ()= U ($1aN:(8)u®¥ (-
i=10
The first term of the above goes to zero as n — co by the definition of U.

The second term is equal to zero by the definition of U,. The third term is, by
Corollary 4, less than or equal to

[L,rT sup |[[U.(s)—U&1u®@y (NIF]",

O0<s<T

which goes to zero as n— oo by the uniformity of the convergence in the
definition of U. Thus

U =Uot T f 4OV,

ie. U is a solution of (1.4).
If V={V(@|0<t< T} is another process such that

V() = U+ Z jA )V s)dN ),

i=10

then by Corollary 5 we have

ILU &) —V 01u®¥ (N> < M,z JIILU (5)— V()1 u@y (I ds,
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from which we conclude by Gronwall’s inequality that
ILU @&)—V @] u®y (/) = 0.

Hence U = V on the exponential domain, thus proving uniqueness. Turn-
ing to unitarity we notice that for ue Hy, and feS., with |[f(s)) <1 on [0, T],

by the integral form of U,
U@u@Y(f), U@OvRY (g)> —u®Y (f), vV (9)>

= @Y (), Y. [ A U(s)dN: () v (@) ;

i=10

IA () U (s)dN,(s) u®Y (f), V®¢(g)>

".M"‘

6 t
+{ X [ A Us)dN:(s)u®y (f), Z IA (5) U (s)dN;(s)v®¥ (9))

i=10 =10
which by Propositions 1 and 3 is equal to

.g . 0i(s) u®Y (f), 4:i(9) U (5)v@Y (g)> ds

i=1

~

2. 6:i(5) <u®Y (f), AF () U (s)v®Y (9)> ds

i=1

[ ; 6:(s) (A U () u®Y (), (U (5)— 1) v®¥ ()

i=1

+

+

=Y P SN

+ 3 6O (UO-1)u@Y (), 4,60 U@ @)

+ Y, ol(5) <46 UE®Y (), 4;() Us)v®Y (9)>] ds

ij=1

= £ <U(S)u®'/l U)s

[Z 0:(s) A7 (5)+ Z 0;(s)4;(s)+ Z li(s) A (5) 4;(5)] U () v®¥ (9)) ds.

ih,j=1
Let K = [Yr_, i) AFO+X;_, 0;() 4;(6)+ Xy, o () AF (5) 4;(5]. We
will show that K = 0. Using the definition of ;, ¢; and w}; and collecting terms
we have, by (1.5),
K =[AT+A;+7y43 A3]+ F[A3 + A5 +2y AT As+74§ 4A5]
+g2[AS+ Ay +29A% Ad+ Fg[ A+ As+4yA% As+yAE A6] = 0.
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Thus <U (()u@y (f), U v®Y (9)> = <u®VY (f), v®¥Y (9), and by the to-
tality of {u®y (f)} it follows by Proposition 7.2 of [10] that U (t) extends to
a unique linear isometry on Ho®1I'(S,). Similarly, by considering the dual
equation

U*()=1+ i }U* (s) AF (s)dAN{ (s)

we conclude that U (¢) extends to a coisometry on Ho®I'(S,), thus proving
unitarity. -
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