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Abstract. Let x be a q-variate (weakly) stationary process over 
a locally compact Abelian group G, and 9 a family of subsets or 
C invariant under translation. We show that the set of aU regular 
non-negative Hermitian matrix-valued measures M not exceeding the 
(non-stochastic) spectral-measure of x and such that the Hilbert s p m  

(M)  is >-regular contains a unique m e a l  element. Moreover, this 
maximal element coincides with the spectral measure of the f-regular 
part of the Wold decomposition of x. 
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1. INTRODUCTION 

Let N be the set of positive integers and  EN. By M ,  we denote the 
algebra of q x q-matrices with entries from the field of complex numbers C and 
by ILf: the subset of non-negative Hermitian matrices. The symbol I stands for 
the unit matrix of M,. 

Let G be a locally compact Abelian group, r its dual, and ( g ,  y )  the value 
of a character  YE^ on ~ E G .  If J is a subset of G, then a (finite) M,-Iinear 
combination of functions ( g ,  a) I, g~ J ,  is called a trigonometric polynomial with 
frequencies 30m J. 

Let x be a q-variate (weakly) stationary process over 6, and H, its time 
domain, i.e. the left Hilbert-M,-module spanned by the values of x. I f f  is a family 
of subsets of G invariant under translation, then there exists a unique Wold 
decomposition of x into an orthogonal sum of q-variate stationary processes y and 
z such that y is f-regular and z is $-singular (cf. [12], Theorem 2.13). It could be 
expected that, in a certain sense, the process y is the ccmaximal f-regular part 
of x". The aim of this note is to specify this statement. To do this it is more 
convenient to work with the spectral domain instead of the time domain of x. 

Let a (0 be the 0-algebra of Bore1 sets of r. The (non-stochastic) spectral 
measure M ,  of x (cf. [12], Definition 3.5) is a regular Mz-valued measure on 



(r). Loewner's partial ordering of I&d? induces a partial ordering on the set of 
all regular 1~:-valued measures on a (0. We will show (see Theorem 3.3) that 
among all regular Mk-valued measures h4 on 98 (r), which do not exceed M ,  
and for which the space L2 (M) is #-regular, there exists a maximal measure. 
Moreover, in Section 4 it will be shown that this maximal measure coincides 
with the spectral measure of the $-regular part y of the Wold decomposition of 
x. Section 5 deals with an application d o u r  results to the case where is the 
family f ,  of complements of all singletons of 6;. Using Makagon and Weron's 
characterization of yo-regular processes (see [?I, Theorem 5.3, we compute 
the spectral measures of the fo-regular and yo-singular parts of the Wold 
decomposition of x. 

For any matrix 3 with complex entries, denote by B* its adjoint and by 
W ( 3 )  its range. For A € M q ,  let ker A, tr A, and A' be the kernel, trace, and 
Moore-Penxose inverse of A, respectively. Let PA be the orthoprojector in the 
left Hilbert-M,-module Cq of column vectors of length q onto W (A). If A E M f  , 
we denote by A'/' the unique non-negative Hermitian square root of A. We 
equip M z  with Loewner's partial ordering, i.e. we write A < 3 if and only if 
3- A is a non-negative Hermitian, A ,  BE M z  . 

We give some more or less known results on 1W: and the measurability of 
Mq-valued functions, which for ease of reference will be stated as lemmas. 

L m m  2.1. Let 9 be a directed subset of M:, which has an upper bound. 
Then there exists a least upper bound C of 9 and we have 

P r o of. For u E C4, set t (u) : = sup {u* Du: D E 9) .  Obviously, if I. E C, we 
have 

(2.1) t (nu) = ln12 t (u), 

and if u, V E  Cq, we obtain 

(2.2) sup(u*Du+v*Du: D E ~ )  < t(es)+t(u). 

Since 9 is directed, for Dl, D2 € 9  there exists Dg €9 such that 

u * D 1 u + v * D 2 v < u * D 3 u + v * D 3 v .  

This yields 

(2.3) t(u)+t(v) G sup(u*Du+v*Dv: D E ~ ) .  
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The parallelogram identity implies that 

Combining (2.4), (2.2), and (2.31, we get 

From (2.1) and (2.5) it follows that there exists C E M: such that t (u) = u* Cu, 
ts E Cq. From the definition of t it is clear that C is the least upper bound of 99. 

LEMMA 2.2 (cf. [I], Theorem 1). Let p ,  q E N.  A block matrix 

belongs to Mg+, i f  and only 
6) 9 (XT2) E 9(X22)7 

(ii) Xzz EM: , 
(iii) XI, - X I 2  X& Xr2 = : (X/X,,) is a non-negative Hermitian. 

LEMMA 2.3 (cf. [3], p. 391). If F is a (Borel) measurable M,-valued function 
on r, then P, is measurable. If W is a measurable M z  -valued function on r7 then 
Wit' and W +  are measurable. 

Let M be a regular Mz-valued measure on g ( T )  and z a regular non- 
-negative 0-finite measure on i% (r) such that M is absolutely continuous with 
respect to 2. For example, one can take z = tr M. Let W := dM/dz be the 
Radon-Nikodym derivative of M with respect to (abbreviated to "w.r.t.") z. By 
definition, the left Hilbert-Mq-module I? ( M )  consists of (equivalence classes of) 
measurable M,-valued functions F on F such that 

~ ~ S F ( Y )  W(Y)F(Y)* T ( ~ Y )  < 03. 
r 

The corresponding scalar product of E ( M )  is defined by 

The definition does not depend on the choice of z (cf. [lo]). 

LEMMA 2.4. Let F E L2 (M). Then I; = 0 in I? (M) if and only Lf 
92 (W) E ker F z-a.e. 

P r o  of. Since FWF* = F w'/' (FWI')*, we have F = 0 in L2 (Id) if and 
only if 9?!(Wit2) c kerF 2-a.e. Since 9?!(W112) = W(W),  the result follows. 

If M ,  is the spectral measure of a q-variate stationary process x over 6, the 
corresponding space L'(M,) is called the spectral domain of x. There exists an 
isometric and isomorphic map of H ,  onto I? (MA such that T/, x, = ( g ,  a )  I ,  
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~ E G .  The map is called Kolmogorov's isomorphism. It enables us to for- 
mulate $-regularity and $-singularity of x in terms of L2 (M,). According to 
this we call a space P ( M )  f-regular or 3-singular if and only if 

n v ( (9 ,  ') 1: g  E J )  = (0) or V {{g,  .) I :  g  E J )  = I? ( M )  
J E ~  M M 

for all J E f ,  respectively. The symbol V, stands for the closed M,-linear 
hull in I? (At). We simply write V if M = M ,  is the spectral measure of the 
process x. 

- 

3. THE MAXIMAL 9-REGULAR PART 

Let M ,  be the spectral measure of a q-variate stationary process over G ,  
z, : = tr Ad, and W, := d M , / d ~ , .  In the sequel, all relations between measu- 
rable functions on F are to be understood as relations which hold true T,-a.e. 

Let Wx be the set of all measurable Mz-valued functions Won r such that 
W < W, and let @"-'- be the set of all Mz-valued measures of the form Wdz, ,  
WE "W;. The partial ordering on "1Y, induces a partial ordering on g,: de- 
fine Wi dz, < W2 d ~ ,  if and only if Wl < W2, Wl , W2 E WX. Note that for 
M I ,  M ~ E @ ,  we have MI d Mz if and only if M , ( A )  G Mz(A), d~g(r ) .  

LEMMA 3.1. For any directed subset of rY;, there exists a least upper 
bound. 

P r o  of. According to the remarks preceding the lemma it is enough to 
show that the subset : = ( W  dz,: W E  9) of gX has the least upper bound. 
For A ~ a ( r ) ,  let 3, be the set of matrices of the form 

where MI, . . ., M, E 8, and (A , ,  . . ., A,) is a partition of A, P ~ E  N. The matrix 
M,(A) is an upper bound of B,. Moreover, Bd is a directed set. In fact, if (3.1) and 

are two elements of gA, consider Mjk E 8 such that Mj  d Mjk,  M;, < Mjk,  
j = 1, ..., n, k = I ,  ..., m. Then x;=, x;=,Mjk(Ajn A;) belongs to 9, and 
exceeds both matrices (3.1) and (3.2). From Lemma 2.1 it follows that BA has 
the least upper bound N ( A )  and that 

(3.3) u* N (A)  u = sup {u*Du: D ~ 9 ~ ] ,  u E Cq. 

Standard measure-theoretic arguments (cf. the proof of Theorem 5 of Section 
111.7 of [2]) show that, for u E Cq, U* NU is an additive function on (T). Hence 
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N is additive. Since N 6 ME,  it even belongs to fix. Finally, from (3.3) it 
follows easily that N is the Ieast upper bound of g. 

If W E W,, set I? (W) : = I? (W~TJ. Moreover, we define 

W$' := {W E-W;: I? (W)  is $-regular). 

LEMMA 3.2. The set W$) is directed. 

P r o  of. Let W, , W2 E W$) and let Q (y) be the orthogonal projection in Cq 
onto the algebraic sum B(Wl Iy)) -k W (W2 (y)), y E r. From von Neumann's alter- 
nating projections theorem (cf. l43, Problem 96) we can conclude the measura- 
bility of the function Q. Let 

be the block partition of W, w.r.t. the orthogonal decomposition 

Let us set 

The measurability of Q and Lemmas 2.3 and 2.2 imply that W3e rlY;, More- 
over, from Lemma 2.2 it follows that W, < W3 and W2 < W3. TO complete the 
proof it is enough to show that I? (W3) is 3-regular. Let F E L? (W3) be such that 
for each JE$ it can be approximated by trigonometric polynomials with 
frequencies from J in l?(W3). Since Wl < W3, an analogous approximation 
exists in L? (Wl). The $-regularity of I? (Wl) yields F = 0 in I? (Wl). Similarly, 
F = 0 in I? (Wz). Using Lemma 2.4, we can conclude that W (W,) + W (Wz) G ker F. 
Since W (W,) c B (Wl) +S?(W,), it follows that F = 0 in I? (W,). 

THEOREM 3.3. The set W$)  has a unique maximal element. 

P r o  of. By Lemmas 3.1 and 3.2, the set W':' has the least upper bound 
W") E Wx. Assume that I? (WCr)) is not $-regular. Then there exists F E I? (W(')), 
F # 0, such that, for each JE$, F can be approximated by trigonometric 
polynomials with frequencies from J. Let W E W ~ ) .  Then, in particular, 
W < W"), and similar arguments to those in the proof of Lemma 3.2 show 
that 

Let 
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be the block partition of W(') w.r.t. the orthogonal decomposition C4 = 

= &! (F*)@ker F.  Let us set 

It is not hard to see (cf. the proof of Lemma 3.2) that 

(3.5) W") E ̂ jy;, W(@) < Wcr) , and W < W(@).  

On the other hand, since F f 0 in I? (W(')), Lemma 2.4 implies that there exists 
A E (r) such that z,(A) > 0 and 9 (W'')) is not a subspace of ker F on A .  It 
follows that W$& # 0 on A ,  and hence W@)- W(@) # 0 on A. Combining this 
with (3.5), we obtain a contradiction to the definition of a least upper bound. 
Thus, I? (W(')) is 3-regular and W(') is a maximal element of W:). Its unique- 
ness follows from Lemma 3.2. 

4. CONCORDANCE OF THE MAXIMAL REGULAR PART 
AND THE REGULAR PART OF TEW WOLD IlECDMPOSrrION 

Let x be a q-variate stationary process over G and 9 a family of subsets of 
6; invariant under translation. Let x, = y,+z,, g E G, be the Wold decomposi- 
tion of x, where y is f-regular and z is $-singular. If we set qy : = dM,/dz,  and 
Wz : = dA4,/dzX, we have (cf. [9], Lemmas 4.3 and 4.4) 

Let Vx be Kolmogorov's isomorphism of N, onto LZ(Wx) and set 

= : F  and K z o = : F z ,  

where 0 is the neutral element of G. It is not hard to see that 

(4.2) F , W , F , * = ~ ~  and F z W x F $ = w z ,  

(4.3) K H y = V { ( g , . ) F y : g ~ G )  and K ' , W z = V ( ( g , - ) F z : g ~ ~ } ,  

and hence 

(4.4) V { ( s ,  ->FYI ~ E ~ } @ V { ( Q ,  -)F,: ~ E G )  = L2(WJ. 

From the relation (4.4) it follows that 

J <s, Y> Fy IY) W,  ( Y )  F z  (Y)* zx (dy) = o r  g  E G, 
r 

which yields 

(4-5) Fy  WxF,* = 0 .  
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We can assume and we will do so in the sequel that 

(4.6) ker W, c (ker F, n ker F,). 

Then we have 

as well as 

(4.8) W (F, WE) = 9 (F ,  W;i2) = B! (Fy) and 92 (F, W,) = B (F, W;12) = $3 (FJ.  

Moreover, from- (4.2) it follows that Se (p;l2) = 9 (F,  Wi t2 )  and 3 (Wj1') = 

= g ( F ,  w:l2). Combining this with (4.8), we obtain 

(4.9) = ( F )  and 9 ( % ) = 9 ( ( ~ 3 .  - 
Let Wfrl  be the maximal element of WC1. We wish to show that W(" coincides 
with my. In order to prove this we first derive some properties of F,, which 
eventually lead to the conclusion that PE = 0 in L2(W'rl). Then we will see that 
the assumption W(') # would imply that PE # 0 in L? (W")). 

LEMMA 4.1. The values of F ,  are diagonalizable matrices. 

Proof. From (4.5) and (4.7) it follows that 

Since 9 (F, W,F?) = B (F, W;/'), from (4.8) and (4.10) we obtain 

(4.11) 9 ( F z )  = 9(WxFz)  s 9(WX) .  

On the other hand, (4.6) gives 

The relations (4.11) and (4.12) show that it is enough to prove that the restric- 
tions Fz of F, to 9t (W,) are diagonalizable. Denoting by W, the restrictions of 
Wx to B(W,), from (4.10)-(4.12) we get Fz WxF: = WxP,*, which yields 

w; 112 j7, wx j7; w; 112 = ~ l i 2  j7; w; 112 - 
X 

This shows that the values of Fz,  and hence of Fz, are similar to self-adjoint 
matrices, which implies that they are diagonalizable. 

LEMMA 4.2. We have ker PG n 9 (F,) = (0). 

P r o  of. Let y E r and u E (ker PFz(,,*) n & (F, (y) ) .  Then u E ker F, (y), 
u = F, ( y )  v for some v E Cq, and hence ~ ~ ( y ) ~  v = 0. If u # 0 were true, this 
would contradict Lemma 4.1. 

LEMMA 4.3. We have Pp= = 0 in L2 (W(')). 

11 - PAMS 22.1 
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Proof.  From (4.5) we get F, WZFs = 0. This implies that the function 
P, is orthogonal (in L~ (W,)) to V {(g, a )  F,: g E G). Examining the proof of the 
Wold decomposition (cf. the proof of Theorem 2.13 of [12]) and taking into 
account Kolmogorov's isomorphism, we obtain 

vug,.)~,: g~~~ = n v ~ q ,  g ~ ~ ~ .  
JEB 

It  follows that, for J E ~ ,  PF*& can be approximated by trigonometric poly- 
nomials with frequencies from J in @ (W,). Since W"' < W,, an analogous 
result is true for L? (W(')). But since l?{W(']) is $-regular, we conclude that 
Pp., = 0 in LZ (W(')). 

THEOREM 4.4. The functions W[") and my coincide. - 

Proof.  Since E Wt),  it follows that < W(". Assume that # WCr) 
on a set A E 3 (r) such that z, ( A )  > 0. First note that 9 (my) # W (W(')) on A. 
For if 94! (my) = &? (Wtr)) and # W(') were true on a set of positive measure 
T,, we would get P(W(')-k))n&?(%) + {O}, and because of 41(% = 
= 93' ( W. - q) 2 9? (W(r)- also 9 (W,) n SI (@ Z (O), which contradicts 
(4.1). Thus, B (W,) is a proper subspace of B (W'']) on A.  Then from (4.1) and (4.9) 
it follows that 9(W('))  n &?(I;,) # (0) on A. Combining this with Lemma 4.2, we 
infer that B (Wfr)) is not a subspace of ker PE on A.  Applying Lemma 2.4, we 
conclude that Ps # 0 in LZ(W(')), which is a contradiction to Lemma 4.3. 

Let us mention the following consequence of Theorem 4.4. 

COROLLARY 4.5. If l? (W,) is $-singular, then for W EW, SO is LZ (W). 

P r o  of. The 3-singularity of I? (W,) and Theorem 4.4 imply that W:) = (0). 
For W E  W,, consider the Wold decomposition of the corresponding stationary 
process over 6. Since the spectral measure of its $-regular part belongs to 
W:), it is zero measure. Thus, @(W) is f-singular. 

Remark  4.6. It would be of interest to have generalizations of Theo- 
rem 4.4 to the infinite-variate case. Treil' ( [ 1 3 ] ,  Theorem 3.1) gave such a result 
if G is the group of integers and $ is the family of translates of the set of 
non-negative integers. 

5. THE MAXIMAL yo-REGULAR PART 

Let G be a discrete Abelian group, yo the family of complements of all 
singletons of G, and a the normalized Haar measure of r. Let M ,  be the 
spectral measure of a q-variate stationary process over G. 

THEOREM 5.1 ([7], Theorem 5.3). The space I? (M,) is $$-regular if and 
onjy if 

(i) M ,  is labsoZutely continuous w.r.t. a, 
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(ii) B (dM,/da) = const a-a.e., 
(iii) (dM,/da)' is integrable w.r.t. 0. 

It follows that the maximal yo-regular parts of M ,  and of the absolutely 
continuous part of M, coincide. Thus we can assume that M ,  is absolutely 
continuous w.r.t. a and replace the measure T, of the preceding sections by a. 
For simplicity, now denote by W, the function W, = dMJdo and according to 
this notation d e h e  the corresponding objects dV; etc. of Sections 3 and 4. 

Let us set 

L, : = (U E C4: u* W: u is integrable w.r.t. uj, A 

Remark 5.2. Note that the space L coincides with the space A which 
appeared in Theorem 4.5 of [6] and was identified there as the range of the 
Grammian interpolation error matrix. Note further that L is the orthogonal 
complement of the space H of Lemma 9 of €51. 

Let 

be the block representation of W, w.r.t. the orthogonal decomposition 
C4 = L e e .  Set 

Using Theorem 4.4 we will show that W(')da is the spectral measure of the 
yo-regular part of the Wold decomposition of x, and hence W(') = Wx- W(') is 
the spectral measure of the $o-singular part. 

LEMMA 5.3. The spaces B(W(')) are equal to L a-a.e. 

P r o  of. Clearly, B (W")) G L. On the other hand, L E W (W,) = 

&? (W('))+&? (W(")). Thus, if L were not a subspace of &? (W(')), we would have 
W(W("))nL # (0). However, using (i) of Lemma 2.2 we easily get 
W (W'")) n L = (0). It follows that &? (W(')) = L a-a.e. 

LEMMA 5.4. The function WfP1+ is integrable w.r.t. a. 

Proof. Since L G 9 (W,), we have ker W, G p, and taking into account 
(i) of Lemma 2.2 we easily obtain ker W, = ker Wz2. Thus the generalized Bana- 
chiewicz inversion formula (cf. [8], formula (3.32)) is applicable, which implies 
that the left upper corner of W,f is equal to (Wx/Wx,22)-1. From the definition 
of L it follows that (Wx/Wx,2,)-1 is integrable w.r.t. o. and so is W(')+. 
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LEMMA 5.5. The space I? (W")) is $o-regular. 

P r o  of. The result follows immediately from Theorem 5.1 and Lemmas 5.3 
and 5.4. 

LEMMA 5.6. Let W E  Wtl. Then W G W"'. 

Proof.  According to Theorem 5.1 there exists a subspace Lo of C4 such 
that Gf (W) = Lo a-a.e. Assume that u EL,-, n LL, u # 0. Then u can be written as 
u = ul +up for some ui EL:, u2 EL;. I f  u1 = 0, there exists A E W (F) such that 
a (A) > 0 and u = u, 4 B ( WX IY) )  for a-a.a. y E A. This contradicts the inclusion 
9 (W) S W (Wx) a-a.e. It follows that u, $0, and hence u 4 L,. From the defini- 
tion of Li we infer that u* W: u is not integrable w.r.t. a. Let Wo be the 
restriction of W to Lo and let 

be the block representation of W, w.r.t, the orthogonal decomposition 
Cq = LOBLA. From the definition of 9'":) and (iii) of Lemma 2.2 we obtain 
Wo < (W,IWiyi2), and hence (WX/W($'l2)-' < W i i ,  By the generalized Bana- 
chiewicz inversion formula it follows that 

Thus U* W f  u is not integrable w.r,t. a, which contradicts Theorem 5.1. We 
conclude that Lo E L. Then again the definition of W:) and (iii) of Lemma 2.2 
imply that the restriction of W to L does not exceed (WJW,,,,), which yields 
W < W(') a-a.e. 

Combining Lemmas 5.5 and 5.6 with Theorem 4.4 we get the following 
result. 

THEOREM 5.7. The measures W(r)da and W(")da are the spectral measures 
of the yo-regular and yo-singular parts of the Wold decomposition of x, respec- 
tively. 
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