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Abstract. We show that for a von Neumann algebra in standard 
form with cyclic and separating tracial vector, and some classes of 
noncommutative processes on it, stopping and integrals of these pro- 
cesses can be treated as closable operators whose closures are affiliated 
to the algebra. 

Stopping of noncornmutative processes was studied in [I], [2], [4], [6] 
under various circumstances; however, a common feature of all these approa- 
ches was the following: for a process (X(t)) and a random time 9, stopping 
(X( t ) )  by z, X,, is an element of some Hilbert space on which the von Neumann 
algebra under consideration acts. In this paper we present another point of 
view on stopping as well as on stochastic integrals - namely, we shall show 
that they can be treated as closable operators whose closures are affiliated to 
the algebra. For stochastic integrals in quasi-free representations of the CAR 
and CCR algebras this approach was considered in [3], with the integrator 
being the 'canonical' CAR or CCR martingale. It turns out that in general both 
stopping and integration can be looked upon in this way if we restrict our 
attention to the class %(P) of predictable processes and the von Neumann 
algebra in standard form with cyclic and separating tracial vector. 

1. PRELIMINARIES AND NOTATION 

A noncommutative stochastic base which we shall be working in consists 
of the following elements: a von Neumann algebra d acting on a Hilbert space 
Z, a normal faithful trace q on d,  a filtration (dt), t E [0, + a], which is an 
increasing (s < t implies at, c 6 3  family of von Neumann subalgebras of d 
such that d = dm = (UfBOatt)" and d, = (right-continuity). Then 
for each t 2 0 there exists a normal conditional expectation Mr from d onto 
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d, such that rp o M, = cp. We shall assume that there is a cyclic and separating 
unit vector 5 2 ~  2 such that cp (a) = ( a a ,  a), a E d. 

For each t E [O, + a] we write L' (Pet) for the noncommutative Lebesgue 
space associated with d, and rp. The theory of these spaces is described e.g. in 
[9]; for our purposes we recall only that L? (d) (accordingly I? (d,)) consists of 
densely defined operators on Z, m a t e d  to d, and that I.? (dl is the com- 
pletion of d with respect to the norm 

2 112. llXll2 = Tv (1x1 )I Y 

moreover, for a E d and X EL? (at), the operators aX and Xa belong to (d). 
For each t the conditional expectation Mt extends to the projection from L2 (d) 
onto 2 (dt). 

By an &-valued (respectively, I?-valued) process we mean a map from 
[0, + m] into d (respectively, I? (JZ!)). A process ( X ( t ) )  is called adapted if 
X (t) E dt (X (t) E I? Idt), respectively). 

Let us introduce the notion of a random time. 

DEFINITION 1.1. A random time is a map T: [0, + 031 + Proj .d such that 
z (0) = 9 z (+ co) = 1, z (t) is a projection in d,, and ~ ( 8 )  < z (t) whenever s 6 t. 

This definition is adopted from [2], [4], [ 5 ] .  Random times will often be 
denoted by z = (E,), which means that z (t) = E,. A random time is called simple 
if it assumes only finitely many values. 

For random times there is a partial ordering, namely, we mean that a < z, 
a = (F,), z = (E,), if E, < F ,  for each t~ [0, +a]. 

2. STOPPING AS A CIA3SABLE OPERATOR 

Let us recall the following definitions from [6]. 

DEFINITION 2.1. (i) Let a = (F,) and z = (E,) be random times with a < T. 
The stockastic interval (a, z] is a process defined as 

(ii) 'For a projection P in do we define 'interval' [OF] as 

P f o r t = O ,  
Cop' = {O otherwise. 

DEFINITION 2.2. (i) Let Ai for i = 0, I ,  . . ., n be complex numbers, P a pro- 
jection in d,, and a,, . . ., a,, z,, .. ., z, random times with a, < z, < a, < 
< z, < .. . < an < 2,. Any process f of the form 

is called an elementary predictable process. 
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(ii) A process which is a finite linear combination of h i t e  products of 
elementary predictable processes is called a simple predictable process. 

Note that since elementary predictable processes are clearly adapted, 
a simple predictable process is also adapted. In fact, the restriction that 
zl d az < . . - < 2, < a, is inessential in our further considerations (as well as 
in the results of Id]), so as an elementary predictable process we can take any 
linear combination of stochastic intervals and the process [&I. In the same 
manner we can extend the definition of a simple predictable process admitting 
elementary predictable processes in the above sense. - 

We introduce another important class of processes. 

D~mr\rrrro~ 2.3. We define %(9) to be the class of those processes which 
are the uniform limits of sequences of simple predictable processes each of 
which is a finite linear combination of elementary predictable processes (note 
that we exclude products of elementary predictable processes). 

Thus f E@ (9) i€ there exists a sequence (f ("I) of simple predictable pro- 
cesses such that f '"' is a finite linear combination of elementary processes and 

In [6] the analysis of stopping of processes from 9 (9) is performed. The 
present work is devoted to the same subject but in a different setting, which 
leads to the notions of stopping and integral as densely defined operators. Let 
us recall the notion of stopping. For an &-valued process (f (t)), a random time 
z = (EJ and a partition 8 = (0 = to < t, < .. . < t, = + m} of 10, + co] we 
Put 

If there exists lirnOf,{el as i? refines, it is denoted by J; and called stopping the 
process (f (t)) by the random time z (see [I], [2], [ 5 ] ,  [6]  for motivations and 
comments). The above limit is almost exclusiveIy considered in the L2-norm, 
and accordingly f, is an element of l?(sd). Our approach will be different. 
Namely, is an operator in d, and we may ask about the existence of 
limef,(,, 8. If this limit does exists, 

then, taking into account the relation 
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we may define f ,  by the formula 

(2.2) f , ( a f 9 ) = u f ( ,  a ' ~ a " .  

It follows thatf, is a densely defined linear operator on 2. Moreover, we have 

Analogously, considering sums 

and assuming the existence of the limit 

we obtain a densely defined linear operator ,f on 3: 

We shall callf, and , f the right and Iefl stopping of If (t)), respectively. Ln what 
follows we formulate our results for right stopping, their 'left' counterparts 
being obvious. The basic properties of stopping are given by the following 
theorem. 

THEOREM 2.4. Let (f (t)) be an &-valued process and let z = (EJ be a ran- 
dom time. Assum that the limit (2.1) exists, and let f, be defined by (2.2). Then 
f, is closable a d  its closure is aflliated to sit. Moreover, there exists left stopping 
of the adjoint process (f (t)'), ,(f *), and we have 

P r o  of. For any partitions 8', 9" we have 

which means that the net {A$, 8) is Cauchy, since such is the net {A{@) 9). Thus 
there exists 

Since 

= z(e)(f *I, 
where the symbol ,(,)(f *) means that we are dealing with left stopping of the 
process (f (t)*), we may define an operator f*) by 

r( f *) (a' Q) = a' q, a' E d'. 
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It is a densely defined linear operator; moreover, for a', b f g d '  we have 

<f, Ia'Q), bfD> = lim B (f,,, (affi), b'a) = lirn B (~'$2, f,$, (bra) )  

which yields the inclusion 

f, c Cdf *)I*. 
So f, is closable and 

x Cdf ")IS- 
Since 

= lim e f,(o) (b'a'a) = ((f,bf) (a'Q), a', b' E df , 

affiliation off,, and thus that ofJ: follows. Similarly, ,( f *), and hence [JJ*)]* is 
affiliated to d. NOW d is a finite von Neumann algebra, and J ,  and [,( f *)I* 
are closed linear operators affiliated to d such that c [,(f *)I*. Thus the 
equality = [Jf *)I* follows from Theorem 9.8 of [a]. H 

In what follows, to avoid repeating the phrase % is closable with its clo- 
sure zddiated to d' we shall say that there exists an operator stopping S,. 

COROLLARY 2.5. uf, B E  d D ,  then f, E d 

Indeed, if f,Q = aB for some a E d ,  then for each a ' ~ d '  we have 

which means that S, = a on the dense subspace d f Q ,  so 5 = a. 

Our aim in this section is to show that this form of stopping can be 
applied to predictable processes from 9(J).  First we show that we can stop 
any random time. 

PROPOSITION 2.6. Let a = (F,) and z = (Ed be random times. Then there 
exists an operator stopping a,. 

P r o  of. According to Theorem 2.4 all we need to show is the convergence 
of the net {a~ , ,  D}, which on the other hand is essentially the result of Theorem 
4.10 in 161. Indeed, in that theorem it is shown that the net (a,(,,Q) converges 
in 2-norm, which by virtue of the equality 

Ilxll; = q (x*  x) = (x* xi2, 9 )  = X E ~ ,  

shows the convergence of {t~,~,, O). rn 
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As immediate corollaries we obtain 

COROLLARY 2.7. Let f be an elementary predictable process, and Iet T be 
a random time. Then there exists an operator stopping f,. 

Indeed, f is of the form 

where ck = (Fjk)) and ek = (QP)) are random times, so - 

f ( t)  = l o  COP1 (t) + C J-k t~B'-Ql~ll 

and, consequently, 

showing, by virtue of Proposition 2.6, the existence of lime f,,,, Q. 

COROLLARY 2.8. Let f be a simple predictable process which is a Iinear 
combination of elementary predictable processes, and let z be a random time. 
Then there exists an operator stopping S,. 

This follows from the preceding corollary and the additivity of limit. 
Before proving the main result of this section we need a version of %on- 

traction lemmay relating the Hilbert space norm of simple stopping with the 
operator norm of the stopped process. 

LEMMA 2.9. Let (f (t)) be an d-valued process, let T = (E,) be a random 
time, and let 0 = (0 = to < t l  < . . . < t, = + co) be a partition of [O, + co]. 
Then 

Proof. We have 

rn 

= C ((',-Etj-,) f (tj)* f ( t i )  ( E t i - ~ , , -  ,) 4, 9) 
i , j =  1 
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since D is tracial. Furthermore, the orthogonality of projections E,, - Exi_ ,  and 
E,, - E,,-, for i # j yields the formula 

m 

Ilf,ce) Ql12 = (f (td* f (ti) (4, - E,, - ,) a, 51) 
i =  1 

m 

6 C llf (ti)*f (tillla <(Eti  - E,,_ ,) 0, B) 
i =  1 

m 

supllf lf)11% C <@*,-4,-,)Q, 9) = supllf (t)l(Z,, 
i =  1 t 

which gives the claim. 

Now we are in a position to show the possibility of operatbr stopping of 
predictable processes in a('). Namely, we have 

THEOREM 2.10. Let f E %! () land let z be ta random time. Then there exists 
an operator stopping f,. 

P r o  of. Let (f") be an approximating sequence for f of simple predictable 
processes which are finite linear combinations of elementary predictabIe pro- 
cesses, i.e. 

For given E > 0 choose no such that 

Since, by Corollary 2.8, 

we can find a partition 60 such that for each partition 8 2 O0 

(2.3) ~lf;;,] a-fpO) all < 4 4 .  
For any partitions O', 8" 2 0, we then have 

(2.4) IIf,(w) -f,(e*~) 5111 IIf,(o,) a -f QI I 
+ ~lf(""' dor) ~-f$i!,) all + flf~~;;!,) ~ - f r ( ~ )  5211 

< II[f-f'nO'lz(w) 011 + Ilf I;;!) Q-f p)Q11 +Ilf!ro) Q-f $!I,) 41 + llCf(nO)-f lr(e!,, 5211. 

Now by Lemma 2.9 we get 

IICf-f (""'Ir(e,) all < sup ( I f  (t) - f ""' (t)l[, < 44,  
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while the second and third terms on the right-hand side of the inequality (2.4) 
are, by (2.3), less than ~ / 4 .  This yields the inequality 

I l f r c e j )  JZ  -Xce*q QII < E for B', 8" 2 00, 

which means that the net (fr(#)fi) is Cauchy, so it converges, proving in ac- 
cordance with Theorem 2.4 the existence of operator stopping f,. 

We finish this section showing that f ,  can also be obtained as a limit 
of fy l ,  namely we have 

THEOREM 2.11. Let f fall(') and let (f(")j  be an approximating sequence 
for f of simple predictable processes which are finite linear combinations of ele- 
mentary predictable processes. Then 

lim f (alG?) = (at62], a' E d'. 
n+ 4r 

Proof. First we shall show that limn,, fr'62 = f,0. Let us assume the 
contrary, i,e. that there exists a subsequence (nk) of positive integers such that 

IIfPklQ-LQll 3 60 

for some EO > 0. Choose k, large enough such that 

Having chosen k, let us find a partition 0 such that 

t l f I ; ; , " ) a - f ~ ) a l l < ~ ~ / 3  and l l f ,Q-f ,~B)JZl l<~o/3 .  

Then we have 

c0 < 1lfjJ)LO)Q-&811 < ( ( f~ko)62-f(nk0)  tW)  fill + I I ~  :Ff Q - f w  nu+ llf.,,, Q-f. fill 

< ~ 0 / 3  +sup 1 1 . f  (nkol (t)-f (t)ll rn + ~ 0 / 3  < E O ,  

a contradiction. Consequently, 

lim fp)a = f ,a,  
n-tm 

and since for each a'€ d' 

Ilf?'(a'4-f,(a'QjIl = Ila'Cf?)Q-fr~lIl G Ila'll Ilf?)fi-ftalt, 

the result follows. 

3. STOCHASTIC INTEGRAL AS A CLOSABLE OPERATOR 

In this section we shall perform a construction of a stochastic integral as 
a closable operator analogous to that of stopping in the previous section. Let 
( f  (t)) and (g(t)) be &-valued processes. The definition of stochastic integral 



Stopping and stochastic integrals 175 

involves sums 

for a partition 6 = (0 = to < t l  < . . . < t,  = + a) of [0, + m]. If a limit of 
$ ( g ;  f )  as 0 refines exists, it is called the Iefl stochastic integral of (g(t)) with 
respect to (f (t)), and it is denoted by j' df (t)  g (t), while a limit of  Sk (g; f )  is 
called the right stochastic integral of (g(t)) with respect to (f (t)), and it is 
denoted by 1 g (t)  df (t)  (see [7J for more details). As for stopping we are interest- 
ed in the existence of this limit on d ' D .  It turns out that the following counter- 
part of Theorem 2.4 holds. 

~ R E M  3.1. Let (f (t)) and (g(t)) be d-valued processes. Assume that 
there exists 

and define the left stochastic integral by 

Then j df (t)  g (t)  is a densely defined closable operator whose ciosure is afiliated 
to A?. Moreover, 

where the integral jg (t)* df It)* is defzned as an operator on d'Q in an obvious 
way. 

The proof is essentially the same as that of Theorem 2.4. rn 

In what follows, when referring to the situation described above, we shall 
use the phrase 'there exists an operator stochastic integral j df (t)  g (t)'. We also 
restrict attention to the left integral, the corresponding results for the right one 
being obvious. 

As is well known, there is a duality between stopping and integration. This 
duality allows us to obtain operator stochastic integrals for a random time with 
respect to a process which admits operator stopping. Namely, we have 

THEOREM 3.2. Let ( f  (t)) be an d-valued process, and let z = (EJ be a ran- 
dom time. If there exists an operator stopping f,, then the operator stochastic 
integral j' df (t)  z (t) exists. Moreover, the formula 
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Proof. Let8= ( O = t o < t ,  <...<t,= +a) beapartitionof10, +a]. 
Using the Abel transformation (summation by parts), we get 

The existence of operator stopping for (f (t)) yields the existence of limo a, 
thus the existence of lim, Sb (z; f) 0, and the result follows.-m 

Since from Theorem 2.10 we know that all processes in 42 (9) admit opera- 
tor stopping, we obtain 

COROLLARY 3.3. Let f ~ a l C  (P), and let t = (Et) be a random time. Then the 
operator stochastic integral J df (t)  T (t) exists, and 

This follows from the fact that for f EQ(P)  we have f (+ m) = O .  e~ 

Taking into account the linearity of operator stochastic integral we may 
extend the set of integrands as follows: 

THEOREM 3.4. Let f E 42 (P), and let g be a simple predictable process which 
is aJinite linear combination of elementary predictable processes. Then the opera- 
tor stochastic integral J df ( t)  g (t) exists. 

P r o  of. The process g is a linear combination of random times and pro- 
cesses of the form [OF] with P being a projection in do, and 

P for t = 0, 
'Opl " )  = (o otherwise. 

Since the integral of a random time exists, we are concerned only with the 
existence of the integral [ df ( t)  [OF] (t). The integral sums Sk (LO,]; f )  are of the 
form . 

so the existence of the operator integral J df (t) [O,] ( t)  amounts to showing the 
existence of limt,o, f (t)PSZ. Now for each elementary predictable process 

the limit lirn,,,,, g(t) exists in the strong operator topology since 

lim [OF] (t) = 0 
t+o+ 
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and 

lim (%, eJ = lim (Fik)) - lim Qik), 
t+O + t+O+ t+O+ 

I 

where the limits on the right-hand side clearly exist because (Fikl) and (Qlk)) are 
increasing families of projections. It follows that for each simple predictable 
process g which is a finite linear combination of elementary predictable pro- 
cesses the limit lim,,o + g (t)  exists. 

Let now ( f  ("1) be an approximating sequence of processes as above for J I 

Given E > 0 we choose no such that - 

sup I l f  ( t )  -f ("O' (t)ll oo < &/3 3 

and 6 > 0 such that for 0 < s, t < 6 we have 

I I [ f tnO' (s) - f '""' (t)] PQI I < ~ / 3  . 
Then 

I I C f  (4 -f (tll Pall 6 I IC f  (4 -f ("I,) (41 Pfill+ l l C f  (no' (4 -f (no' (t)l Pall 

showing that (f ( t )PB) is Cauchy at 0, which completes the proof. I 

Taking into account Theorem 2.11 and the duality between stopping and 
integration it is not difficult to show the following 

THEOREM 3.5. Let f and g be as in Theorem 3.4, and let ( f ("))  be an ap- 
proximating sequence for f of simple predictable processes which are finite linear 
combinations of elementary predictable processes. Then 

lim [ df ("I (t)  g (t)  (aJQ) = 1 df (t)  g (t)  (aJS2), a' €atJ. rn 
n+ m 

So far we have obtained integrals with the integrator from the class 9 (9) 
and the integrand being a simple predictable process which is a finite linear 
combination of elementary predictable processes. In the last part of this section 
we shall show that the classes of the integrators and the integrands can be 
interchanged. To this end we start with 

PROPOSITION 3.6. Let a = (FJ and z = (Et) be random times. Then the ope- 
rator stochastic integral [ da (t)  z (t)  exists. 

Proof. By Proposition 2.6 there exists an operator stopping az and the 
result follows from Theorem 3.2. H 

Again, by linearity we can extend the above integral to the integrands 
being elementary predictable processes, if we take into account that 

J da (t)  [OF] (t)  = lim (F* - F,) P = Fo+ P. 
t - O f  

12 - PAMS 22.1 
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By the same token we extend the integral to the integrands being finite linear 
combinations of elementary predictable processes. To go further we again need 
a version of the contraction lemma. 

LEMMA 3.7. Let ( f  (t))  be an d-ualued process, and let a = (F,) be a random 
time. Then for any partition 0 = (0 = to < t l  < . . . < t, = + m) we have 

11s: (f; 4 fill < sup I l f  (till, 
t 

Proof. The calculation is essentially the same as that in Lemma 2.9. 
Namely, 

- 

m 

C I l f  ( t i -1 ) f  (ti-l)*llm <(Fti-Fti_, )Q,  Q> 
i =  1 

In the next proposition we extend the stochastic integral to processes in 
$2 (9). 

PROPOSITION 3.8. Let f E (9) and let a be a random time. Then the opera- 
tor stochastic integral S ~ C T  ( t )  f ( t )  exists. 

P L O  o f. I t  is similar to the proof of Theorem 2.10. For an approximating 
sequence (f(")) and given E > 0 we choose no such that 

Since we know that 

SUP I l f  0) -f'""' (till a, < 44. 

lim Sb (f (""I; CT) = j dc ( t )  f (t), 
0 

we can find a partition 8, such that for each partition 8 3 8, 
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Then for any partitions O', 6" 2 8, we have 

+ Ils',r(f(nol; t~)fi-S',.~(f'"'"; E T ) ~ ) )  + ~ ~ S ~ ~ r ( f ' n o ) ;  fT)~-Slg,, (f; fl)aIl 

But the first and fourth terms on the right-hand side of the above inequality are 
by virtue of Lemma 3.7 and (3.1) estimated from above by 44, while the second 
and third terms are by virtue of (3.2) estimated from above also .by ~(4, which 
gives 

IlSi$(f; a)f2-Sbr,(f; .)all < e for 6', 8" 2 8,.  

Consequently, the limit lime Sb ( f ;  g) L! exists. Now Theorem 3.1 yields the 
claim. ia 

In our h a 1  step we again extend by linearity the integral with respect to 
a random time to the integral with respect to an elementary predictable process 
and next to the integral with respect to a simple predictable process which is 
a finite linear combination of elementary predictable processes, taking into 
account that 

Thus we obtain 

THEOREM 3.9. Let f E 9 (P), and let g be a simple predictable process which 
is aJinite linear combination of elementary predictable processes. Then the opera- 
tor stochastic integral jdg(t) f ( t)  exists. rn 

Again it is not difficult to show that our integral may be obtained by 
a limiting procedure. Namely, we have 

THEOREM 3.10. Let f and g be as in Theorem 3.9, and let (f(')) be an ap- 
proximating sequence for f. Then 

lim J dg ( t )  f (") (t)  (a'Q) = j dg (t)  f ( t)  (alQ), a' E dl. E 
n- m 

Let us finally comment on an important missing fact which would nicely 
complete the presented theory. We have obtained operator stochastic integrals 
j df (t)  g ( t)  and 1 dg (t)  f ( t )  for f E 9 (B) and g - simple predictable. It would be 
desirable to obtain these integrals for both f and g in %(P). However, it still 
remains a challenging open problem. 



180 Abdulrahman A. A. Mohammed 

REFERENCES 

[I] C. Bar nett  and V. Camill o, Stopping and projections of now-adapted processes, Soochow J .  
Math. 23 (2) (1997), pp. 187-212. 

[2] C. Barnett  and T. Lyons, Stopping non-commutative processes, Math. Proc. Cambridge 
Philos. SOC. 99 (1986), pp. 151-161. 

[3] C. Bar nett, R F. S treater and I. F. Wilde, Quasi-free quantum stochastic integrals for h e  
CAR and CCR, J. Funct. Anal. 52 (1983), pp. 19-57. 

[4] C .  Barnett and B. Thakrar, A non-commutative random stopping theorem, J. Fund Anal. 88 
(1990), pp. 342-350. 

IS] C. Barn et t and I. F. Wilde, Random times land time projections, Proc. h-er .  Math. Soc. 110 
(19901, pp. 421-440. 

[6] C.  Barn et t and I. F. Wilde, Random times, predictable processes and stochastic integration in 
jnite uon Neumann algebms, Proc. London Math. Soc. 67 (3) (1993, pp. 355-383. 

[Tj A. tuczak and k A. Mohammed, Stochastic integration infinite von Neumann algebras, 
preprint. 

[S] S. S t r iit il P and L. Z sid o, Lectures on uon Neumann Algebras, Abacus Press, Tunbridge Wells 
1979. 

[9] F. 5. Yeadon, Non-cornrnwtatiue LP-spaces, Math. Proc. Cambridge Philos. Soc. 77 (19751, 
pp. 91-102. 

Faculty of Mathematics 
University of Lb& 
L6di, Poland 

Received on 14.12.2001 


