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Abstrmt. Pickands constants appear in the asymptotic formulas for 
extremes of Gaussian processes. The explicit formula of Pickands con- 
stants does not exist. Moreover, in the literature there is no numerical 
approximation, In this paper we compute numerically Pickands con- 
stants by the use of change of measure technique. To this end we apply 
two different algorithms to simulate fractional Brownian motion. Fi- 
nally, we compare the approximations with a theoretical hypothesis 
and a recently obtained lower bound on the constants. The results 
justify the hypothesis. 
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1. INTRODUCTION 

J. Pickands I11 found the exact asymptotic formula for the probability 
P ( S U P , ~ ~ , ~  X (t) > U) for a centered stationary process X (t)  with covariance 
function R ( t )  = 1 - ltIzH + o (jtlaH) for t + 0, H E (0, 11 and R (t) < 1 for a11 t > 0, 
namely 

P ( SUP X (t) > U) = XH TulIH (1 - @ (u)) (1 + 
tdO,Tl 

0 (l)), 

where @(u) is the standard normal distribution function and SEI is the 
Pickands constant which is defined by (see Pickands [I31 or Piterbarg [14]) 

The attempts to compute XH have been made by many authors but only a few 
partial results are known. Namely, the exact value of ZEI is derived only if 
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H = 1/2 or H = 1 (see for example Piterbarg [14]), that is, for the standard 
Brownian motion and the degenerated fractional Brownian motion 
3, ( t )  = t .N,  where JV is the standard normal random variable. Adler in his 
book [l] writes it is unlikely that we shall ever be able to calculate Pickands 
constants. Recently Shao [lS] and Dqbicki et al. [7] have obtained some 
bounds for SH. 

Straightforward simulation of Pickands constants (directly from the 
Pickands theorem) seems to be unstable. In this paper we simulate Pickands 
constants for 1/2 < N < 1 using the method proposed by M i h a  [Ill. The 
idea is based on the application of the Giirsanov type theorem for computing 
P (supr3 3, ( t )  - ct > u) and comparing it with the theoreticd result of Hiisler 
and Piterbarg [S] (see also Narayan [12]). The method requires simulations of 
fractionaI Brownian motion. To this end we use two different algorithms. The 
first one is based on the Cholesky factorization (exact method), the second one 
is an exact synthesis method, The results depend strongly on the step of discre- 
tization. For small steps the Cholesky factorization does not work because it 
needs a lot of computer memory. Therefore we check if those two methods 
coincide for equal steps and use the second method for sufficiently small steps 
in order to obtain more accurate values of Pickands constants. In the final part 
of the paper we compare the approximations with a theoretical hypothesis and 
a lower bound on the constants. 

2. IMPORTANCE SAMPLLNG FOR FRACTIONAL BROWNIAN MOTION 

Hiisler and Piterbarg [S], Theorem 1, obtained the exact asymptotic for 
the probability P (sup,, BH (t) - t > u), that is 

(1) P (SUP B, (t) - t > U) 
t 3 O  

as u + oo, SH is a Pickands constant, 0 < H < 1, and @ is the standard 
normal distribution function. Thus we need to compute the probability 
P(sup,,, B,(t)- t > u) to find the value of Pickands constant. 

It turns out that the importance sampling not with drift - 1 but with some 
drift a > 0 produces an efficient method to simulate probabilities of such rare 
events as (sup,, , BH ( t )  - t > u) (see Michna [I 11). 

Let w (t, s) be the function 
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where 1/2 < H < 1 and 

and B denotes the beta function. 
Define era by 

a,(u)=inf(t > O :  B,(t)+at > u ) .  

Let us notice that a, < c~ a.s. for a > 0. The following theorem (see Mi- 
chna [ I l l ,  Proposition 2.2) gives a very effective method in simulation of 
P (SUP, 0 BH It) - t > u). - 

THEOREM 1. For all a > 0 

(2) P (SUP 3, (t) - t > U) 
t a o  

(F. 

= Eexp(-(1+a) j w(a,, s ) d ~ , ( s ) - ~ c $ ( l + a ) ~ ~ ~ - ~ ~ ) ,  
0 

where 
~2 = [ H ( ~ H - ~ ) ( ~ - ~ H ) B ( H - J ,  2-2H)3-'/', 

Michna [ll] found that the most efficient a in the sense of computation 
time and variance is closed to one but less than one. It follows from his 
simulation that a = 0.9 is effective. 

3. SMLJLATIONS USING THE fGp ALGORITHM 

The fractional Gaussian process (fGp) algorithm was introduced by Da- 
vies and Harte [5] for simulations requiring the exact one-dimensional frac- 
tional Gaussian noise (fGn) (see, e.g., Janicki and Weron [9]). The fGp al- 
gorithm generates the noise, so that both mean and the autocorrelation func- 
tion for time series from fGn for some H converge to their expected values as 
more and more time series are considered. It is an exact synthesis method. In 
order to describe the method we follow Caccia et al. 141. Using the fast Fourier 
transform algorithm, fGp transforms i.i.d. standard normal random variables 
into correlated series. The fGp method operates on the order of Nlog, N 
calculations. It simulates a fractional Gaussian noise (x) with autocovariance 
function given by 

The fGp algorithm can be divided into four steps: 

1. Let N be a power of 2 and k t  M = 2N. For j = 0, 1, ..., M/2,  we 
compute the exact spectral power expected for this autocovariance function 
Sj ,  from the discrete Fourier transform of the following sequence of y: 
Y o ,  YI, ..., YM~z-1, Y M ~ :  
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S, - y, exp (- i2nj (T/M)) + y M - ,  exp (- i2xj (r/M)).  
r = O  t = M / 2 + 1  

2. We check that S j  2 0 for all j. This should be true for fractional Gaus- 
sian processes. Negativity would indicate that the sequence is corrupt. 

3. Let Wk, where k~ (0, 1, . . ., A4 - 11, be a set of i.i.d. Gaussian random 
variables with zero mean and unit variance. Now we calculate the randomized 
spectral amplitudes l/k: 

v* = &w*, 
- 

= w ~ - W )  for l d k < M / 2 ,  

V M I ~  = & W M - I ~  

I$ = VM-k* for M/2 < k 6 M-1, 

where * means that F.; and VM-, are complex conjugates. 

4. We compute the simulated time series Y, using the first N elements of 
the discrete Fourier transform of V: 

1 M - 1  

yC=- exp (- i2nk(c/M)), where c = 0, 1, , . ., N -  1. Jz k = O  

In order to get Pickands constants we simulate the trajectories of 
BH (t) + 0.9t up to time ao.9, that is, when the process BE (t) + 0.9t reaches the 
level u. Then using the Monte Carlo method we compute the expectation (2) 
and comparing it with the result of Hiisler and Piterbarg (1) we get 

If E denotes the half width of the asymptotic 95% confidence interval for 
P ( s ~ p , ~ ~  B,(t)-t > u), then the reasonable error for the Pickands constant is 

2 1 1 2 8 -  112 (1 - j y ) H + l I H - 3 / 2  

The main problem in obtaining reliable results is to set an appropriate 
division of a unit interval of the fractional Brownian motion. In our simula- 
tions we followed a set pattern, namely we increased the number of partitions 
of the unit interval until the constant stabilized (stopped growing). Table 1 
shows the procedure for H = 0.6. We clearly see that the constant stops 
growing at interval are equal to 1/26. We denoted the number of trajectories 
taking into computations by N. 
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Table 1. Pickands constant far H = 0.6, u = 10, N = 10000 
and different steps 

In the simulations we only took H between 0.51 and 0.7 due to computer 
memory limitations. The sample results of the simulations are presented in 
Table 2. The symbol * indicates that the approximation 1 - @ (x) x l / x .  4 (x) is 
used, where 4 (x) denotes the normal density function. We clearly see that the 
algorithm is stable, is. differences between the values corresponding to 
u = 10,. .50 are negligible. Furthermore, the relative error is quite small. 

Table 2. Pickands constant for H = 0.6, e = 1/26 and N = 10000 

u a? 6 x  

10 0.8840 0.0129 
20 0.8952 0.0197 
30 0.8757 0.0253 
40* 0.9595 0.0293 
50* 0.8925 0.0395 

4. FINAL RESULTS 

In the mathematical folklore the following conjecture: 

is known. Dqbicki et al. [6] proved the following lower bound for the Pickands 
constant. 

THE~REM 2. If H ~ ( 0 ,  11, then 

This theorem suggests that the conjecture (3) can be true. Also, the hy- 
pothesis satisfies asymptotic for' H + 0 given in Shao [15]. 

The graph of hypothetical Pickands constants, the approximation and the 
foregoing lower bound, is presented in Figure 1. We clearly see that the results 
of the approximation seem to just* the hypothesis and, moreover, the lower 
bound is of little significance. 
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Remark  1. We repeated the procedure of obtaining Pickands constants 
implementing the Chdesky factorization which enables to simulate every 
Gaussian vector with a given covariance function. As follows from our com- 
putations the results of Pickands constant again depend strongly on the step e, 
that is, the discretization time parameter. The level u has a neghgible influence 
on the results of Pickands constant. It turns out that the computation range of 
e is very limited comparing with the one from the fGp algorithm because of 
large matrices appearing when the step e is small. 

We took H = 0.51, 0.55, 0.60, 0.65 and 0.70. For a given H we set the step 
which permits computations for a quite large number of trajectories. At equal 
lags the results coincide with the ones obtained using the fGp algorithm, com- 
pare Figure 2. This supports the approximation results depicted in Figure 1. 

Fig. 1. Comparison of hypothetical Pickands Fig. 2. Comparison of Pickands constants 
constants (thin lineh the results of the approx- obtained via two different methods of gene- 
imation (0) and the lower bound (thick line) rating fractional Brownian motion at the lag 

e = 0.0625; o refers to Cholesky factorization 
and x to the fGp algorithm 
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