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Abstract. We consider the discrete penalization scheme, the pro-
jection and the Euler—Peano scheme for SDE’s driven by general semi-
martingale on an orthant with oblique reflection. We prove that these
schemes converge in probability to the solution of the SDE in various
topologies provided that the oblique reflection satisfies the assumption
introduced by Harrison and Reiman. In the case where the driving
semimartingale is an It6 process, the rate of IP-convergence is discus-

sed in detail.
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1. INTRODUCTION
Suppose we are given a d-dimensional semimartingale Z = (Z1, ..., Z9),

a Lipschitz continuous function ¢: R* - R‘®R?, and a nonnegative d x d ma-
trix Q with zeros on the diagonal and spectral radius g (Q) strictly less than 1.
Consider a d-dimensional stochastic differential equation (SDE) on an orthant
(R*)? with oblique reflection of the form

t
(1.1) X, =Xo+[o(X,.)dZ,+(I—Q)K,, teR".
0

Here Q' is the transpose of 0, X,e(R*), X = (X1, ..., X9) is a reflecting pro-
cess on (R*)Y, and K = (K, ..., K% is a process with nondecreasing trajec-
tories such that K’ increases only at those times ¢ where X{ = 0. Equations of
type (1.1) were introduced in the paper by Harrison and Reiman [8] in the case
o =1, Z = W, where W is a d-dimensional standard Wiener process, and con-
sidered later by Yamada [30] in the case of reflecting Itd diffusions. SDE’s
driven by continuous semimartingale under milder assumptions on Q were
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discussed in Dupuis and Ishi [4], [5] (see also [1], [6], [7], [9], [28], [29]
for some related results).

The main purpose of the present paper is to investigate three numer-
ical methods of approximation of the solution X to the SDE (1.1): the di-
screte penalization scheme, the projection scheme, and the Euler—Peano
scheme.

Let of = max {k/n; ke NU {0}, k/n <t} and let Z¢" be a discretization of
Z,ie Z{" = Zy,forte [k/nA, (k+1)/n), ke Nu {0}, ne N. In the first method the
approximation processes X" are defined to be the solutions of discrete pe-
nalized SDFE’s -

t t
(12 Xr=X,+[o(X1)dZ¢ —n[(X1_—Iy (X2 ))dg?, . teR",
0 1]
where I1,(z) denotes an oblique projection of z on (R™)". In the second and

third methods the approximation processes X" and X" are solutions of SDE’s
on (R*)? with oblique reflection of the forms

t

(1.3) X;‘=X0+[a()?:_)dZ§"+(I—Q’)K;', teR™,
0

and
t

(1.4) X! =Xo+[o(X2)dZ4+(I-Q) K], teR",
0

respectively (see Sections 2 and 3 for precise definitions). Note that (1.2) is
a counterpart to a discrete penalization scheme introduced in Liu [16] in the
case of the Itd SDE with normal reflection (see also Pettersson [20], Stominski
[26]), whereas (1.3) and (1.4) are counterparts to the well-known projection
scheme and the Euler-Peano scheme considered earlier in Chitashvili and Laz-
rieva [2], Lépingle [15], Pettersson [19], [20] and Slominski [24], [26].
We will see in Section 3 that X*, X" and X" can be computed by simple
reccurent formulas. Moreover, we prove that {X"}, {X"} and {X"} converge in
probability to X in the space D(R*, R?) endowed with the- S-topology in-
troduced recently by Jakubowski [10], the Skorokhod J;-topology and the
uniform topology, respectively (of course, J; is weaker than the uniform topo-
logy, and § is weaker than J,). Finally, in the case of the Euler—Peano scheme .
we give some results on the rate of uniform convergence as well as convergence
in variation. ' :
In Section 4 we deal with It6 diffusions reflecting on an orthant, i.e. with
solutions to the SDE B

t t
(1.5) X, = Xo+[a(X)dW,+ [b(X)ds+(I—-Q)K,, teR",
0 1]
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where X,eD. We prove that if o, b are Lipschitz continuous, then for every
peN

Esup|Xi—X|?* = 0(((lnn)/n)’), teR*,
s<t
and
Esup|X?—X/*? = 0(((lan)/n)’), teR*,

s<t

whereas in the case of the Euler—Peano scheme

Esup|X?—X,)?? = O((n™')), teR™.
s<t .
In the case important in the applications, where the diffusion coefficient is
constant, we are able to estimate the total variation |X"— X|, of X"—X on the
interval [0, t]. Namely, we prove that

EIX"—X]P = O((n"Y?), teR*.

For convenience of the reader we collect in the Appendix some basic
results concerning the condition (UT) and the estimates of the solutions of
SDE’s.

Throughout the paper —# denotes convergence in probability and
D (R*, R denotes the space of functions x: R* — R? which are right continu-
ous and admit left limits. For given ye D (R*, R?) we write 4y, = y,—y,_ and
we denote by wy(y, t) the modulus of continuity of y on [0, t], ie.

oy (y, ) = sup [Vu—Ysl, h>0, teR*.

{u,ve[0,11,]u —v| €h}

2. THE SKORCKHOD PROBLEM ON AN ORTHANT

Let Q be a nonnegative matrix with zeros on the diagonal and ¢(Q) < 1
and let ye D(R*, R%) with y,e(R*)". Following Harrison and Reiman [8]
a pair (x, kyeD(R*, R?) is called a solution to the Skorokhod problem

(21) xI=y1+(I_Q’)kts tER+5
on (R*)! associated with y if (2.1) is satisfied and
2.2) x,e(R*), teR*,

(2.3) Kk’ is nondecreasing, ki =0

t
and [xjdki=0 forj=1,...,d, teR".
0
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Remark 2.1 ([8], Theorem 1). (i) For every ye D(R*, RY) with y,e(R*)
there exists a unique solution (x, k) of the Skorokhod problem associated with y.
Moreover, if (x', k') denotes a solution of the Skorokhod problem associated
with y e D(R*, R? such that yoe(R*) then there exists a constant C depen-
ding only on the matrix Q such that

24 sup|x;—x,| < Csuply;—yl, teR".
s<t s<t
(i) If additionally ||Q]| < 1, where ||4]| denotes the maximum row sum of
a matrix 4, then k is the unique fixed point of “the mapping
F: D(R*, RY)—» D(R", R% defined by the formula

(2.5) F(u)=sup[Qu,—y]*, ueD(R*, RY, teR",

s<t
where [z]* = max (0, z). In this case a constant C in (2.4) takes the form
C =1+Cyp, where Cy = 1/(1—]|QI).
Suppose that

(2.6) eIl < 1
and for given z e R? consider the mapping f: R? - R%, f (v) = [Q' v—z]*, veR".
Since |f ()—f ()] < 11Qlllv—7'| for v, v €RY, it follows by (2.6) that f is Lip-
schitz continuous with a constant less than 1, and hence that for every ze R?
there is the unique fixed point Z of f. Therefore, under (2.6), we may define
a mapping II5: R? —» (R*)* by
2.7 Oy(z)=(I-Q)i+z, zeR’,
which is called an oblique projection on an orthant (R*)%.

Suppose now that (2.6) does not longer hold. Since ¢(Q) < 1, there exists

a diagonal matrix A having positive elements and a nonnegative matrix Q*
such that ||Q*| <1 and Q' = A" '0(Q*) 0 A. Define ITy« by (2.7) and set

(2.8) Hy(z)=A"'ollp0A(z), zeR%.

The matrices A and Q¥ are not uniquely determined by Q. We have, however,
the following

LemMA 2.2. The function 11, defined by (2.8) does not depend on the choice
of A and Q*. Moreover, I: R — (R*) is a Lipschitz continuous mapping with
a constant depending only on the matrix Q.

Proof. Note first that (x, k) is a solution of the Skorokhod problem

associated with y if and only if (X = Ao x, k = Aok)is a solution of the Skoro-
khod problem associated with j = Aoy. Fix zeR? and set

_ 0 iHt<l,
Ve = z  otherwise.
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It is clear that (%, k), where
%= {0 if t < 1 ,
Ip0A(z) otherwise,
and k, = %,— Aoy, teR*", is the unique solution of the Skorokhod problem
associated with j = Aoy. Hence the unique solution of the Skorokhod prob-
lem associated with y equals (x, k), where
{0 if t<1,
A"'ollgpoA(z) otherwise,
and k, = x;— y,; teR*. Hence, by uniiqueness of the solution of the‘Skorokhod

problem, the value of A~ ! o I14.0 A(2) does not depend on A and Q*. To prove
the Lipschitz continuity, for fixed z’'e R? set

, {0 ift<l,
W=

~

x,=A"1o% =

)

Zz  otherwise.

Then, as above, the pair (x', k'), where

= {0 if t < 1.,
II,(Z)  otherwise,

k; = x,—y,, teR*, is the unique solution of the Skorokhod problem associated
with y'. By (24),

[T (2)—Ig(z)] = sup |x;—x,| < Csup|y;—yd = lz—Z],

s§ 1 s<1
which completes the proof. =

In view of Lemma 2.2, (2.8) defines correctly an oblique projection for any
Q with ¢(Q) < 1.

ExampLE 2.3, In the case d = 2 the mapping I1, is given by the following
simple formulas:

(21, 22) if zy,2, 20,

(21+0Q2122,0)  if z2;+Q512, 20, 2, <0,

0, Qi2z,+27) if 2, <0, Q4521 +2, 20,

0, 0) if z2;+Q0212,<0, z:4+Q312, <0.
Let (x, k) be a solution of the Skorokhod problem associated with

yeD(R*, RY. By using the oblique projection mapping I7, we define recurrently

for each neN the approximations (%", k) and (X", k") of (x, k) by the formulas

HQ(Z = (24, Zz)) =

£t ym = o Rom) + Wt ym—Yemds Kt 1ym = Mo (K + W 1y — Yign))>
Je;. = ﬂ/m x;' = -lens te [k/n’ (k+ 1)/")

3 — PAMS 221
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for ke N U {0} and

ke=(I-Q) & —y), k=U-0)'@&—y), te[k/n, (k+1)/n),
where y{" = yyn, ke N uU {0}.

- THEOREM 24. If yeD(R™, R%, yoe(R")?, then

(2.9) @ ) -(x, k) in (DR, RZ"),‘S)
and
(2.10) (x", k"> (x, k) in (D(R*, R*), J,).

Proof. We start with the proof of (2.10). Without loss of generality we
may and will assume (2.6). First observe that (¥", k) is a solution of the Skoro-
khod problem associated with y*" and y*" -y in (D (R*, R, J,), ie. there
exists a sequence {1"} of strictly increasing continuous changes of time such
that 1§ =0, A%, = + 00 and

sup|ii~s| -0, sup|yfa—yl—0 for teR™.

s<t s<t

Since kjp = sups<,[Q'K}.—y4]* for neN, teR*, we have

sup K%z — k| < [|Qll sup [k’ — ki +sup ly$a—yl.

sSt s€t s<t

By the above and (2.6) we have sup;<;, [k}»—ky| — 0, sup,<, |X%»— x| — 0, which
implies (2.10). Now, write

k;' = Z (HQ()E?](.F;[)/,,)—'"JE?]‘.;.I)["), tE[k/n, (k+1)/n), kENU{O}, nEN,
ks(k+ D)/n<t

and observe that (ITo(£"), k") is a solution of the Skorokhod problem associ-

ated with y¢". Hence (ITo (%), k") = (X", k™), by uniqueness. On the other hand,

|HQ (f?k+ 1)/n)_)e?k+1)/n| = ME?H 1)/n|
= [Q’AE’HHM—AJ’?;H)/n—fz/n]+ < |1QIlAkG, + ol F 1AV + 1yl

which implies that, for every ke N u {0},

(2.11) - H g (X + 1ym) — X+ 1yl < Co AV + 1yl

By (2.10) and (2.11), (%%, k) > (x,, k) for every continuity point ¢t of y,
and, moreover, Sup,sups<,|X! < +00, Sup,sups< |k’ < +oo for teR™.
Thus, in view of [10], Proposition 2.14, in order to complete the proof it
suffices to prove that the sequences {%¥"} and {k"} are relatively S-compact.
Since £" = y*"+k" and {y?"} is relatively S-compact, what is left to show is
that {£"} is relatively S-compact or, by [10], Lemma 2.1, that for every ¢ > 0
there is a sequence {t™*} = D(R*, R? of functions with locally bounded varia-
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tion such that

(2.12) supsup |X"—v?¥| <e, teRY,
n s<t
(2.13) sup|v™], < +00, teR”.

By (2.10) for every & > 0 there exists a sequence {a™*} = D (RJr R% of functions
with locally bounded variation such that

supsup [ (X", —al?| < &2, supla™l,< +o0 for teR™*.

n sst n

Set K (n, &) = {k; |4y§+ 1)l > €/(2Cp)}, neN. By (2.11), for every ke K (n, ¢)
there is a matrix C(n, k) such that

m%XIIC(n, Kll<ow and xG. vn— g (X + 1ym) = C(n, k) Ayf;ﬂ)/n-
n,

Put
bp*= Y Cn,k 4}’?1:+ v e+ tyme+2ym (), nEN.

keK(n,c)

Since ye D(R*, RY), sup, |b™, < + co. Therefore, it is clear that v™* defined by
vt = a* + b, teR", neN, satisfies (2.12) and (2.13). =

COROLLARY 2.5. Under the assumptions of Theorem 2.4 there exists a con-
stant C depending only on Q such that

(2.14) sup |5 — x| < Coym(y, t), teRT,
s<t

and

(2.15) sup X5 — x| < Coypm(y, 1), teR™.
st

Proof. Since (X", k) is a solution of the Skorokhod problem associated
with y¢", from (2.4) we get

SuP IJE: s, CsuP Iys _ysl C‘a)l/n (y9 t), tER+-

s<t s<t

The assertion (2.15) follows from (2.11) and the fact that IT,(X") = X". =

ExaMPLE 2.6. The following example shows that (2.9) cannot be strength-
ened to the convergence in J; or M. Let d=1, 0 =0 and

L ift<l1,
“=1_1  otherwise.
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Then x, =0, teR*, and by simple calculations, £ = ;3 4 2/n,1+3/m(t), teR™,
neN, and so {£"} does not converge to x either in (D (R*, RY, J,) or in
(D(R*, RY), M,). Note, however, that k! — k, for every continuity point of y.
Since the functions k" and k are nondecreasing, we conclude that K* —» k in
(D(R+, R), Ml).

THEOREM 2.7. Let (x, k), (X', k') denote the solutions to the Skorokhod prob-
lem associated with y, y' e D(R*, R, respectively. If the total variation of y—y'
is locally bounded, then there is a constant C depending only on Q such that

(2.16) x—x'l, < Cly—yk, teR™ . -
Proof. Without loss of generality we may and will assume that ||Q]| < 1.
Let {(x", k")} and {(x"", k"")} denote the sequences of solutions of the Skoro-
khod problem associated with {y?"} and {y¢"}, respectively. By [22], Lemma 1,
and by an elementary inequality |[a]™ —[b]*| < |a—b| we have
Z | ARG, + 1)/n—Ak_('ic"+ 1yl

ki(k+1)/n<t

<Gl Y ARG ym— ARG syl + Y AVE+ 1 — AVES 1l
ki(k+1)/n<t ki(k+1)/n<t
which implies that |I?‘—k_""|e.‘. < Coly”" — y"¢"|gn with Cg defined in Remark 2.1.
Since (y", y"¢") = (y, y') and, by (2.9), (K", k") - (k, k') on (D (R, R*), J,),

lk—K'|, < limsup |k — k™|, < Colimsup [y*"—y"¢"|, < Co ly—y');

n—+ o n-+ao0

for every ¢ such that y, = y,_ and y; = y;_. This gives (2.16), since y, y' are right
continuous. =

ExampLE 2.8. Let wl, w?e D (R*, RY, wie(R*)?. Define

t t
ye=wi+fwids, y=w!+[wktds, teR",
0 0 .
and let '(x", k") be a solution of the Skorokhod problem associated with ",
neN. Then, for each teRY, |x"— x|, — 0 and |k"—kl|, — 0, where (x, k) is a solu-
tion of the Skorokhod problem associated with y.

. 3. SDE’s WITH REFLECTION ON AN ORTHANT

Let Z be an (¥ )-adapted semimartingale. In this section we consider
approximations of SDE’s of the form (1.1). Let us recall that a pair (X, K) of
(#,)-adapted processes is called a strong solution to (1.1) if (X, K) is a solution
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to the Skorokhod problem associated with the semimartingale
t

(3.1) Y, =Xo+{0(X,-)dZ,, teR".
]

LemMma 3.1. If o is Lipschitz continuous, then there exists a unique strong
solution to the SDE (1.1).

Proof. We may and will assume that ||Q|| < 1. For ye D(R*, RY) let di(y)
denote a unique fixed point of the mapping (2.5) and let I'(y): D(R*, RY) -
D(R*, R%) be a mapping defined by I' (y) = y+ (I — Q") @ (y). Then (T (v), D (¥))
is a solution to the Skorokhod problem associated with y. Moreover, an easy
computation shows that (X, K) is a solution to (1.1) if and only if Y defined by
(3.1) is a solution to the following nonreflecting SDE with past-dependent
coefficients

(32) Y, = X0+j (F(Y),-)dZ,, teR".

Since the coordinates of ¢ o I' are functional Lipschitz in the sense of definition
on p. 195 in [21], Chapter V, it follows from [21], Theorem 7, p. 197, that the
SDE (3.2) has a unique strong solution, which completes the proof of the
lemma. &

One can check that for each ne N the solutions X, X* of (1. 2) (1.3) are
given by the followmg recurrent formulas:

(3.3) n = X1 = X,,

(34 X?k+ om =1y ()?:'2/..)+6(X2/n) (Zg+ 1ym—Zim)s

(3.5) X1y =1 (X_Z/n +0(Xin) (Z g+ 1ym —Zk/u)),

(3.6) Xr =Xy, Xi=Xy. telk/n,(k+1)n),

where ke N U {0}. In addition to (3.3)(3.6) for neN, ke N u {0} set
S U—Q) (B —Xo— ja(X" )dze),  te[k/n, (k+1)/n),

and denote by K" the process appearing in (1.3).
THEOREM 3.2. Assume that o is Lipschitz continuous. Then

(3.7 (X", Kn>(X,K) in (D(RY, R*),S),
and
(3.8) (X", KM »(X,K) in (D@R",R*),J)),

where (X, K) is a unique strong solution to the SDE (1.1).
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Proof. ForneN let (X", K" denote the solution of the Skorokhod prob-
lem associated with
e

Y =Xo+ [ 0(X,-)dZ,, teR".
V]

Then, by (2.10),
(3.9) (X", K" - (X, K) #-as. in (D(R*, R*), J,).
Hence (X", K®) - (X, Z) #-as. in (D(R*, R*%), J,), which implies that

t e
& =sup|fo(Xs_)dZ¥ — [ 0(X,_)dZ]| >0, teR".

s€t 0 0

On the other hand, by (2.4),

t
sup | X"— X7 < C{sup|[ o (X2_)—o (X?_)dZ¢|+&!}, teR*.
s<t s€t 0
Therefore, taking into account that ¢ is Lipschitz continuous, and using Lem-
ma 5.3 (i) with o, = 1 yields sup,<,|X"—X" —50, teR", which gives (3.8),
when combined with (3.9).
To prove (3.7) we first observe that

(HQ(X?)a K:') = Z (HQ(X?k+1)]n)_X?k+1)fn)a tER+,

kiy(k+1)/n<t

is a solution of the Skorokhod problem associated with X 0+I; o(X*.)dZ?,
teR™.
We next prove that

(3.10) {sup|X"—X,l; ne N} is bounded in probability.
. s€t

To this end, set Z§"* = ) <, AZ%" 1422">5(s) and assume that o is Lipschitz
continuous with a constant L > 0. Then, by (2.4) and (2.11),

sup | X5 —Xol < Csup|f o (Xi-)dZ'|+Cosup [ llo (X5 )l 412%™

s€t 5§t O st 0

+Cge(llo (Xo)ll + L sup | X7 — X )

sst

for every £ > 0. We can find C, & > 0 such that '

sup |X7—Xo| < C' {1+ sup|f o (X-)dZ2"| +sup | |lo (X2)I| 4122},
0

5<t s<t 0 s<t
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which together with Lemma 5.3 (ii) gives (3.10). Analysis similar to that in the
proof of (2.11) shows that for ke Nu {0}, neN

(31 1) |HQ (X?k + 1)/1:) _X?k+ 1}!n| < CQ IO' (Xz/n) (Z(k+ 1}n— Zk/n)l .

By (3.10) and (3.11), for every k, neN there exists an %, -measurable
random matrix C,; such that
HQ (X:’é/,.)hf’ﬁ/n = an (Zk/n_z(k— 1)/n),
and

{ max ||Cull; neN} is bounded in probablhty

kil\

Furthermore, since ¢ is Lipschitz continuous, for k, ne N there exists an Fy,-
-measurable random matrix H,, such that

(3.12) : O'(HQ (XE;,.))—G(XE/.,) =Hy, (Zk/'n_'z(k-—l),ln)a

and '

(3.13) { max ||H,ll; neN} is bounded in probability.
kk/n<t

By (3.12), for every >0

5"—sup”a(X" )dZ“"—j (o(Xn_))dze|

<t 0

" 51, .2,
= Sllpl Z an AZ%/,, AZ(g]:‘+ 1)/,,' g\ 5? a+6;| E,
st ky(k+1)n<t
where

5;1,1,8 — SUPI Z an AZ%?H AZ(QI:+ 1)/"]’ )

s<t keK(n,&)

op*t =sup| Y HuAZE, AZG .y

sSt k¢K(n,e)
and K (n, &) = {k; (k+1)/n < t, |4Z%},| < &}. Due to (3.13) and Remark 5. 2 (i),
for every # one can find & > 0 such that

(3.14) sup 2 (011 > n) < 1. |

Since Z has trajectories in D (R*, R?), it follows from (3.13) that 6> -, 0 for
every &> 0. Thus,

(3.15) & 0.
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On the other hand, by (24),

t
sup Mo (X3)—X3| < Csup|f o (X3-)—0o (X3-)dZ¢"|

sxt s€t O

t
< {Csup|f o (T (X2-))—0(X2-)dZS|+57}.
s€t 0
Hence, using Lipschitz continuity of ¢, (3.15) and Gronwall’s lemma we con-
clude that
sup |Ty(XD)— X35 0, teR™. -

sst
Accordingly, (ITo (X", Z%) » (X, Z)in (D(R*, R*), J,) and, as a consequence,
(3.16) (Me(XM, K") (X, K) on (D(R*, R*), J,),

where K} = (I—Q’)‘1(HQ(X'?)—XO—_[:)a'()f"_)ng"). Due to (3.11) and (3.16)
we have (X7, K") »5(X,, K,) for every te R such that #(4Z,=0)=1 and
{sup,<, (1X" +|K?)} is bounded in probability. Finally, repeating the argu-
ments from the proof of (2.9) in Theorem 2.4 shows that {(X", K"} is S-tight,
and (3.7) is proved. =

We now turn to the Euler-Peano scheme (1.4) which in some situations
proved to be more convenient than the discrete penalization and the projection
schemes (see e.g. [15]). First note that as in the case of the last two schemes the
pair (X", K") can be constructed reccurently. Namely, for each ne N we set
X3 = X,, and then if we have defined (X", K") for te[0, k/n], then, for
te[k/n, (k+1)/n], (X", K") is a solution to the Skorokhod problem associated
with X3, +0 (X5 (Z:—Zyp), te[k/n, (k+1)/n]. In other words, (X", K") is
a solution to the Skorokhod problem associated with Y", where

t
Y =Xo+[o(X32)dZ,, teR".

(4]

Observe. that, similarly to (3.2), Y" is a solution to the SDE
. .
(3.17) , Y;‘=Xo+ja(F(Y;':_))dZs, teR”.
’ 0
THEOREM 3.3. Assume that o is Lipschitz continuous. Then for every te R*

(3.18) sup|X7—X 0 and sup|Ki—X| 0.

s<t s&t

Moreover, if the sequence {a, jo (Zi- —Z22)dZi},en satisfies (UT) (see the
Appendix) for i, j =1, ..., d for some sequence {a,} of positive constants, then

(3.19) {0 (Y"— Y)}pen satisfies (UT)
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and for every teR™

(3.20) {a,sup | X3 — X} en is bounded in probability.

s€t
Proof. Since oor is Lipschitz continuous for each jy m=1, ..., d, the
sequence {Sup; <4 |om (T (Y3, ))l} is bounded in probability and for every teR*
we have

(321)  Yr— Zl g( oy (M (Y2 )—0y(T (Y;-))dZ}
+g

.

(U!J(F(Y )) ,J(I"(Ys_)))dZ£

O ey

[y

U (Y3l —Y{-)dZ]

.
oy
O ey

VN

+ Vi 6 (T (Y"gn_)(Z7- — Z5-") dZi,

im

ov._,u

i 1

where U™/ and V™ are predictable processes such that sup,<,|Ur| < C and
sup, <4 |V < C for some C > 0. By the same method as in the proof of Lem-
ma 3.2 in [14],

Sup |§ V3 6 (I (Y")en_)(Z0- —Z72")dZi| 0, teR™,

s<t 0

for m, j=1,...,d. By (3.21) and Lemma 5.3,

sup|Y;—Y| 0, teR",

s<t

and hence (3.18) follows. In order to prove (3.19) it is sufficient to multiply
(3.21) by a, and use the arguments from the proof of Theorem 3.6 in [26]. Since
(3.19) implies that {a,sup;<,|Y:— Y|} is bounded in probability and I is Lip-
schitz continuous, (3.20) follows. =

THEOREM 3.4. Assume that o is Lipschitz continuous and that, for some
1<k<d-1, 6;5(x) =gy for all xe(R*) and i, j such that min (i, j) < k. If the
components Z*¥*1, ..., Z? are processes with locally bounded variation, then

(3.22) IX"—X]|,»0, teR*.

Moreover, if for every j=1,...,d and i=k+1,...,d the sequence
{a, j':) |Z]_ —Z¢"1|d|Z});} is bounded in probability for some sequence {a,} of
positive constants, then

(3.23) {a,|Y"—Y/|;} is bounded in probability, teR",
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and
(324 {a,)X"—X|;} is bounded in probability, te R™.
Proof. By (3.21), for i=k+1,...,d we have

Y™ — Z 5 US| Y™ — Y|, d)Z),

J=k+10

d d t

+ 3 3 W o (C (g 125~ 2201412,
j=k+1m=10

At the same time for k+1,...,d

s_,_,.Z;";Q"IdIZjls ?01 tER+,

_C‘;IV;WI Io-jm (F(Y")g:_)

so (3.22)3.24) follow from Lemma 5.3. m

4. DIFFUSIONS REFLECTING ON AN ORTHANT

In this section we consider the solutions of the SDE (1.5). We will assume
that

(4.1) llo(x)—o Wl +bx)—bO) < Lix—y, x,yeR’

By Lemma 3.1, under (4.1) there exists a unique strong solution (X, K) to
the SDE (1.5). Moreover, in view of (2.4) and Gronwall’'s lemma,
Esup;<|X|*” < + o for every peN and teR".

In the present situation the formulas for X* and X" take the forms
(3.3)3.6) with o (Xrﬁ/n) (Z e+ 1yn—Zig) and 0 (X3 (Ze+ 1yn— Ziys) replaced by

b (X?c/n nl+o (Xi'/n) W+ 1yn— W;c/n) and b (YZ/.,) n~! +U(X"k/n) Wt 1yn— Wi)-

Note also that now (X", K" is the solution of the Skorokhod problem as-
sociated..with

t t
Xo+[o(Xs-)dW? +(b(X3_)do;, teR",
0 0
and
(HQ(X?)a K?) = Z X?kﬂ)/n—HQ(X?kH)/n), teR",

s+ 1)/n <t

is a solution to the Skorokhod problem associated with

t t
Xo+[o(Xn_)dWe +[b(X7_)dgl, teR*.
(1] 0
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As in the case of (X, K), using (2.4), (4.1) and Gronwall’s lemma yields

4.2) sup Esup | X"?? < + o0, supEsup|X"?? < 4+

neN s€t neN s¥t

for every peN and teR*.

THEOREM 4.1. Assume that (4.1) holds and let (X, K) be a strong solution to
the SDE (1.5). Then for every peN

(4.3) - Esup|X'—XJ% = 0((an)yn)’), teR*, -
st

and

(4.4) Esup|X'— X" = O((lnn)y/n)’), teR*.

s<t

Proof. Let (X", K" denote a solution of the Skorokhod problem associ-
ated with X0+Lt)G(X"_)dm+j;b()?;‘“)ds, teR™. By (2.4) there is C > 0 such
that

S 8
Esup |X7— X122 < C*Esup|[ o(X-)du+ | b(Xa-)du|”

s&t s<t o o7
< Const E {sup||o (X5_)||*? |W, — W,u|*? +sup |b (X:-)*? |s — 0] *?}
s<t s<t
< Const {(Esup ||0(X§_)||4”)1/ 2 (Eow(n™?, t)““’)ll2 +(n~)*? Esup|b(X2-)*? }.

s<t s<t
Therefore, using (4.2) and the fact that
4.5) Eow (™1, 1" = O(((Inn)/n)), teR*,
which can be easily deduced from Lemma A4 in [26], we obtain

(4.6) Esup|X"—X"?? < Const((lnn)/n)’, teR".

s<t

Similarly,

(4.7) Esup|X"—X??

s<t

< Const E {sup | |lo (X5_)— o (X )II*? du+sup [ |b(X5-)—b(X,)|** du}

s€t 0 s€t 0

t t
< Const { Esup |X5_ — X,|*? du < Const | E sup | X5 — X |*? du.

0 s<su 0 s<u
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Combining (4.6) with (4.7) gives

t .
Esup|X"— X ,|?% < Const {((lnn)/n)’ + | Esup | X" — X |*? du},
0 <

s<t s<u

and (4.3) follows by Gronwall’s lemma. By (2.6), for every ke N U {0} we obtain
[y (X?H 1)/m) _X?H nml € Cg {|¢T (X;/n) W+ 1)in— mc/n)f +1b( Aﬂ/n)l n- 1}
and, consequently,

(4.8)  Esup|Hy(Xm—X72r -

s<t

< Const {(Esup [X:1*+ 1) ((Eaow (0™, 1) + (™))}

st

< Const ((lnn)/n)’.

Therefore, in view of (4.3) to complete the proof of (4.4) it is sufficient to show
that for every peN

(4.9) Esup |X"—II,(X"?? < O((lnn)/n)’), teR*.

sst
To prove this, we first observe that, by (2.4) and (4.1),
Esup | Xg— Ty (X3)*?
st

< C¥E {[g(a (K1) —o (1) dWe ]2 + [i(” (X2_)—b(X7_))dgr ]2}

s t
< Const E {sup || (¢ (X2-)— 0o (X2-)) dW2"[** + { sup | X3 — X1_ |27 ds}

s<t 0 0 u<s

t
= Const | Esup|X;— X727 ds.

0 uss
Hence, by (4.8),
o 52 Inn\? ! — P
Esup |X7— I, (X3)|*? < Const — + [ Esup | X;— I (X})*"ds ¢,
s<t 0 uss i
which leads to (4.9) by Gronwall’s lemma. =

For the Euler—Peano scheme (X3, K) = (X, 0) and for te [k/n, (k+1)/n]
(X", K™ is a solution to the Skorokhod problem associated with

Xin+ 0 (Xim) (W~ W) + b (X5) (E— /n).

THEOREM 4.2. Assume that (4.1) holds and let (X, K) be a strong solution to
the SDE (1.5). Then for every peN

4.10) Esup[X:—X**=0(n"")?), teR*.

s<t
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If additionally 6(x) = ¢ for all xe(R"), then
4.11) EIX"—X)f =0((n"")?), teR*.
Proof. Since (X", K") is a solution to the Skorokhod problem associated
with Y" given by
t . t
YP=Xo+[o(X32)dW,+ [ b(X*)ds, teR",
4] 0

from (2.4) we conclude that

t
Esup |X?— X J** < Const {| Esup |X2— X ,|*? ds

s<t 0 wuss

T Esup [ (lo (X122 (W22 — W22 4+ b (X22)7 (u— o)) du}.

s<t 0

By (4.1) and Hdlder’s inequality the last term in bounded by

Const{(1+Esup|X ;‘i’"l‘”’)m (Eow @1, 1:)4")1/2 +@n™ 1))},

s<t

Therefore (4.10) follows from (4.5) and Gronwall’s lemma. The proof of (4.11) is
similar, the only difference being in the use of (2.16) instead of (24). =

From Theorem 4.2 and the Markov inequality it follows immediately that
for each teR*

4.12) {/nsup|X7— X |},ev is bounded in probability
<t

and

(4.13) {/n1X"—X|}sen is bounded in probability,

provided that ¢(x) = ¢. Let us remark, however, that (4.12) and (4.13) may be
also deduced from Theorem 3.4, because for i,j=1,...,d the sequence

{\/ﬂj’;(Wi__}— W dWi,.n satisfies (UT) (see, e.g., [25], p. 42) and the se-
quence {\/n |Wi_ —W"|ds},y is bounded in probability.

5. APPENDIX

Let Z be an (#)-adapted semimartingale of the form
(5.1) Z,=Zo+J,+M+V, teRT,

where J, = Zss AZ A az,0> 1 teR*, M is a locally square-integrable martin-
gale with M, = 0 and V is a predictable process with locally bounded variation
and VQ =0.
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LEMMA 5.1. Assume that X and H are (#,)-adapted processes.
(@) If for every teR*

sup | X < sup|j X, dZ |+sup|Hs|
s<t s<t 0

then there is a universal constant C (depending only on d) such that for every
g, n,0>0 and for every (¥)-stopping time ¢

P(sup|X| > &) < P (sup|HJ > n)+2 (B, > ) +& *n’exp {5(1+5) C},
tso t<a

where B, = [M],+{M),+J|,+|V], teR™.
@ii) If Z is a process with locally bounded variation and for every teR™

1X]: < |sz— dZJ),+sup|Hj,

sst
then for every e,n,6 >0 and for every (#,)-stopping time o
P(X|, > &) < P (sup |H| > n)+P(Z], > 6)+& ' nexp{5}.

t<o
Proof. Define t = inf{t; B, > d or sups<,|HJ > n}. Then
Psup|X,| =)< P(sup|H| = n)+P (B, = 0)+P(sup|X,| = ¢, 1> 0).
t<o t<o t<a

By Chebyshev’s inequality the last term on the right-hand side is bounded by
e 2Esup,<,|X7 | On the other hand, for every (%;)-stopping time y

sup | X:7|* < 2 {sup|H:"|*+ sup |j'Xs_ le }

t<y i<y t<yaz 0

t t
<272 +6C,(@d) {6 sup [|Xi_|*d|J|s+6 sup [|X,_|>d|V]}

t<yat O t<yaz O

1
+6 sup || X,-dM,|’

t<yazr O

for some C1 (d) depending only on d, and, by Doob’s type 1nequa11ty proved
in [18],
t A" —
E sup |[X,_dM,| < Cz(d)E ] [ X-I? d([M 1+ <MDy,
t<yat 0O
Hence Esup, <, | X" "> < 272+ C3(@)(1+8) E [ sup,<|XiZ|*dB; . Therefore,
applying Lemma 3 of [23] gives

Esup|X;™|* < 2n’exp {6(1+0) C3(d)},
t

and the proof of (i) is complete. The proof of (ii) is similar, so we omit it. =
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For neN let Z" be an (#7})-adapted semimartingale. Following Stricker [27]
we say that {Z"} satisfies (UT) if for every geR™* the family of random variables

UsdZ3; neN, U"eU,} is bounded in probability,
[0.4] !
»d

where Uj is the class of discrete predictable processes of the form

k
U: = '(I)+ Z U:l 1{t¢<s$ti+1}a
i=0
where 0 =ty <ty <...<t, =g, U} is #7-measurable and |U?} < 1 for every
ieN U {0}, neN, ke N. Some sufficient conditions for (UT) and some examples
of its applications can be found in Jakubowski et al. [11], Kurtz and Protter
[13], [(14], Mémin and Stominski [17] and Stomifiski [23], [25].

Remark 5.2. (i) Let Z be an (%)-adapted semimartingale and let Z¢" be
a discretization of Z adapted to the discrete filtration #¢", ne N. Then by the
famous theorem of Bichteler, Dellacherie and Mokobodski (see e.g. [3], Theo-
rem 2.5) it follows that {Z®"} satisfies (UT).

(ii) In [17] it was proved that a sequence of semimartingales {Z"} of the form
Z7 = Z3+ 7+ MP+ V2, teR™, satisfies (UT) if and only if sup,|Z3| < + oo and
the families {|J");; ne N}, {[M™];; ne N} and {|V|?; ne N} are bounded in prob-
ability, te R*. From this one can deduce in partlcular that if {Z"} is a sequence
of semimartingales satisfying (UT) and {H"} is a sequence of predictable
processes such that {sup,<,|H|; neN} is bounded in probability, then the
sequence of stochastic integrals ‘UO H3dZ?} satisfies (UT) as well.

LemMmA 5.3. Let o be a Lipschitz continuous function and for neN let
z", X", X", H" be (%7)-adapted processes such that

ousup [X7— X2 < Coup [y (o (X2) — 0 (%2))dZ2] + 3, sup|HE,  teR*

s<t s€t O s<t

(respectively, a,|X"—X"|, < CU o (f (X3-)—f (X2_))dZY,+ o, sup [HY, teR*)
s<t
Jor some sequence {a,} = R™. If {Z"} satisfies (UT) (respectively, {|Z",; ne N} is
bounded in probability for te R"), then for every te R* the following implications
hold true:
@) if azsups<,|H? —> 0, then also

o, 5up | X7 — X7 50 (respectively, a,|X"— X", -0);
L d

s<t

(i) if {a,sups<,|H%|; neN} is bounded in probability, then also

{0, sup|X"—X"; neN} is bounded in probability

s<t

(respectively, {a,|X"—X"; neN} is bounded in probability).
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Proof By Remark 5.2 (ii), {Z"} satisfies (UT) if and only if
{B} = [M"],+{M"),+|J",+|V"|;} is bounded in probability,

so the required results follow from Lemma 5.1. =
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