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Abstract We'consider the discrete penalization scheme, the pro- 
jection and the Euler-Peano scheme for SDE's driven by general semi- 
martingale on an orthant with oblique reflection. We prove that these 
schemes converge in probability to the solution of the SDE in various 
topologies provided that the oblique reflection satisfies the assumption 
introduced by Harrison and Reiman In the case where the driving 
semimartingale is an It8 process, the rate of IF-convergence is discus- 
sed in detail. 
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1. INTRODUCTION 

Suppose we are given a d-dimensional semimartingale Z = (Z1, . . ., zd), 
a Lipschitz continuous function g :  Rd --, Rd@Rd, and a nonnegative d x d ma- 
trix Q with zeros on the diagonal and spectral radius Q (Q) strictly less than I. 
Consider a d-dimensional stochastic differential equation (SDE) on an orthant 
(R+)d with oblique reflection of the form 

t 

(1.1) X, = X,+Sa(X , - )dz ,+ ( I -Q' )& ~ E R ' .  
0 

Here Q' is the transpose of Q, X o ~ ( ~ + ) d ,  X = (X1, . = ., Xd) is a reflecting pro- 
cess on and K = ( K 1 ,  . . ., K d )  is a process with nondecreasing trajec- 
tories such that Kj increases only at those times t where Xi = 0. Equations of 
type (1.1) were introduced in the paper by Harrison and Reiman [8] in the case 
a = I, Z = F.t: where W is a d-dimensional standard Wiener process, and con- 
sidered later by Yamada [30] in the case of reflecting It6 diffusions. SDE's 
driven by continuous semimartingale under milder assumptions on Q were 
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discussed in Dupuis and Ishi [4], [5] (see also [I], [6], [7], [9], [28], [29] 
for some related results). 

The main purpose of the present paper is to investigate three numer- 
ical methods of approximation of the solution X to the SDE (1.1): the di- 
screte penalization scheme, the projection scheme, and the Euler-Peano 
scheme. 

Let p: = max (k/n; k E N  u (01, k/n < t) and let zfn be a discretization of 
Z,  i.e. 2;" = Zk,,, for t E [k /n ,  (k + l)/n), k G Mu (01, n E N .  In the first method the 
approximation processes 8" are defined to be the solutions of discrete pe- 
nalized SDE's - 

where n,(z) denotes an oblique projection of z on ( R f ) d .  In the second and 
third methods the approximation processes Xn and Xn are solutions of SDE's 
on (R+)d with oblique reflection of the forms 

and 
t 

t 1,4) x: = X o + j ~ [ X ~ ~ n ) d Z s + ( I - Q ' ) K ~ ,  t € R f ,  
0 

respectively (see Sections 2 and 3 for precise definitions). Note that (1.2) is 
a counterpart to a discrete penalization scheme introduced in Liu 1161 in the 
case of the It8 SDE with normal reflection (see also Pettersson [20], Slominski 
[261), whereas (1.3) and (1.4) are counterparts to the well-known projection 
scheme and the Euler-Peano scheme considered earlier in Chitashvili and Laz- 
rieva [2], Lkpingle [15], Pettersson [19], [20] and Slomiriski [241, [26]. 

We will see in Section 3 that %", R" and Xn can be computed by simple 
reccurent formulas. Moreover, we prove that (rZ"), (Xn) and ( X n )  converge in 
probability to X in the space D(Rf , Rd) endowed with the S-topology in- 
troduced recently by Jakubowski [lO], the Skorokhod J,-topology and the 
uniform topology, respectively (of course, J ,  is weaker than the uniform topo- 
logy, and S is weaker than J,).  Finally, in the case of the Euler-Peano scheme 
we give some results on the rate of uniform convergence as well as convergence 
in variation. 

In Section 4 we deal with It6 diffusions reflecting on an orthant, i.e. with 
solutions to the SDE 
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where Xo ED. We prove that if a, b are Lipschitz continuous, then for every 
P E N  

E sup IS: - X,('P = 0 (((lnn)/n)'), t E R+ , 
s Q f  

and 
~ e u p 1 ~ - ~ , 1 ~ ~ = 0 ( ( ( l n n l j ~ 1 ) P ) ,  t € R C ,  

s d t  

whereas in the case of the Euler-Peano scheme 

E sup 1x7 - x,(*P = 0 ((n- ')P), t E R+ . 
sSt 

In the case important in the applications, where the diffusion coefficient is 
constant, we are able to estimate the total variation IXn-XI, of Xn-X on the 
interval [0, t]. Namely, we prove that 

For convenience of the reader we collect in the Appendix some basic 
results concerning the condition (UT) and the estimates of the solutions of 
SDEYs. 

Throughout the paper +r denotes convergence in probability and 
D (R+, Rd) denotes the space of functions x: R ' -, Rd which are right continu- 
ous and admit left limits. For given ~ E D ( R + ,  Rd) we write Ayt = y , - y t -  and 
we denote by mh(y, t )  the modulus of continuity of y on LO, t], i.e. 

2. THE SKOROKHOD PROBLEM ON AN ORTHANT 

Let Q be a nonnegative matrix with zeros on the diagonal and Q (Q) < 1 
and let y € D ( R + ,  Rd) with ~ , , E ( R + ) ~ ,  Following Harrison and Reirnan 181 
a pair (x, k ) f D  (R', RZd) is called a solution to the Skorokhod 

on (Rf)d associated with y if (2.1) is satisfied and 

(2.3) kj is nondecreasing, kj, = 0 

t 

and Jxjdki  = 0 for j = 1, ..., d, ~ E R ' .  
0 
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Remark 2.1 ([Sly Theorem 1). (i) For every y E D (R", Rd) with yo E(W' Id 
there exists a unique solution (x, k) of the Skorokhod problem associated with y. 
Moreover, if (x', k') denotes a solution of the Skorokhod problem associated 
with y ' ~  D (W', Rd) such that yh E(R+)", then there exists a constant C depen- 
ding only on the matrix Q such that 

(ii) If additionally IlQll < 1, where IlAll denotes the maximum row sum of 
a matrix A, then k is the unique fixed point of -the mapping 
F: D (B', @) + D (R', P) defined by the formula 

(2.5) F(u)~=su~[Q'u,-~,]+,  u d I ( R f , R d ) ,  ~ E W ' ,  
s s t  

where [z]' = max(0, z). In this case a constant C in (2.4) takes the form 
C = 1 +C,, where CQ = 1/(1 -1)Q))). 

Suppose that 

(2.6) I I Q I I  < 1 
and for given z E IP consider the mapping f :  W d  -+ Rd, f (v) = [Q' 21 - Z] +, v E Rd. 
Since If (0) -f (vf)l 6 IIQll lv - vfl for v,  v' E Rd, it follows by (2.6) that f is Lip- 
schitz continuous with a constant less than I, and hence that for every Z E R ~  
there is the unique fixed point Z of f. Therefore, under (2.6), we may define 
a mapping nQ: Rd -+ (R+)d by 

(2.7) n Q ( z ) = ( I - Q f ) Z + z ,  z ~ R d ,  

which is called an oblique projection on an orthant (R+)d. 
Suppose now that (2.6) does not longer hold. Since q (Q) < 1 ,  there exists 

a diagonal matrix A having positive elements and a nonnegative matrix Q* 
such that IIQ*ll < 1 and Qf = A-'o(Q*)'oA. Define ITQo by (2.7) and set 

The matrices A and Q* are not uniquely determined by Q. We have, however, 
the following 

LEMMA 2.2. Thefunction l7, defined by (2.8) does not depend on the choice 
of A and Q*. Moreover, Lip: Rd + (Rf)d is a Lipschitz continuous mapping with 
a constant depending only on the matrix Q. 

Proof. Note first that (x, k) is a solution of the Skorokhod problem 
associated with y if and only if (2 = A o x ,  = A o k) is a solution of the Skoro- 
khod problem associated with y" = A o y. Fix z E Rd and set 

0 i f t c l ,  
Y t = (  z otherwise. 
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It is clear that (2, a), where 

if t <  1, 
Zt = 

D, o A (2) otherwise, e 
and 6 = gr-Aoy,, t € R + ,  is the unique solution of the Skorokhod problem 
associated with y" = A o  y. Hence the unique solution of the Skorokhod prob- 
lem associated with y equals {x, k), where 

if t < 1, 
x, = A-'0% = 

A-I o nQ4 0 A (2) otherwise, 
- 

and k, = x, - y,, t~ R'. Hence, by uniqueness of the solution of the Skorokhod 
problem, the value of A- onPo A (z) does not depend on A and Q*. To prove 
the Lipschitz continuity, for fixed z '€Rd set 

0 i f t c l ,  
Y: = 

,$ otherwise. 

Then, as above, the pair (x', k'), where 

0 i f t < l ,  

= {h (ZJ otherwise, 

& = x: - y:, t E R+ ,  is the unique solution of the Skorokhod problem associated 
with y'. By (2.4), 

In,(+- nQ (2'11 = sup Ix:-x,l < C sup ly',-y,l = 12- 2'1, 
s< 1 s<l 

which completes the proof. 81 

In view of Lemma 2.2, (2.8) defines correctly an oblique projection for any 
Q with e (Q) < 1. 

EXAMPLE 2.3. In the case d = 2 the mapping nQ is given by the following 
simple formulas: 

Let ( x ,  k) be a solution of the Skorokhod problem associated with 
y ED (R+,  Rd). By using the oblique projection mapping nQ we define recurrently 
for each n EN the approximations (9, @ and (Z", f f )  of (x, k) by the formulas 

3 - PAMS 22.1 
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for k ~ i V u { O }  and 

@=(I-Q')-l(i;-yf"), ~=( I -Q ' ) l (Z~-y , "" ) ,  t~[k/n,(k+l)/n),  

where yf" = yktn, k E N u (0). 
' 

THEOREM 2.4. Tf y E D (R+,  P), yo E then 

(2.9) (gn,R)+(x, k) in ( D ( R + , R 2 d ) , S )  
and 
(2.10) ( P , P ) - + ( x , k )  in (D(W+,R2d),  Jl). 

- 
P r o  of. We start with the proof of (2.10). Without loss of generality we 

may and will assume (2.6). First observe that (Jc", k")s a solution of the Skoro- 
khod problem associated with yen and ye" 4 y in (D(R+,  Rd), J ~ ) ,  i.e. there 
exists a sequence {An)  of strictly increasing congtinuous changes of time such 
that A+ 0, il", = + m and 

sup JA;-S~+ 0, sup ly$-y,l 4 0 for ~ E R ' .  
~ 6 %  s qt  

Since @? = sup,,,[Q1!i&-y$]+ for  EN, t € R + ,  we have 

By the above and (2.6) we have sup,,, I@:-k,l+ 0, supsSt /Z",-xSl + 0, which 
implies (2.10). Now, write 

and observe that (IIQ(fn), k") is a solution of the Skorokhod problem associ- 
ated with 9". Hence (IIe(Xn), k 3  = (xn, P), by uniqueness. On the other hand, 

which implies that, for every  EN u {0}, 

By (2.10) and (2.11), (2:, @ ) j ( x t ,  kt) for every continuity point t of y, 
and, moreover, sup, sup,,, lR:l < + oo, sup,, sup,,, < + CQ for t ER+. 
Thus, in view of [10], Proposition 2.14, in order to complete the proof it 
suffices to prove that the sequences {in} and (I?} are relatively S-compact. 
Since gn = ye"+,@ and (ye") is relatively S-compact, what is left to show is 
that (2") is reIatively S-compact or, by [lo], Lemma 2.1, that for every E > 0 
there is a sequence {vniE)  c D (R+,  Rd) of functions with locally bounded varia- 
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tion such that 
I 

(2.12) supsupIR:-v:." < 8 ,  ~ E R + ,  
n s < t  

(2.13) s u p ~ ~ " ~ ~ ] , < + c n ~  ~ E R + .  
n 

By (2.10) for every E > 0 there exists a sequenoe (a"." c D ( R + ,  Wd) of functions 
with locally bounded variation such that 

sup~~p117~(Z~) , -a:~"<~/2 ,  ~upla"*"~< +a for t € R f .  
n s<t n 

Set K (PI, E )  = (k; (dyfl+ ill,( > &/(2CQ)), n E N. By (2.1 I), for every k E K (n, E) 

there is a matrix C (n, k) such that 

max IIC{n, k)II < a and %?k+ l)I,-n~ 1113 = C (n, k)Ayf,"+ 1 1 , ~ .  
n,k 

Put 

Since y E D (W', Rd), SUP,, lbnl'lt < + m. Therefore, it is clear that on-"defined by 
v:*" ay3"+b, t € R + ,   EN, satisfies (2.12) and (2.13). ia 

COROLLARY 2.5. Under the assumptions of Theorem 2.4 there exists a con- 
stant C depending only on Q such that 

(2.14) ~ ~ P I Z - X , ~  < Cwljn(y, t), t € R f ,  
s<t 

and 

(2.1 5) sup]%:-x,l<Cwljn(y,t), t € R f .  
sdt 

Proof.  Since (I, k") is a solution of the Skorokhod problem associated 
with yen, fkcim (2.4) we get 

s ~ p I ~ ~ - ~ s l d C ~ u p l y ~ " - y s l Q C ~ ~ i n ( y y t ) ,  t €RS  
sdt sdt 

The assertion (2.15) follows from (2.11) and the fact that IIQ(ffn) = 2". H 

EXAMPLE 2.6. The following example shows that (2.9) cannot be strength- 
ened to the convergence in J ,  or MI. Let d = 1, Q = 0 and 

0 if t < 1, 
Yt = { - 1 otherwise. 
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Then x, = 0, t E W+, and by simple calcuIations, i: = 111, +2Jn , ,  (t), t~ Rf, 
 EN, and so (22") does not converge to x either in (D(R', Rd), J1) or in 
(D(R+,  Wd), M I ) .  Note, however, that @ + k, for every continuity point of y. 
Since the functions kn and k are nondecreasing, we conclude that l?' 4 k in 
(m+, 4, MI). 

THEOREM 2.7. Let (x, k), (x', kt) denote the solutions to the Skorokhod prub- 
lem associated with y,  ED (R+,  @, respectively. If the total variation ofy- y' 
is locally bounded, then there is a constant C depending only on Q such that 

P r o  of. Without loss of generality we may and will assume that IlQll < 1. 
Let {(F, R)) and {(T'?", W-")] denote the sequences of solutions of the Skoro- 
khod problem associated with (yP")  and (y'3Q3, respectively. By [22], Lemma 1, 
and by an elementary inequality ([a]+ - [b]' 1 < la - bl we have 

which implies that IP-R>"l,; < Cp lye"-yJvQ"Jp: with CQ defined in Remark 2.1. 
Since (yen, ytven) -, (y, y') and, by (2.9), (P ,  kf9") + (k, k') on (D (R+ ,  RZd), J1), 

Ik-elt < Iim SUP IR - E ' y n l t  < cQljm sup lyen- yl.enlt < cQ l y  - yllt 

n+ m n+ oo 

for every t such that yt = yt - and y: = y:-. This gives (2.1 6), since y,  y' are right 
continuous. E 

EXAMPLE 2.8. Let wl, w2 G D  ( R f  , Rd), W: E Define 

and let (xn, P) be a solution of the Skorokhod problem associated with y", 
 EN. Then, for each t E R+, Ixn - X I ,  + 0 and ( P -  kl, + 0, where ( x ,  k) is a solu- 
tion of the Skorokhod problem associated with y. 

Let Z be an (St)-adapted semimartingale. In this section we consider 
approximations of SDEYs of the form (1.1). Let us recall that a pair (X, K) of 
(9,)-adapted processes is called a strong solution to (1.1) if (X, K} is a solution 
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to the Skorokhod problem associated with the semimartingale 

LEMMA 3.1. If 0 is Lipschiiz continuous, than there exists a unique strong 
solution to the SDE (1.1). 

P r o  of. We may and will assume that IlQll < 1. For y E D (R', Wd) let 8 (y)  
denote a unique fixed point of the mapping (2.5) and let fly): D(RC, Rd) + 

D (R +, Rd) be a mapping defined by r (y) = y + (1 - Q3 @ (y). Then (T (y), @ (y)) 
is a solution to the Skorokhod problem associated with y. Moreover, an easy 
computation shows that (X, K) is a solution to (1.1) if and only if Y defined by 
(3.1) is a solution to the following nonreflecting SDE with past-dependent 
coefficients 

Since the coordinates of GT o r are functional Lipschitz in the sense of definition 
on p. 195 in 1211, Chapter V, it follows from [21], Theorem 7, p. 197, that the 
SDE (3.2) has a unique strong solution, which completes the proof of the 
lemma. EA 

One can check that for each n f N  the solutions p, X" of (1.2), (1.3) are 
given by the following recurrent formulas: 

where k E N u {O). In addition to (3.3H3.6) for n E N, k E N u (0) set 

and denote by IP the process appearing in (1.3). 

THEOREM 3.2. Assume that a is Lipschitz continuous. Then 

(3-7) ( p , & ? ) t ( ~ , K )  in ( D ( R + , P d ) , S ) ,  

a d  

(3.8) ( P , P ) b ( ~ , ~ )  in (D(Rf,RZd),J1), 

where ( X ,  K )  is a unique strong sohtion to the SDE (1.1). 
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Pro of. For n E  N let (;Q", $?) denote the solution of the Skorokhod prob- 
lem associated with 

Then, by (2.10), 

(3.9) (p, 9") + (X, K) 5-as .  in (D (R', RZd),  .TI). 

Hence (p, KQn) + (X, 2) P-as. in (D(R+,  pEZd), Jl), which implies that 
t e; 

E; = suplS~(!:-)d~:" - 1 ~(X,- )~Z, I  60, ~ E R + .  
sst 0 0 

On the other hand, by (2.4), 

Therefore, taking into account that a is Lipschitz continuous, and using Lem- 
ma 5.3 (i) with ctn = 1 yields sup,<, lX;-g:l +,O, t E R + ,  which gives (3.8), 
when combined with (3.9). 

To prove (3.7) we first observe that 

is a solution of the Skorokhod problem associated with Xo + li a (2-) dZ:n, 
~ E R + .  

We next prove that 

(3.10) (sup 13: -x01; n~ N )  is bounded in probability. 
s < t  

To this,end, set Zfn*& = zdt AZ:" l{tAz$"[>El(~) and assume e a t  a is Lipschitz 
continuous with a constant L > 0. Then, by (2.4) and (2.11), 

S 

~ ~ P I ~ E - X , I  s d t  G c ~ ~ ~ I J ~ ( R - ) ~ z : ~ I + c ~ ~ ~ ~  j11g(6:-)11dlZen.~I,, 
sdt 0 sBt 0 

+ C, (IIQ(XO)II + L  SUP 112: -&I) 
sdt 

for every E > 0. We can find C,  E' > 0 such that 
S 

~ ~ P I ~ : - x , I  S ~ C  < C' + sup l ~ ~ d : - ) a ~ : n ~ + ~ ~ ~ j  lla(z-)ll d ~ z e ~ , ~ , ~ . ) ,  
sst 0 sdt 0 
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which together with Lemma 5.3 (ii) gives (3.10). Analysis similar to that in the 
proof of (2.11) shows that for  EN u (O),  EN . 

By (3.10) and (3.11), for every k, n f N  there exists an Fkl,-measurable 
random matrix Cnk such that 

( max lICnkll; n E N )  is bounded in probability. 
k ;k /nSr  

Furthermore, since a is Lipschitz continuous, for k, n E N there exists an &/,- 

-measurable random matrix Hnk such that 

and 

( max IINnkll; n EN) is bounded in probability. 
k ; k / n S  t 

By (3.12), for every .E > 0 
i t 

6: = sup Ij b (*-)dZ'$ -I s(n, (*-I) dZfnl 
s < t  0 0 

I 
I 

= SUP 1 C H,, A Z ~ ,  A Z ~ ,  ,,,nI G d:.lqE + d ~ : , ~ ~ ~ ,  
I s<t k; (k+  l ) / n < t  

where 

I and K (n, E) = {k; (k + l)/n < t ,  IAZR;nI d 8) .  Due to (3.13) and Remark 5.2 (ii), 
for every P ]  one can find E' > 0 such that 

sup 9 (6;$l3" > q)  < P ] .  
n 

Since Z has trajectories in D ( P ,  R3 ,  it follows from (3.13) that 6 : 7 2 9 e  +g 0 for 
every E > 0. Thus, 

(3.1 5) 6; 3 0 .  
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On the other hand, by (2.41, 

r 

< {C sup )I a (4 (*-))-a (R,R-) dzinI + 6;). 
s<r  0 

Hence, using Lipschitz continuity of a, (3.15) and Gronwall's lemma we con- 
clude that - 

S U ~ I Z I ~ ( ~ ) - - X ; I  $0, ~ E R + .  
3st 

Accordingly, (G 13% Z Q " ) ~ ( ~ ,  2) in (D (Rf , R2d), J1) and, as a consequence, 

where Ky = (IT Q')- (nn (2;)- Xo -jL CT{*-) dZZn). Due to (3.11) and (3.16) 
we have (R , K:) + (X t  , Kt) for every t E R + such that 9 (A Zt = 0) = 1 and 
(supss, + IR:I)) is bounded in probability. Finally, repeating the argu- 
ments from the proof of (2.9) in Theorem 2.4 shows that {(p, Rn)) is S-tight, 
and (3.7) is proved. a 

We now turn to the Euler-Peano scheme (1.4) which in some situations 
proved to be more convenient than the discrete penalization and the projection 
schemes (see e.g. [15]). First note that as in the case of the last two schemes the 
pair (Xn, Kn) can be constructed reccurentfy. Namely, for each  EN we set 
X", X o ,  and then if we have defined (Xn, Kn) for t€[O, k/n], then, for 
t E [k/n, (k+ l)/n], (X", Kn) is a solution to the Skorokhod problem associated 
with XfIn + rs (Xi,,) (2, - ZIc& t E [k/n, (k + l)/n]. In other words, (Xn, Kn) is 
a solution to the Skorokhod problem associated with Yn, where 

Observe. that, similarly to (3.2), 1" is a solution to the SDE 

THEOREM 3.3. Assume that a is Lipschitz continuous. Then for every t E R+ 

(3.18) sup (X:-X,J 3 0  and sup )K: -X,J 3 0 .  
s<t  s s r  

Moreover, if the sequence {an (2: - - z:li) dZ!)., satisfrs (UT) (see the 
Appendix) for i, j = 1, . . ., d for some sequence {an) of positive constants, then 

(3.19) {a, (Yn - Y)IDEN sati$es (UT) 
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and for every t E R+ 

(3.20) (a, sup lX: - X,]}, is bounded in probability. 
ssf 

Proof. Since a o T is Lipschitz continuous for each j, rn = 1, . . ., d, the 
sequence {supr4, Igj,,,(r(Y$ t -  ))I) is bounded in probability and for every t E R +  
we have 

where Unii and vij are predictable processes such that sup,<, lUtiil < C and 
sup,,,]V:'jl < C for some C > 0. By the same method as in the proof of Lem- 
ma 3.2 in [14], 

for rn, j = 1, . . ., d. By (3.21) and Lemma 5.3, 

and hence (3.18) follows. In order to prove (3.19) it is sdicient to multiply 
(3.21) by a, and use the arguments from the proof of Theorem 3.6 in [26]. Since 
(3.19) implies that (a, supsGt Ic- Y,I} is bounded in probability and r is Lip- 
schitz continuous, (3.20) follows. s 

THEOREM 3.4. Assume that a is Lipschitz continuous and that, for some 
1 < k < d- 1, au(x) = aij for all X E ( R + ) ~  and i, j such that min(i, j) < k. If the 
components zk+l, . .., zd are processes with locally bounded variation, then 

Moreoner, if for mery j = 1, .. ., d and i = k +  1, .. ., d the sequence 
(a,, G IZi- - Z:? 1 d JZU is bounded in probability for some sequence {a,,) of 
positive constants, then 

(3.23) {a,, 1 Y" - YI,) is bounded in probability, t E R+ , 
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and 

(3.24) {an lXn -XI,) is bounded in probability, t E Rt . 
Proof.  By (3.21), for i = k+l, ..., d we have 

At the same time for j = k+l, ..., d 

so (3.22H3.24) follow from Lemma 5.3. rn 

4 DIFFUSIONS REFLECTING ON AN ORTHANT 

In this section we consider the solutions of the SDE (1.5). We will assume 
that 

By Lemma 3.1, under (4.1) there exists a unique strong solution (X, K) to 
the SDE (1.5). Moreover, in view of (2.4) and Gronwall's lemma, 
E s ~ p , ~ , l X , ~ ~ ~  < +oo for every P E N  and t € R f .  

In the present situation the formulas for S" and R" take the forms 
(3.3H3.6) with 0 (Z,+ 111, -&in) and a (Zin)(Z(k+ 1 1 1 ~  --&I,) replaced by 

Note also that now (P, F)  is the solution of the Skorokhod problem as- 
sociated .with 

I t 

XO+~a(z-)dW~"+~b(z-)de~, t € R f ,  
0 0 

and 

is a solution to the Skorokhod problem associated with 
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As in the case of ( X ,  K) ,  using (2.41, (4.1) and Gronwall's lemma yields 

(4.2) sup E SUP lX:lzp < + w , sup E sup 1 8 : 1 ~ p  < + co 
n f N  s C r   EN sdt 

for every P E N  and t ~ R + .  

THEOREM 4.1. Assume that (4.1) holds and let (X, K) be a strong solution to 
the SDE (1.5). Then for every P E N  

(4.3) E sup IR: -X,IZp = 0 (((ln n)/nIp}, t E R+ , - 

sdt 

(4.4) E sup = U (((ln n)/n)?, t e R+ . 
sdt 

Pro of. Let (p, Kn) denote a solution of the Skorokhod problem associ- 
ated with X, +I: o (z-) d W , +  1: b (x-) ds, t c R'. By (2.4) there is C > 0 such 
that 

< Const E {sup Ila(z-)IIZp IK- W , : 1 2 p + s ~  lb(x-)12pIs-e:12") 
s dr  s C t  

< const { (E  sup llr (E* (n' , t)4p)1J2 + (n- E sup lb ( x : - ) I 2 ' ) .  
sCt s d t  

Therefore, using (4.2) and the fact that 

(4.5) Emw (n - ' , t)2P = 0 (((ln n)/njP), t E R + , 

which can be easily deduced from Lemma A4 in [26], we obtain 

(4.6) E ~ u p I X ~ - ~ 1 ~ ~ < C o n s t ( ( l n n ) / n ) ~ ,  t € R + .  
sdt 

Similarly, 

(4.7) E sup 12 - Xs12p 
sdt 

S S 

< C~nstE{sup~~~a(~-)-a(X,)~~~pdu+~~pJ~b(~-)-b(X~)~~Pdu] 
s d t  0 sCt 0 

t f 

< Const 1 E sup Iz- -XsIzP du < Const j E sup IXi -XSl2j' du. 
0 s d u  0 sdu 
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Combining (4.6) with (4.7) gives 
t 

E sup IX: - X,12~ 6 Const (((In n)/n)' + j E sup Ie - X.1" du) , 
s<t 0 sQu 

and (4.3) follows by Gronwall's lemma. By (2.6), for every k E N u (0) we obtain 

In, I$k-+ 1)/13-&+ 1,/n1 6 CQ ( l ~ ~ t R / n )  (Ytik+ 1ljn- Wkjn)l+ Ib (fij31 n-I) 
and, consequently, 

(4.8) E sup IllQ (8:) - g;lZp - 
s < t  

c const ( ( E  sup 11:14p+ 1)'" ( ( E C O ~  (n-' , t)4~)-112 + (n-1)23} 
s$t 

< Const ((ln n)/nlp. 

Therefore, in view of (4.3) to complete the proof of (4.4) it is sufficient to show 
that for every P E N  

(4.9) E sup IXi -Lfp (z)Izp < O (((ln n)/n)'), t s R+.  
s $ t  

To prove this, we first observe that, by (2.4) and (4.11, 

E sup lz - flQ ( ~ ) l Z p  
s s t  

< c 2 p  E {[ 5 (D (X:-)- CJ (2-)) dwn]f + [I (b (X:-) - b ( 2 - ) ) d e : ] 7 >  
0 0 

8 t 

< const E {sup ~ j ( r ( ~ - ) - a ( ~ - ) ) d ~ ~ ~ I ~ ~ + ~ s u ~  1 ~ -  -2-lZpds) 
s d t  0 0 u d s  

Hence, by (4.8), 

E sup IE -nQ (R)lZp < Const IR: - n (2)l2p ds 
s sr 

which leads to (4.9) by Gronwall's lemma. EI 

For the Euler-Peano scheme (z, K?J = ((X,, 0) and for t E [k/n , (k + l)/n] 
(Xn, P) is a solution to the Skorokhod problem associated with 

%/n + a ( Z / n )  (K - K/n) + b ( G / n )  f t - k/n). 
THEOREM 4.2. Assume that (4.1) holds and let (X, K) be a strong solution to 

the SDE (1.5). Then for euery PEN 
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If additionally a(x) = a for all x E ( W + ) ~ ,  then 

(4.1 1) EIX"-X~~=O((~-')~/~), teW+. 
B r o o f. Since (Xn, K")s a solution to the Skorokhod problem associated 

with Y" given by 

from (2.4) we conclude that 
t 

E sup (X," -X,12p 4 Const (j E sup (X",XX,J2P ds 
sSt 0 u Q s  

B 

-k E sup J ( ] l ~  (Qf)(12P I W.,"" - WUIZP f (b (x>!")lZp (U d16). 
sQ! 0 

By (4.1) and Holder's inequality the last term in bounded by 

Therefore (4.10) follows from (4.5) and Gronwall's lemma. The proof of (4.11) is 
similar, the only difference being in the use of (2.16) instead of (2.4). R 

From Theorem 4.2 and the Markov inequality it follows immediately that 
for each t € R +  

(4.12) (&sup (z - Xs1), is bounded in probability 
s Q t  

and 

(4.13) {& IXn is bounded in probability, 

provided that a(x) = a. Let us remark, however, that (4.12) and (4.13) may be 
also deduced from Theorem 3.4, because for i ,  j = 1, . . ., d the sequence 
(&lb (E- ,l Wei) dw;), satisfies (UT) (see, rg., [25], p. 42) and the se- 
quence {& Ji Ix- - w!?'[ d ~ ) , , ~  is bounded in probability. 

Let Z be an (st)-adapted semimartingale of the form 

where J, = CsQ, AZ, lIldzsl, t E R+, M is a locally square-integrable martin- 
gale with M,, = 0 and V is a predictable process with locally bounded variatioli 
and vo = 0. 
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LEMMA 5.1. Assume that X and H are (&)-adapted processes. 
(i) If for every t ER+ 

S 

SUP IXSI < sup Ij X ,  dz*I +sup \ & I ,  
s4t  s < t  0 sdt  

then there is a universal constant C (depending only on d )  such that for euery 
E, q, d > 0 and for every (PJ-stopping time a 

~(supIX,I 3 E) < P(supIHtl 3 q)+B(Ba >, 6 ) + ~ - ~ q ~ e x p ( 6 ( 1 + 6 ) C ) ,  
i 6 m  t<a - 

where B, = [M],+(M),+JJ)t+JVIt, t€Rf .  
(ii) If Z is a process with locally bounded variation and for every t ER' 

then for every E ,  q ,  9 > 0 and for every (%)-stopping time a 

P(lXlo 2- E )  < 9'(supJHt1 2 q)+P(JZI, 3 6 ) + ~ - l  q e x p { ~ ) .  
t 4 a  

P r o  of. Define z = inf{t; S or sup,<, IH,[ 2 q ) .  Then 

P(sup (X,I 2 E) G P(sup]Htl 2- q ) + 9 ( B ,  B 6)+9(sup lXtl 2 E ,  5 > 6). 
t$o t$a tda  

By Chebyshev's inequality the last term on the right-hand side is bounded by 
- 

E On the other hand, for every (&)-stopping time y 

t 

sup b 2 {sup IH:-12 + SUP 11 x.- dzSl2) 
t < Y  t < Y  t < y n r  0 

t t 

G 2v2+6cl(d)(6 SUP fIX,"-12dlJ[,+6 SUP flXs-12dlVls) 
t < y ~ r  0 t c y n z  0 

t 

+ 6  sup I J X , - ~ M , [ '  
t < y ~ ~  0 

for some Cl (d )  depending only on d, and, by Doob's type inequality proved 
in C181, 

t (7 AT)-- 

sup 1 ) " ~ ~ -  dMSI2 9 C,(d)E j 1x8- l 2  d(LM1s + <M>J- 
t c y n r  0 0 

Hence E~up,,,lX'-(~ < 2q2+~. (d ) ( l+6)~J ; -  sup..,lX:12dE-. Therefore, 
applying Lemma 3 of [23] gives 

E sup IX;-I2 < 2q2 exp 16 (1 + 6) C3 (43, 
t 

and the proof of (i) is complete. The proof of (ii) is similar, so we omit it. FA 



Approximatiom of solutions oj  SDE's 47 

For n . ~  N let Z* be an (99-adapted semimartingale. Fallowing Stricker [27] 
we say that {Z") satisfies (UT) if for every q~ Rt the family of random variables 

{ j Ut dZ,";  EN, U"E U:) is bounded in probability, 
10.41 

where U: is the class of discrete predictable processes of the form 
k 

where 0 = to < t1 < . . . < t, = q, U: is SFz-measurable and (U;( <J for every 
i E N  u {O), n E N ,  k E N .  Some sdficient conditions for (UT) and some examples 
of its applications can be found in Jakubowski et al. [Ill, Kurtz and Protter 
1131, [14], M6min and Slomihki [17] and Slomiliski [23], f25J. 

Remark 5.2. (i) Let Z be an (FJ-adapted semimartingale and let Zen be 
a discretization of Z adapted to the discrete filtration ge", n E M .  Then by the 
famous theorem of Bichteler, Dellacherie and Mokobodski (see e.g. [3], Theo- 
rem 2.5) it follows that {Zen} satisfies (UT). 

(ii) In [I71 it was proved that a sequence of semimartingales {Zn) of the form 
Z=G+J;I+W+v, t € R f ,  satisfies (UT) if and only ifsup,JZ$l< +a and 
the families (1 PI,; n EN), ([Mn],; n E N )  and ( j  VI,R ; n E N) are bounded in prob- 
ability, t E Wf. From this one can deduce in particular that if {Zn} is a sequence 
of semimartingales satisfying (UT) and {Hn) is a sequence of predictable 
processes such that (sup,,,JH,"[;  EN) is bounded in probability, then the 
sequence of stochastic integrals (Ji H:dZ,"} satisfies (UT) as well. 

LEMMA 5.3. Let 0 be a Lipschitz continuous function and for  EN let 
Zn, X", p, H" be (F:)-adapted processes such that 

(respectively, a, ]Xn -*I, < C 11 cl, (f (x-) - f (2-)) d z $  + an sup IEj, t E R + )  
0 s,t 

for some sequence (an) c R'. If (2") satisJies (UT) (respectively, (IZn(,; n E N )  is 
bounded in probability for t E R '), thenfor every t E R + the following implications 
hold true: 

(i) if an sup,,, lH,"( +, 0, then also 

an sup IX: - $0 (respectively, a,, IXn - %I, 20); 
,st 

(ii) $ (a, sup,,, ]El; n EN} is bounded in probability, then also 

(a, suplX,"-El; n E N) is bounded in probability 
s<t  

(respectively, (a, lXn - fn l t ;  n E N )  is bounded in probability). 
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Proof. By Remark 5.2 (ii), (2") satisfies (LIT) if and only if 

{B: = [Ma],  + {Mn>, + lJnl, + 1 VnIt) is bounded in probability, 

so the required results follow from Lemma 5.1. rr 
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