ON THE SEQUENCES WHOSE CONDITIONAL EXPECTATIONS CAN APPROXIMATE ANY RANDOM VARIABLE

BY

KRZYSZTOF KANIOWSKI (LODŹ)

Abstract. Let (Ω, \mathfrak{F}, P) be a non-atomic probability space. For a given sequence $\left(X_{n}\right)$ of random variables we indicate a number of conditions which imply that for any random variable Y there exists a sequence $\left(\mathfrak{A}_{n}\right)$ of σ-fields satisfying $E\left(X_{n} \mid \mathfrak{A}_{n}\right) \rightarrow Y$ a.s. In particular, we formulate a sufficient condition using the distributions of X_{n} 's only.

2000 Mathematics Subject Classification: 60A10.
Key words and phrases: Conditional expectation, almost sure convergence.

1. INTRODUCTION

Let (Ω, \mathcal{F}, P) be a non-atomic probability space. In this paper we discuss sequences $\left(X_{n}\right)$ of integrable random variables with

$$
\begin{equation*}
E X_{n}^{+} \rightarrow \infty, \quad E X_{n}^{-} \rightarrow \infty \tag{1}
\end{equation*}
$$

We wish to investigate under which assumptions on $\left(X_{n}\right)$ the following conclusion holds:
(α) For any random variable Y there exists a sequence $\left(\mathfrak{A}_{n}\right)$ of σ-fields satisfying

$$
\boldsymbol{E}\left(X_{n} \mid \mathfrak{A}_{n}\right) \rightarrow Y \text { a.s. }
$$

The following theorems have been proved in the previous paper [2]:
Theorem 1.1. Let $\left(X_{n}\right)$ be a sequence of random variables satisfying the following conditions:

$$
\lim _{n \rightarrow \infty} X_{n}=0 \text { a.s. }
$$

and

$$
\lim _{n \rightarrow \infty} E X_{n}^{+}=\lim _{n \rightarrow \infty} E X_{n}^{-}=\infty
$$

Then for any random variable Y there exists a sequence $\left(\mathfrak{A}_{n}\right)$ of σ-fields such that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n} \mid \mathfrak{Q}_{n}\right)=Y \text { a.s. }
$$

Theorem 1.2. Let $\left(X_{n}\right)$ be a sequence of random variables satisfying the following conditions:

$$
\lim _{n \rightarrow \infty} X_{n}=0 \text { a.s. and } \quad \lim _{n \rightarrow \infty} E X_{n}^{+}=\infty
$$

Then for any nonnegative random variable Y there exists a sequence $\left(\mathfrak{A}_{n}\right)$ of σ-fields such that

$$
\lim _{n \rightarrow \infty} E\left(X_{n} \mid \mathfrak{Q}_{n}\right)=Y \text { a.s. }
$$

In this paper we give much weaker assumptions on $\left(X_{n}\right)$ which are sufficient for (α) to be satisfied. In Theorem 3.2 we indicate a sufficient condition using the distributions of X_{n} 's only. A technical lemma on the approximation of simple random variables is proved in Section 2. The main results are stated and proved in Section 3. A number of examples collected in Section 4 show that the requirements on (X_{n}), formulated in Theorems 1.1, 1.2, 3.1 and 3.3, are not particularly restrictive.

2. THE APPROXIMATION OF SIMPLE RANDOM VARIABLES

Throughout the paper any simple random variable Y of the form $Y=\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{A_{i}}$ will be supposed to satisfy the following conditions:

$$
A_{i} \cap A_{j}=\emptyset \text { for } i \neq j \quad \text { and } \quad \bigcup_{i=1}^{n} A_{i}=\Omega
$$

The following lemma is crucial for our purposes.
Lemma 2.1. Let X be an integrable random variable. For any simple random variable Y of the form

$$
Y=\sum_{i=1}^{k} \alpha_{i} \mathbb{1}_{A_{i}}+\beta 1_{B}, \quad \varnothing \mp B \mp \Omega
$$

satisfying
(2) $\sum_{i=1}^{k}\left|\alpha_{i}\right| P\left(A_{i}\right)+\max _{i=1, \ldots, k}\left|\alpha_{i}\right| P(B)$

$$
\leqslant \min \left\{E X^{+} \mathbf{1}_{B}-\boldsymbol{E} X^{-} \mathbf{1}_{B^{c}}, \boldsymbol{E} X^{-} \mathbf{1}_{B}-\boldsymbol{E} X^{+} \mathbf{1}_{B^{c}}\right\}
$$

there exists a σ-field \mathfrak{A} such that

$$
\boldsymbol{E}(X \mid \mathfrak{A})(\omega)=Y(\omega) \text { a.s. for } \omega \in B^{c} .
$$

Proof. Let us divide the set $\{1,2, \ldots, k\}$ into subsets $\left\{i_{1}, \ldots, i_{m}\right\}$ and $\left\{j_{1}, \ldots, j_{n}\right\}$ such that

$$
\begin{equation*}
E X 1_{A_{i_{s}}}-\alpha_{i_{s}} P\left(A_{i_{s}}\right) \leqslant 0 \quad \text { for } s=1, \ldots, m \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
E X 1_{A_{j_{s}}}-\alpha_{j_{s}} P\left(A_{j_{s}}\right)>0 \quad \text { for } s=1, \ldots, n \tag{4}
\end{equation*}
$$

Let Z be a random variable uniformly distributed on $[0,1]$ (such a random variable exists since (Ω, \mathcal{F}, P) is a non-atomic probability space).

Set

$$
B^{+}=B \cap\{X>0\}, \quad B^{-}=B \cap\{X<0\} .
$$

For $t \in[0,1]$ we put

$$
T_{1}(t)=E X 1_{A_{i_{1}} \cup\left[B^{+} \cap Z^{-1}[0, t)\right]}-\alpha_{i_{1}} P\left(A_{i_{1}} \cup\left[B^{+} \cap Z^{-1}[0, t)\right]\right) .
$$

For the values $T_{1}(0)$ and $T_{1}(1)$ we have the following estimation:

$$
T_{1}(0)=E X 1_{A_{i_{1}}}-\alpha_{i_{1}} P\left(A_{i_{1}}\right) \leqslant 0
$$

and, by (2),

$$
\begin{aligned}
T_{1}(1) & =E X \mathbb{1}_{A_{i_{1}}}-\alpha_{i_{1}} P\left(A_{i_{1}} \cup B^{+}\right)+E X^{+} \mathbb{1}_{B} \\
& \geqslant E X \mathbb{1}_{A_{i_{1}}}-\alpha_{i_{1}} P\left(A_{i_{1}} \cup B^{+}\right)+E X^{-} \mathbb{1}_{A_{i_{1}}}+\left|\alpha_{i_{1}}\right| P\left(A_{i_{1}} \cup B^{+}\right) \\
& \geqslant E\left(X+X^{-}\right) \mathbb{1}_{A_{i_{1}}}+\left(\left|\alpha_{i_{1}}\right|-\alpha_{i_{1}}\right) P\left(A_{i_{1}} \cup B^{+}\right) \geqslant 0 .
\end{aligned}
$$

Since T_{1} is a continuous function, there exists $t_{1} \in[0,1]$ such that

$$
T_{1}\left(t_{1}\right)=0
$$

or

$$
\begin{equation*}
E X \mathbb{1}_{A_{i_{1}} \cup\left[B^{+} \cap Z^{-1}\left[0, t_{1}\right)\right]}=\alpha_{i_{1}} P\left(A_{i_{1}} \cup\left[B^{+} \cap Z^{-1}\left[0, t_{1}\right)\right]\right) . \tag{5}
\end{equation*}
$$

Let us observe that, by (2) and (5),

$$
\begin{align*}
& \boldsymbol{E} X \mathbb{1}_{B^{+} \cap Z^{-1}\left[t_{1}, 1\right)}=\boldsymbol{E} X \mathbb{1}_{B^{+}}-\boldsymbol{E} X \mathbb{1}_{A_{i_{1} \cup\left[B^{+} \cap Z^{-1}\left[0, t_{1}\right)\right]}+\boldsymbol{E} X \mathbb{1}_{A_{i_{1}}}} \tag{6}\\
& \geqslant \sum_{i=1}^{k}\left|\alpha_{i}\right| P\left(A_{i}\right)+\max _{i=1, \ldots, k}\left|\alpha_{i}\right| P(B)+\boldsymbol{E} X^{-} \mathbb{1}_{B^{c}} \\
& \quad-\alpha_{i_{1}} P\left(A_{i_{1}}\right)-\alpha_{i_{1}} P\left(B^{+} \cap Z^{-1}\left[0, t_{1}\right)\right)-\boldsymbol{E} X^{-} \mathbb{1}_{A_{i_{1}}} \\
& \geqslant \\
& \geqslant \sum_{i \neq i_{1}}\left|\alpha_{i}\right| P\left(A_{i}\right)+\boldsymbol{E} X^{-} \mathbb{1}_{i \neq i_{1}} A_{i}+\max _{i=1, \ldots, k}\left|\alpha_{i}\right|\left(P(B)-P\left(B^{+} \cap Z^{-1}\left[0, t_{1}\right)\right)\right) \\
& \geqslant \\
& \geqslant \sum_{i \neq i_{1}}\left|\alpha_{i}\right| P\left(A_{i}\right)+\boldsymbol{E} X^{-} \mathbb{1}_{i \neq A_{1}} A_{i}+\max _{i=1, \ldots, k}\left|\alpha_{i}\right| P\left(B^{+} \cap Z^{-1}\left[t_{1}, 1\right)\right) \\
& \geqslant\left|\alpha_{i_{2}}\right| P\left(A_{i_{2}}\right)+\boldsymbol{E} X^{-} \mathbb{1}_{A_{i_{2}}}+\left|\alpha_{i_{2}}\right| P\left(B^{+} \cap Z^{-1}\left[t_{1}, 1\right)\right) .
\end{align*}
$$

For $t \in\left[t_{1}, 1\right]$ we put

$$
T_{2}(t)=E X 1_{A_{i_{2}} \cup\left[B^{+} \cap Z^{-1}\left[t_{1}, t\right)\right]}-\alpha_{i_{2}} P\left(A_{i_{2}} \cup\left[B^{+} \cap Z^{-1}\left[t_{1}, t\right)\right]\right) .
$$

From (3) we get $T\left(t_{1}\right) \leqslant 0$ and, by virtue of (6),

$$
\begin{aligned}
T_{2}(1) & =E X \mathbb{1}_{A_{i_{2}}}+E X \mathbb{1}_{B^{+} \cap Z^{-1}\left[t_{1}, 1\right)}-\alpha_{i_{2}} P\left(A_{i_{2}} \cup\left[B^{+} \cap Z^{-1}\left[t_{1}, 1\right)\right]\right) \\
& \geqslant E\left(X+X^{-}\right) \mathbb{1}_{A_{i_{2}}}+\left(\left|\alpha_{i_{1}}\right|-\alpha_{i_{1}}\right) P\left(A_{i_{1}} \cup\left[B^{+} \cap Z^{-1}\left[t_{1}, 1\right)\right]\right) \geqslant 0 .
\end{aligned}
$$

Therefore there exists $t_{2} \in\left[t_{1}, 1\right]$ satisfying

$$
E X \mathbb{1}_{A_{i_{2}} \cup\left[B^{+} \cap Z^{-1}\left[t_{1}, t_{2}\right)\right]}=\alpha_{i_{2}} P\left(A_{i_{2}} \cup\left[B^{+} \cap Z^{-1}\left[t_{1}, t_{2}\right)\right]\right) .
$$

By arguments as before it can be shown that

$$
\begin{aligned}
& \boldsymbol{E X} 1_{B^{+} \cap Z^{-1}\left[t_{2}, 1\right]} \geqslant \sum_{i \notin\left\{i_{1}, i_{2}\right\}}\left|\alpha_{i}\right| P\left(A_{i}\right)+E X^{-} \underset{i \nmid\{\mid, 2,2\}}{1} \bigcup_{i=1}+\max _{i=1, \ldots, k}\left|\alpha_{i}\right| P\left(B^{+} \cap Z^{-1}\left[t_{2}, 1\right)\right) \\
& \geqslant\left|\alpha_{i_{3}}\right| P\left(A_{i_{3}}\right)+E X^{-} \mathbf{1}_{A_{i 3}}+\left|\alpha_{i_{3}}\right| P\left(B^{+} \cap Z^{-1}\left[t_{2}, 1\right)\right) .
\end{aligned}
$$

Continuing this procedure inductively we obtain real numbers $0=t_{0} \leqslant$ $\leqslant t_{1} \leqslant \ldots \leqslant t_{m} \leqslant 1$ satisfying
(7) $E X \mathbb{1}_{\left.A_{i_{s} \cup\left[B^{+}\right.} \cap Z^{-1}\left[t_{s}-1, t_{s}\right)\right]}$

$$
=\alpha_{i_{s}} P\left(A_{i_{s}} \cup\left[B^{+} \cap Z^{-1}\left[t_{s-1}, t_{s}\right)\right]\right) \quad \text { for } s=1, \ldots, m
$$

In the same manner we find real numbers $0=u_{0} \leqslant u_{1} \leqslant \ldots \leqslant u_{n} \leqslant 1$ such that
(8) $E X 1_{\left.A_{j_{s} \cup\left[B^{-}\right.} \cap Z^{-1}\left[u_{s-1}, u_{s}\right]\right]}$

$$
=\alpha_{j_{s}} P\left(A_{j_{s}} \cup\left[B^{-} \cap Z^{-1}\left[u_{s-1}, u_{s}\right)\right]\right) \quad \text { for } s=1, \ldots, n
$$

Let us put

$$
C_{s}=A_{i_{s}} \cup\left[B^{+} \cap Z^{-1}\left[t_{s-1}, t_{s}\right)\right] \quad \text { for } s=1, \ldots, m
$$

and

$$
D_{s}=A_{j_{s}} \cup\left[B^{-} \cap Z^{-1}\left[u_{s-1}, u_{s}\right)\right] \quad \text { for } s=1, \ldots, n
$$

One can easily see that the sets $C_{1}, \ldots, C_{m}, D_{1}, \ldots, D_{n}$ are mutually disjoint. We set

$$
\mathfrak{A}=\sigma\left(C_{1}, \ldots, C_{m}, D_{1}, \ldots, D_{n}\right) .
$$

Now (7) and (8) imply that

$$
E(X \mid A)(\omega)=Y(\omega) \text { a.s. for } \omega \in B^{c} .
$$

This completes the proof of Lemma 2.1.

Remark. We can easily check that

$$
\sum_{i=1}^{k}\left|\alpha_{i}\right| P\left(A_{i}\right)+\max _{i=1, \ldots, k}\left|\alpha_{i}\right| P(B) \leqslant \max _{i=1, \ldots, k}\left|\alpha_{i}\right| .
$$

Therefore the assumption (2) can be written in the following stronger form:

$$
\max _{i=1, \ldots, k}\left|\alpha_{i}\right| \leqslant \min \left\{E X^{+} \mathbf{1}_{B}-\boldsymbol{E} X^{-} \mathbb{1}_{B^{c}}, E X^{-} \mathbb{1}_{B}-\boldsymbol{E} X^{+} \mathbb{1}_{B^{c}}\right\} .
$$

3. MAIN RESULTS

Theorem 3.1. Let $\left(X_{n}\right)$ be a sequence of integrable random variables such that for some sequence of events $\left(B_{n}\right)$ we have

$$
P\left(\liminf _{n \rightarrow \infty} B_{n}^{c}\right)=1
$$

and

$$
\begin{array}{ll}
\boldsymbol{E} X_{n}^{+} \mathbb{1}_{\boldsymbol{B}_{n}}-\boldsymbol{E} X_{n}^{-} \mathbb{1}_{B_{n}^{c}} \rightarrow \infty & \text { as } n \rightarrow \infty, \tag{9}\\
\boldsymbol{E} X_{n}^{-} \mathbf{1}_{B_{n}}-\boldsymbol{E} X_{n}^{+} \mathbb{1}_{B_{n}^{c}} \rightarrow \infty & \text { as } n \rightarrow \infty .
\end{array}
$$

Then for any random variable Y there exists a sequence $\left(\mathfrak{A}_{n}\right)$ of σ-fields such that

$$
\lim _{n \rightarrow \infty} E\left(X_{n} \mid \mathfrak{Q}_{n}\right)=Y \text { a.s. }
$$

Proof. For sequences $\left(X_{n}\right)$ and $\left(B_{n}\right)$ satisfying (9) we have

$$
\min \left\{\boldsymbol{E} X_{n}^{+} \mathbb{1}_{B_{n}}-\boldsymbol{E} X_{n}^{-} \mathbb{1}_{B_{n}^{c}}, \boldsymbol{E} X_{n}^{-} \mathbb{1}_{B_{n}}-\boldsymbol{E} X_{n}^{+} \mathbb{1}_{B_{n}^{c}}\right\} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

Now let $\left(Y_{n}\right)$ be a sequence of simple random variables of the form

$$
Y_{n}=\sum_{i=1}^{k(n)} \alpha_{i}(n) \mathbf{1}_{A_{i}(n)}+\beta_{n} \mathbb{1}_{B_{n}}
$$

such that

$$
\lim _{n \rightarrow \infty} Y_{n}=Y \text { a.s. }
$$

and

$$
\max _{i=1, \ldots, k(n)}\left|\alpha_{i}(n)\right| \leqslant \min \left\{\boldsymbol{E} X_{n}^{+} \mathbb{1}_{B_{n}}-\boldsymbol{E} X_{n}^{-} \mathbb{1}_{B_{n}^{c}}, \boldsymbol{E} X_{n}^{-} \mathbb{1}_{B_{n}}-\boldsymbol{E} X_{n}^{+} \mathbb{1}_{B_{n}^{c}}\right\} .
$$

Lemma 2.1 implies now the existence of a sequence $\left(\mathfrak{U}_{n}\right)$ of σ-fields such that

$$
E\left(X_{n} \mid \mathfrak{A}_{n}\right)(\omega)=Y_{n}(\omega) \text { a.s. } \quad \text { for } \omega \in B_{n}^{c}
$$

Since $P\left(\liminf _{n \rightarrow \infty} B_{n}^{c}\right)=1$, we finally get

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n} \mid \mathfrak{A}_{n}\right)=Y \text { a.s., }
$$

which completes the proof of the theorem.
Theorem 3.2. Let $\left(p_{n}\right)$ be a sequence of probability distributions for which there exist sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ of nonnegative real numbers satisfying

$$
\sum_{n=1}^{\infty} p_{n}\left(\left(-\infty,-b_{n}\right) \cup\left(a_{n}, \infty\right)\right)<\infty
$$

and

$$
\begin{array}{ll}
\int_{\left(a_{n}, \infty\right)} x d p_{n}(x)+\int_{\left[-b_{n}, 0\right]} x d p_{n}(x) \rightarrow \infty & \text { as } n \rightarrow \infty, \\
\int_{\left(-\infty,-b_{n}\right)} x d p_{n}(x)+\int_{\left[0, a_{n}\right]} x d p_{n}(x) \rightarrow-\infty & \text { as } n \rightarrow \infty .
\end{array}
$$

Then for any sequence $\left(X_{n}\right)$ of integrable random variables such that $p_{X_{n}}=p_{n}$ and any random variable Y there exists a sequence $\left(\mathfrak{U}_{n}\right)$ of σ-fields satisfying

$$
\lim _{n \rightarrow \infty} E\left(X_{n} \mid \mathfrak{A}_{n}\right)=Y \text { a.s. }
$$

Proof. Under the assumptions of the theorem we put

$$
B_{n}=X_{n}^{-1}\left[\left(-\infty,-b_{n}\right) \cup\left(a_{n}, \infty\right)\right] .
$$

Now the conclusion follows from Theorem 3.1.
Theorem 3.1 provides quite a general condition on $\left(X_{n}\right)$ under which (α) holds, however it seems to be difficult to verify this condition. The following theorem should prove to be more useful for the applications.

Theorem 3.3. Let $\left(X_{n}\right)$ be a sequence of integrable random variables such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E X_{n}^{+}=\lim _{n \rightarrow \infty} E X_{n}^{-}=\infty \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(\left|\liminf _{n \rightarrow \infty} X_{n}\right|<\infty\right)=P\left(\left(\limsup _{n \rightarrow \infty} X_{n} \mid<\infty\right)=1\right. \tag{11}
\end{equation*}
$$

Then for any random variable Y there exists a sequence $\left(\mathfrak{A r}_{n}\right)$ of σ-fields satisfying

$$
\lim _{n \rightarrow \infty} E\left(X_{n} \mid \mathfrak{U}_{n}\right)=Y \text { a.s. }
$$

Proof. Let us put

$$
U=\underset{n \rightarrow \infty}{\limsup } X_{n} \quad \text { and } \quad L=\liminf _{n \rightarrow \infty} X_{n} .
$$

It can be easily seen that for any $\varepsilon>0$ we have

$$
\lim _{k \rightarrow \infty} P\left(\sup _{n \geqslant k} X_{n}>U+\varepsilon\right)=0
$$

and

$$
\lim _{k \rightarrow \infty} P\left(\inf _{n \geqslant k} X_{n}<L-\varepsilon\right)=0 .
$$

Now let $\left(n_{k}\right)$ be an increasing sequence of integers such that

$$
\begin{equation*}
P\left(\sup _{n \geqslant n_{k}} X_{n}>U+1\right) \leqslant 2^{-k} \quad \text { for } k=1,2, \ldots \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(\inf _{n \geqslant n_{k}} X_{n}<L-1\right) \leqslant 2^{-k} \quad \text { for } k=1,2, \ldots \tag{13}
\end{equation*}
$$

For $k=1,2, \ldots$, we put

$$
\begin{equation*}
F_{k}^{(1)}=\left\{\sup _{n \geqslant n_{k}} X_{n}>U+1\right\}, \tag{14}
\end{equation*}
$$

$$
\begin{gather*}
F_{k}^{(2)}=\left\{\inf _{n \geqslant n_{k}} X_{n}<L-1\right\}, \tag{15}\\
F_{k}=F_{k}^{(1)} \cup F_{k}^{(2)}, \\
D_{k}=\{-k \leqslant L, U \leqslant k\} . \tag{16}
\end{gather*}
$$

It is easily seen that $\left(D_{k}\right)$ is an increasing sequence. The assumption (11) implies also that

$$
\lim _{k \rightarrow \infty} P\left(D_{k}\right)=1
$$

Let us consider sets A_{k} determined as $A_{k}=D_{k} \backslash F_{k}$. From (14)-(16) we have

$$
\left|X_{n}(\omega)\right| \leqslant k+1 \quad \text { for } \omega \in A_{k}, \quad n \geqslant n_{k} .
$$

The assumption (10) implies now that

$$
\begin{equation*}
\boldsymbol{E} X_{n}^{+} \mathbf{1}_{A_{k}^{c}}-\boldsymbol{E} X_{n}^{-} \mathbb{1}_{A_{k}} \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{E} X_{n}^{-} \mathbb{1}_{A_{k}^{c}}-\boldsymbol{E} X_{n}^{+} \mathbb{1}_{A_{\boldsymbol{k}}} \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{18}
\end{equation*}
$$

By (17) and (18), there exists an increasing sequence of integers $\left(m_{k}\right)$ such that

$$
\begin{equation*}
\boldsymbol{E} X_{n}^{+} \mathbf{1}_{A_{k}^{c}}-\boldsymbol{E} X_{n}^{-} \mathbb{1}_{A_{k}} \geqslant k \quad \text { for } n \geqslant m_{k} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{E} X_{n}^{-} \mathbb{1}_{A_{k}^{c}}-\boldsymbol{E} X_{n}^{+} \mathbb{1}_{A_{k}} \geqslant k \quad \text { for } n \geqslant m_{k} \tag{20}
\end{equation*}
$$

We set $B_{n}=A_{k}$ for $m_{k} \leqslant n<m_{k+1}$. From (19) and (20) we obtain

$$
E X_{n}^{+} \mathbf{1}_{B_{n}^{c}}-\boldsymbol{E} X_{n}^{-} \mathbf{1}_{B_{n}} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

and

$$
E X_{n}^{-} \mathbb{1}_{B_{n}^{c}}-\boldsymbol{E} X_{n}^{+} \mathbb{1}_{B_{n}} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

Let us also observe that

$$
\liminf _{n \rightarrow \infty} B_{n}=\liminf _{k \rightarrow \infty} A_{k}
$$

It can be easily checked that

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} A_{k}=\left[\bigcup_{k=1}^{\infty} D_{k}\right] \backslash \limsup _{k \rightarrow \infty} F_{k} . \tag{21}
\end{equation*}
$$

From (12) and (13) we obtain

$$
P\left(\limsup _{k \rightarrow \infty} F_{k}\right)=0 .
$$

Hence (21) gives

$$
P\left(\underset{n \rightarrow \infty}{\liminf } B_{n}\right)=P\left(\underset{k \rightarrow \infty}{\liminf } A_{k}\right)=\lim _{k \rightarrow \infty} P\left(D_{k}\right)=1 .
$$

Now the conclusion of the theorem is an immediate consequence of Theorem 3.1. 日

4. EXAMPLES

It can be easily seen that if the condition (α) holds, then both $E X_{n}^{-}$and $\boldsymbol{E} X_{n}^{+}$tend to infinity when $n \rightarrow \infty$. However, as shown by our next example, the condition (1) is not sufficient for (α) to be satisfied.

Example 4.1. Let $\Omega=[0,1], \mathfrak{F}=\operatorname{Borel}([0,1])$ and P be the Lebesgue measure. By X_{n} we denote the following random variables:

$$
X_{n}=n^{2} \mathbb{1}_{[0,1 / 2]}-n \mathbb{1}_{(1 / 2,1]} \quad \text { for } n=1,2, \ldots
$$

Obviously, $\boldsymbol{E} X_{n}^{-} \rightarrow \infty$ and $\boldsymbol{E} X_{n}^{+} \rightarrow \infty$ as $n \rightarrow \infty$. We shall show that there exists no sequence $\left(\mathfrak{A}_{n}\right)$ of σ-fields for which $\boldsymbol{E}\left(X_{n} \mid \mathfrak{A}_{n}\right) \rightarrow 0$ in probability. Let
us suppose that $\left(\mathfrak{A}_{n}\right)$ is such a sequence. Then, in particular, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(E\left(X_{n} \mid \mathfrak{M}_{n}\right) \leqslant 1\right)=1 \tag{22}
\end{equation*}
$$

Denoting by C_{n} the set $\left\{\mathbb{E}\left(X_{n} \mid \mathfrak{U}_{n}\right) \leqslant 1\right\}$, we get

$$
1 \geqslant \int_{C_{n}} \boldsymbol{E}\left(X_{n} \mid \mathfrak{H}_{n}\right)=\int_{C_{n}} X_{n}=n^{2} \lambda\left(C_{n} \cap\left[0, \frac{1}{2}\right]\right)-n \lambda\left(C_{n} \cap\left(\frac{1}{2}, 1\right]\right) .
$$

Therefore

$$
\lambda\left(C_{n} \cap\left[0, \frac{1}{2}\right]\right) \leqslant \frac{1}{n^{2}}+\frac{1}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty,
$$

which contradicts (22).
Now we present several examples of sequences for which the condition (α) holds. In each case we can use one of the proved theorems.

Example 4.2. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences of real numbers satisfying:

$$
\begin{gathered}
a_{n}>0, n=1,2, \ldots, \quad p_{n} \in[0,1], n=1,2, \ldots \\
\lim _{n \rightarrow \infty} \prod_{i=1}^{n} p_{i}=0, \quad \lim _{n \rightarrow \infty} \prod_{i=1}^{n} a_{i} p_{i}=\infty .
\end{gathered}
$$

For a sequence $\left(Z_{n}\right)$ of independent random variables satisfying

$$
P\left(Z_{i}=a_{i}\right)=1-P\left(Z_{i}=0\right)=p_{i}
$$

we put

$$
X_{n}=\prod_{i=1}^{n} Z_{i} .
$$

It is easily seen that

$$
\lim _{n \rightarrow \infty} X_{n}=0 \text { a.s. and } \lim _{n \rightarrow \infty} E X_{n}=\infty
$$

Thus Theorem 1.2 can be applied.
Example 4.3. Let $\left(Z_{n}\right)$ be a sequence of independent random variables such that

$$
P\left(Z_{i} \in\left[-2^{-i}, 2^{-i}\right]\right)=1-2^{-i} \quad \text { for } i=1,2, \ldots
$$

and

$$
P\left(Z_{i}=4^{i^{2}}\right)=P\left(Z_{i}=-4^{i^{2}}\right)=2^{-i-1} \quad \text { for } i=1,2, \ldots
$$

From the Borel-Cantelli lemma we deduce the almost sure convergence of the
sequence $X_{n}=\sum_{i=1}^{n} Z_{i}, n=1,2, \ldots$ Moreover,

$$
\begin{aligned}
\boldsymbol{E} X_{n}^{-} & =\boldsymbol{E} X_{n}^{+} \geqslant \boldsymbol{E} X_{n} \mathbb{1}_{\left\{Z_{i}=4^{i 2}: i=1,2, \ldots, n\right\}} \\
& =\left(4^{1^{2}}+4^{2^{2}}+\ldots+4^{n^{2}}\right) \cdot 2^{-2} \cdot 2^{-3} \cdot \ldots \cdot 2^{-n-1} \rightarrow \infty \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

In this case we can apply Theorem 3.3.
In the next example we shall use the following lemma:
Lemma 4.4. Let $\left(p_{n}\right)$ be a sequence of probability distributions on the real line weakly convergent to a probability distribution p satisfying

$$
\int_{0}^{\infty} t p(d t)=-\int_{-\infty}^{0} t p(d t)=\infty .
$$

Then

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} t p_{n}(d t)=-\lim _{n \rightarrow \infty} \int_{-\infty}^{0} t p_{n}(d t)=\infty
$$

Proof. For $t \in \boldsymbol{R}$ and $M \geqslant 1$ we put

$$
f(t)=t \mathbb{1}_{(0, M]}+M \mathbb{1}_{(M, \infty)} .
$$

We have

$$
\int_{0}^{\infty} t p_{n}(d t) \geqslant \int_{0}^{\infty} f(t) p_{n}(d t) .
$$

Since

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} f(t) p_{n}(d t)=\int_{(0, M]} t p(d t)+M p((M, \infty))
$$

and

$$
\lim _{M \rightarrow \infty} \int_{(0, M]} t p(d t)=\int_{0}^{\infty} t p(d t)=\infty
$$

one can easily deduce that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} t p_{n}(d t)=\infty
$$

Similarly we show that

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{0} t p_{n}(d t)=-\infty
$$

This completes the proof of the lemma.
Example 4.5. Let $\left(X_{n}\right)$ be a sequence of integrable random variables convergent with probability one to a random variable X, such that

$$
\boldsymbol{E} X^{+}=\boldsymbol{E} X^{-}=\infty
$$

Lemma 4.4 implies that

$$
\lim _{n \rightarrow \infty} \boldsymbol{E} X_{n}^{+}=\lim _{n \rightarrow \infty} \boldsymbol{E} \boldsymbol{X}_{n}^{-}=\infty
$$

Obviously,

$$
P\left(\left|\liminf _{n \rightarrow \infty} X_{n}\right|<\infty\right)=P\left(\left|\limsup _{n \rightarrow \infty} X_{n}\right|<\infty\right)=1 .
$$

Thus (X_{n}) satisfies the assumptions of Theorem 3.3.
Example 4.6. Let $\left(Z_{n}\right)$ be a sequence of i.i.d. random variables such that $E Z_{1}=0, D^{2} Z_{1}>0$ and $E\left(\exp Z_{1}\right)<\infty$. For

$$
a \in\left(\frac{1}{E\left(\exp Z_{1}\right)}, 1\right)
$$

we put

$$
X_{n}=a^{n} \exp \left(\sum_{i=1}^{n} Z_{i}\right) \quad \text { for } n=1,2, \ldots
$$

We have

$$
\ln X_{n}=\sum_{i=1}^{n} Z_{i}+n \ln a=n\left(\frac{\sum_{i=1}^{n} Z_{i}}{n}+\ln a\right) \rightarrow-\infty \text { a.s. } \quad \text { as } n \rightarrow \infty .
$$

Hence

$$
\lim _{n \rightarrow \infty} X_{n}=0 \text { a.s. }
$$

and, moreover,

$$
E X_{n}=\left(a E\left(\exp Z_{1}\right)\right)^{n} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

To conclude that the sequence $\left(X_{n}\right)$ satisfies (α) we can apply now Theorem 1.2.
Example 4.7. Let Z be a symmetric random variable with absolutely continuous distribution and such that $E e^{n Z}<\infty$ for $n=1,2, \ldots$ For $t \in \boldsymbol{R}$ we put

$$
f_{n}(t)=e^{n t} \mathbf{1}_{[0, \infty)}(t)-e^{-n t} \mathbb{1}_{(-\infty, 0)}(t) \quad \text { for } n=1,2, \ldots
$$

Let us consider random variables $X_{n}=f_{n}(Z)$ for $n=1,2, \ldots$ We shall show that the sequence $\left(X_{n}\right)$ satisfies the assumptions of Theorem 3.1. Let us put

$$
S=\operatorname{ess} \sup Z=-\operatorname{ess} \inf Z
$$

Let $\left(a_{n}\right)$ be an increasing sequence of positive real numbers satisfying

$$
0<a_{n}<S \text { for } n=1,2, \ldots \quad \text { and } \quad \lim _{n \rightarrow \infty} a_{n}=S
$$

For $n=1,2, \ldots$ we put

$$
A_{n}=\left\{\omega: Z(\omega) \in\left(-a_{n}, a_{n}\right)\right\} .
$$

Fix $n \geqslant 1$ and $\varepsilon \in\left(0, S-a_{n}\right)$. We have
$\boldsymbol{E} X_{k}^{+} \mathbb{1}_{A_{n}^{c}}-\boldsymbol{E} X_{k}^{-} \mathbb{1}_{A_{n}} \geqslant \exp \left(k\left(a_{n}+\varepsilon\right)\right) P\left(Z>a_{n}+\varepsilon\right)-\exp \left(k a_{n}\right) \rightarrow \infty \quad$ as $k \rightarrow \infty$.
In the same way we show that

$$
\boldsymbol{E} X_{k}^{-} \mathbb{1}_{A_{n}^{c}}-\boldsymbol{E} X_{k}^{+} \mathbb{1}_{A_{n}} \rightarrow \infty \quad \text { as } k \rightarrow \infty
$$

We can therefore choose an increasing sequence (k_{i}) of integers such that for $k \geqslant k_{i}$ we have

$$
\boldsymbol{E} X_{k}^{+} \mathbb{1}_{A_{i}^{c}}-\boldsymbol{E} X_{k}^{-} \mathbb{1}_{A_{i}} \geqslant i \quad \text { and } \quad \boldsymbol{E} X_{k}^{-} \mathbb{1}_{A_{i}^{c}}-\boldsymbol{E} X_{k}^{+} \mathbb{1}_{A_{i}} \geqslant i .
$$

Finally, we put $B_{n}=A_{i}$ for $k_{i} \leqslant k<k_{i+1}$. Now it can be easily seen that $P\left(\lim \sup B_{n}^{c}\right)=0$
and

$$
\begin{array}{ll}
\boldsymbol{E} X_{n}^{+} \mathbf{1}_{B_{n}^{c}}-\boldsymbol{E} X_{n}^{-} \mathbf{1}_{B_{n}} \rightarrow \infty & \text { as } n \rightarrow \infty, \\
\boldsymbol{E} X_{n}^{-} \mathbf{1}_{B_{n}^{c}}-\boldsymbol{E} X_{n}^{+} \mathbf{1}_{B_{n}} \rightarrow \infty & \text { as } n \rightarrow \infty .
\end{array}
$$

Finally, we conclude that the sequence (X_{n}) satisfies the assumptions of Theorem 3.1.

REFERENCES

[1] P. Billingsley, Probability and Measure, Wiley, New York, Chichester, 1979.
[2] K. Kaniowski, On the approximation of a random variable by a conditioning of a given sequence, Probab. Math. Statist. 21 (2001), pp. 321-328.

Faculty of Mathematics
University of Łódź
Banacha 22
90-238 Łódź, Poland
E-mail: kanio@math.uni.lodz.pl

