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ON THE SEQUENCES WHOSE CONDITIONAL EXPECTATIONS
CAN APPROXIMATE ANY RANDOM VARIABLE

BY -
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Abstract. Let (2, &, P) be a non-atomic probability space. For
a given sequence (X,) of random variables we indicate a number of
conditions which imply that for any random variable Y there exists
a sequence (U,) of o-fields satisfying E (X, | 2,)— Y a.s. In particular,
we formulate a sufficient condition using the distributions of X,’s only.
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1. INTRODUCTION

Let (Q, &, P) be a non-atomic probability space. In this paper we discuss
sequences (X,) of integrable random variables with
1) EX - o, EX, - .
We wish to investigate under which assumptions on (X,) the following con-
clusion holds:

(o) For any random variable Y there exists a sequence (U,) of a-fields satis-

fying
EX,|UA)—-Y as.

The following theorems have been proved in the previous paper [2]:

TurorREM 1.1. Let (X,) be a sequence of random variables satisfying the
following conditions:

lim X, =0 a.s.

n- o
and

lim EX;} = lim EX, = o0.

n—+aw n—>w
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Then for any random variable Y there exists a sequence (U,) of o-fields such that

lim E(X,|A,)=7Y as.
THeEOREM 1.2, Let (X,) be a sequence of random variables satisfying the
Jollowing conditions:
limX,=0as. and limEX] = 0.
y—foo n—o
Then for any nonnegative random variable Y there exists a sequence (U,) of
o-fields such that
lim E(X,|W,)=7Y as.
n—+w
In this paper we give much weaker assumptions on (X,) which are suf-
ficient for (o) to be satisfied. In Theorem 3.2 we indicate a sufficient condition
using the distributions of X,’s only. A technical lemma on the approximation
of simple random variables is proved in Section 2. The main results are stated
and proved in Section 3. A number of examples collected in Section 4 show
that the requirements on (X,), formulated in Theorems 1.1, 1.2, 3.1 and 3.3, are
not particularly restrictive.

2. THE APPROXIMATION OF SIMPLE RANDOM VARIABLES

Throughout the paper any simple random variable Y of the form
Y= Z:=1ai 1,4, will be supposed to satisfy the following conditions:

AinA;=@ for i#j and |)A;=20.

The following lemma is crucial for our purposes.

LemMmA 2.1. Let X be an integrable random variable. For any simple ran-
dom variable Y of the form

K
Y= 1,+pl;, OEBEQ,
i=1

satisfying
k
@ 3 I P(A)+ max |z P(B)

i=1 =l
<min {EX*13—EX 15, EX™ 1;—EX* 13}
there exists a o-field W such that

EX|W(w)=Y(w) as. for wmeB
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Proof. Let us divide the set {1, 2,..., k} into subsets {ij, ..., i} and
{j1>---»jn} such that

3 EX1,, —o,P(4;,) <0 fors=1,...m
and
“) EX1, —a; P(4;)>0 fors=1,...,n

Let Z be a random variable uniformly distributed on [0, 1] (such a random
variable exists since (Q, &, P) is a non-atomic probability space).
Set : ~
B*=Bn{X>0}, B =Bn{X <0}

For te[0, 1] we put

Ty (t) = EX14, g+ nz-110un—%, P(4;, W [B* nZ71[0, 1)]).
For the values 7;(0) and T;(1) we have the following estimation:

' Ty(0) = EX1,, —o;, P(4,) <0

and, by (2),

Ty(1) = EX1,, — o, P(4;, UB*)+EX "1,

> EX1,, —o;, P(4;, UB")+EX~ 14, +|o;,| P(4;, U B™)

> E(X+X7)1,, + (o] —o;) P(A;, WBT) 2 0.

Since T; is a continuous function, there exists t; €[0, 1] such that

Ti(t)=0
or

(5) EX1A11U[B+{'\Z_1[0,t1)] = “i1 .P(x‘lil U [B+ﬂ Z__1 [O, tl)])
Let us observe that, by (2) and (5),

(6) EXlBth‘i[n,l) - EXIB+ _‘EXIAMU[B"T\Z_1[0.1‘1)]+EX1Ai1

k

=)

i=1 T Ly

> Y |l P(A)+EX ™ 1) 4+ max |of(P(B)—P(B* nZ7[0, t,)))
i#i i=1 k

i, 0 wFh a=la

> Y | P(A)+EX 1 4+ max |af P(B* nZ ™ [1;, 1))
i%i i#1y i=1,..., k

2 |o,| P(A,)+ EX ™ 14, + o, | P(BYNZ7 [14, 1)).
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For te[t,, 11 we put.
T, (t) = EX14,,018+ nz- g0 — %, P (i, O [BT 0 Z7 1 [ty 1)]).
From (3) we get T'(t;) <0 and, by virtue of (6),
T,(1) = EX1,, +EX1p+nz- 1, 1y— 0, P(A;, O [BT N Z7 114, 1)])
2 EX+X7)1,, +(o,l—0;,) P(4;, 0[BT nZ7 1y, 1)]) 2 0.
Therefore there exists t,e[t;, 1] satisfying -
EX1,4, s+ nz- ey = %, P(Ai, O [BY N Z7 1 [14, t5)]).
By arguments as before it can be shown that ‘

E-X]-B'*nl‘l[tz,l] ,>.— Z Ioc,|P(A,)+EX_ 1 U Ai+ max |a,-|P(B+('\Z_1 [tz, 1))
1¢{iy, 12} igfiniz) i=1,...k

2 |oi,| P(Ai)+ EX 14, +|oi,| P(B*nZ 71 15, 1)).
Continuing this procedure inductively we obtain real numbers 0 =1, <
<t £...<t, <1 satisfying
(1) EX14,018% 0z~ 11te-1.1)
=, P(A,V[B*NZ ' [t,-q,8)]) fors=1,..., m.
In the same manner we find real numbers 0 = 4y < u#; <... < u, < 1 such that
®) EX 1A,~,u[n- NZ~ g 1,ug)]
=o; P(A;, U[B"nZ ' [us—y,u)]) fors=1,..,n.
Let us put
Ci=A,V[B*nZ ' [t,_y,t)] fors=1,...m
and
Dy=A; U[B nZ '[us_y,u)] fors=1,..,n

One can easily see that the sets Cy, ..., C,, Dy, ..., D, are mutually disjoint.
We set

» Q[=O'(Cl,..., Cms Dl""bDn)'
Now (7) and (8) imply that
EX|A)(w)=Y(w) as. for webB.

This completes the proof of Lemma 2.1. =



Conditional expectations 119

Remark. We can easily check that

i=1,...,

3. MAIN RESULTS =

TuEOREM 3.1. Let (X,) be a sequence of integrable random variables such
that for some sequence of events (B,) we have

P(liminf BS) = 1
and
o) EX; 15 —EX, 130 >0 as n— oo,

EX; ]'Bn_EX: 13;."—)@) as n— 0.
Then for any random variable Y there exists a sequence (N,) of o-fields such that

lim E(X,|2,) =Y as.

n—+w

Proof. For sequences (X,) and (B,) satisfying (9) we have
min {EX;} 15,—EX; 1, EX; 15, —EX; 1:} > 00 as n—> 0.

Now let (Y,) be a sequence of simple random variables of the form

k(n)

Y, = Z o (1) 141{H)+ﬁn 1z,
- i=1
such that
IimY, =Y as.
and

max |o;(n)| < min {EX,} 15, —EX, 15, EX, 15, —EX, 15}
1,.0,k(m) " "

Lemma 2.1 implies now the existence of a sequence (%,) of o-fields such that

EX, %) (@) = Y,(w) as. for weB;.
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Since P(liminf,. B} =1, we finally get
lim E(X,|%,) =Y as.,

n—oo

which completes the proof of the theorem. m

THEOREM 3.2. Let (p,) be a sequence of probability distributions for which
there exist sequences (a,) and (b,) of nonnegative real numbers satisfying

s

Pu((— 0, —bp) U (@, 0)) < 0 -

n=1

and ]
{ xdp,(x)+ [ xdp,(x) >0 as n— o0,
(@n,0) [~ bn0]

[ xdp,(x)+ | xdp,(x)—> —c0 as n— .
(— @, = bn) [0:ax]

Then for any sequence (X,) of integrable random variables such that px, = p, and
any random variable Y there exists a sequence (W,) of o-fields satisfying

lim E(X,|U,)=7Y as.

Proof. Under the assumptions of the theorem we put
B,= Xn_l [(_"OO’ -—bn)U(d,,, OO)]

Now the conclusion follows from Theorem 3.1. &

Theorem 3.1 provides quite a general condition on (X,) under which (o)
holds, however it seems to be difficult to verify this condition. The following
theorem should prove to be more useful for the applications.

THEOREM 3.3. Let (X,) be a sequence of integrable random variables such

" that

(10) lim EX} = lim EX; = oo

and -

(11) P (liminf X,| < co) = P(lim sup X, < o0) = 1.

Then for any random variable Y there exists a sequence (W,) of o-fields satisfying

lim E(X,,|UW,)=7Y as.

n— oo
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Proof. Let us put
U=IlimsupX, and L=IliminfX,.

It can be easily seen that for any £ > 0 we have

lim P(sup X, > U+¢) =0
Zk

k— oo n

and

lim P(inf X, < L—¢) = 0. -

k=0 n=k

Now let (1) be an increasing sequence of integers such that

12) PsupX,>U+1)<2% fork=1,2,...
and
(13) P(inf X, <L-1)<2™* fork=1,2,...

For k=1,2,..., we put

(14) F{ = {sup X, > U+1},
(15) FP = {inf X, < L—1},
Fu= Fi U PP,

It is easily seen that (D,) is an increasing’ sequence. The assumption (11) implies
also that °

lim P(D,) = 1.
k=

Let us consider sets 4, determined as 4, = D,\F;. From (14)(16) we have
IX,(@) <k+1 for weA,, n-> .

The assumption (10) implies now that

@17 EX,TlAi—EX,,‘lAkaoo as n— o

and

(18) EX; 1,,—EX, 1, -0 asn- oo,
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By (17) and (18), there exists an increasing sequence of integers (m;) such that

(19) EX 14—EX 1,2k fornzm
and
(20) EX, 1, —EX/1, 2k for n>m.

We set B, = A, for my < n <m,,. From (19) and (20) we obtain
EX 1p.—EX 15 >0 asn—o

and
EX,  1p.—EX 15 -0 asn—o0. .

Let us also observe that

liminf B, = liminf A4,.

n—+o k=0

It can be easily checked that

(21) liminf 4, = [ |} D¢]\lim sup F.
k= k=0

k=1

From (12) and (13) we obtain
P(liﬁsgp F))=0.
Hence (21) gives
P(ligglan) = Paiﬁioank) = klinl P(Dy=1.

Now the conclusion of the theorem is an immediate consequence of Theo-
rem 3.1. =

4. EXAMPLES

It can be easily seen that if the condition («) holds, then both EX, and
EX,! tend to infinity when n — co. However, as shown by our next example,
the condition (1) is not sufficient for (o) to be satisfied.

ExampLE 4.1. Let Q = [0, 1], & = Borel ([0, 1]) and P be the Lebesgue
measure. By X, we denote the following random variables:

2
X" =n 1[0'1/2]_711(1/2,1] for n= 1, 2, ea

Obviously, EX, — oo and EX, —» o0 as n— oo. We shall show that there
exists no sequence (A,) of o-fields for which E (X,|%,) — 0 in probability. Let
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us suppose that (2,) is such a sequence. Then, in particular, we have

22) lim P(E(X,|%,) < 1)=1.

n—+w

Denoting by C, the set {E(X,|%,) < 1}, we get
1> [EX, W)= [ X,=n*A(C,n[0,5])—nA(C,n G, 1]).
Cn Cn

Therefore . -

1 1
A(C,,n[O,%])S;E-P;‘—)O as n— oo,

which contradicts (22).

Now we present several examples of sequences for which the condition (o)
holds. In each case we can use one of the proved theorems.

ExaMPLE 4.2. Let (a,) and (b,) be sequences of real numbers satisfying:

a,>0,n=1,2,.., p.€[0,1], n=1,2,..,,

lim J[[p:=0, lim []a:pi=co.

R ;=1 B=0 j=—1
For a sequence (Z,) of independent random variables satisfying

PZi;=a)=1-P(Z,;=0)=p;

we put

X" = 1_[ Zi'
i=1

13

It is easily seen that

lim X,=0 as. and lim EX, = 0.

Thus Theorem 1.2 can be applied.

ExaMpLE 4.3. Let (Z,) be a sequence of independent random variables
such that

P(Zie[-27,2"h=1-2"" fori=1,2,...
and
P(Z,-=4i’)=P(Zi= —4M=2"""1 fori=1,2,...

From the Borel-Cantelli lemma we deduce the almost sure convergence of the
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sequence X, = ZLIZ,-, n=1,2,... Moreover,
EX, =EX, 2 EX,1;z,_40.i=1,,..n
=@V 4% +...+4")-272.273. 27" 150 as no 0.

In this case we can apply Theorem 3.3.
In the next example we shall use the following lemma:

LEMMA 4.4. Let (p,) be a sequence of probability distributions on the real
line weakly convergent to a probability distribution p satisfying

Ttp(dt)= — | tp(dt) = .
0 -

Then w0 o
lim { tp,(dt) = —lim [ tp,(dt) = co.
n—=o o R0 _ o

Proof. For teR and M > 1 we put
f(t) = tl(o'M]‘I'Ml(M'w).

We have
{ tpa(dt) = | f () pa(at).
[¢] ) 0
Since
lim | f@pad) = [ tp(d)+Mp((M, )
R o (0,M]
and

lim | tp(dr)= ?tp(dt) = o0,
0

M=o 0,M]
one can easily deduce that
lim Qj?tp,, (dt) = 0.
n© g
Similarly we show that
,}E?o _(E tp,(dt) = — 0.
This completes the proof of the lemma.

ExaMPLE 4.5. Let (X,) be a sequence of integrable random variables con-
vergent with probability one to a random variable X, such that

EX* =EX™ = 0.



Conditional expectations 125

Lemma 4.4 implies that

lim EX;} = lim EX, = oo.

R0 n—*aw

Obviously,
P(liminfX,| < 00) = P(Jlimsup X,| < o) = 1.

n—+w n—>
Thus (X,) satisfies the assumptions of Theorem 3.3.

ExaMmPLE 4.6. Let (Z,) be a sequence of ii.d. random variables such that
EZ,=0,D?>Z, >0 and E(expZ,) < 0. For

_
ae (E expZ,) )

we put

M:

X,=a"exp(}), Z) forn=1,2,..

i=1
We have
“ Z"‘:lzi
InX,=) Z;+nlna=n ’—n—+lna — —00 as.  as n— oo.
i=1

Hence

lim X, =0 as.

and, moreover,
EX,=(aE(expZ,)) > o0 as n— co.

To conclude that the sequence (X,,) satisfies (o) we can apply now Theorem 1.2.

ExaMpLE 4.7. Let Z be a symmetric random variable with absolutely con-
tinuous distribution and such that Ee"? < oo forn =1, 2, ... For te R we put

f;,(t) = em I[O,w)(t)—e_"t 1(_00'0) (t) fOI‘ n= 1, 2, e

Let us consider random variables X, = f,(Z) for n =1, 2, ... We shall show
that the sequence (X,) satisfies the assumptions of Theorem 3.1. Let us put

S =esssupZ = —essinf Z.

Let (a,) be an increasing sequence of positive real numbers satisfying

0<a,<Sforn=1,2,... and lima,=S§.

n—*oo
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For n=1,2,... we put
A, = {w: Z(w)e(—ay,, a,)}.
Fix n>1 and ¢(0, §—a,). We have
EX; 1,.—EX; 14, > exp(k(a,+¢)P(Z > a,+e)—exp(ka;) >0  as k— oo,
In the same way we show that
EXg1,—EX 1, >0 as k- oo.

We can therefore choose an increasing sequence (k;) of integers such that for
k = k; we have

EX{ 1,—EX; 1, >i and EX;1,.—EX;1,>i.

Finally, we put B, = A; for k; < k <k;;,. Now it can be easily seen that

P(limsupBS) =0
and
EX: lng—EX"_ lB"—>OO as n— oo,

EX; 1p.—EX; 15, >0 as n—o0.

Finally, we conclude that the sequence (X,) satisfies the assumptions of Theo-
rem 3.1.
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