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Abstract. We present the Marcinkiewicz-type strong law of large
numbers for random fields {X,, ne Z%} of pairwise independent ran-
dom variables, where Z% , d > 1, is the set of positive d-dimensional
lattice points with coordinatewise partial ordering,
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1. INTRODUCTION

Let Z%, d > 1, be the set of positive integer d-dimensional lattice points.
The points in Z% will be denoted by m, n, etc., or, sometimes, when necessary,
more explicitly by (my, m,, ..., mg), (ny, n,, ..., ny), etc. Also, for n = (n4, ..., ny)
we define |n| = ]_[;Llni. We shall write 0 and 1 for points (0, 0, ..., 0) and
(1, 1, ..., 1), respectively. The set Z% is partially ordered by stipulating m < n
if m; < n; for each i, 1 < i < d. Furthermore, we shall write m < n if m < n and
m; < n; for at least one i, 1 <i < d. In this paper the limit n — oo will mean
maxy gigg i = 0. '

Let us define

) d(x) = Card {neZ%: |n| = [x]}
and .
M,(x) = Card {neZ%: |n| < [x]} = M (x),

where [x] denotes the greatest integer not exceeding x, x [0, c0). We have, cf.
Simithe [6], [7],

1y My(n) =n(log. )" Yfd—1)N-Ms—1(n), d>2,
where log, x = max(1, logx), x > 0. Thus, by (1.1),
1.2) M,;(x) = O0(x(log+ x)*"1) as x— o0.
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Furthermore, for every é > 0,
(1.3) d(x)=o0(x) as x— 0.

Let {X,, ne Z%} be a random field of pairwise independent random varia-
bles, defined on a probability space (2, &, P). For ne Z% define the partial
sum

= Y X

k<n

The aim of this paper is to present the Marcinkiewicz-type strong law of large
numbers for random fields {X,, neZ%} of pairwise independent random
variables. The basic assumption we make is that, for some 0 < C < o0,

(14) Y P(X,=t)<Cd(R)P(X]=1)

nilnj=k
for all ke N and every t > 0, where X is a random variable. Let us observe that
if (1.4) holds, then for all neZ% and every ¢t >0

(1.5) Y PUXd=zn< Y P(Xdz0=3 ) P(Xd>1)

k<n k:|k| <|n| i=1 k:|k|=i

In|
<C ) d@)P(X| > 1) = CM,(n)P(X] > 1).
i=1"
Thus, from this point of view, the condition (1.4) seems to be weaker than the
following one:

(1.6) Y P(Xu =< Cin|P(X| > 1)
k<n
for all neZ% and every t > 0.

If (1.6) holds, then we sometimes say that the sequence {X,, neZ%} is
weakly mean dominated by the random variable X, cf. Fazekas and Témacs [3]
(Definition 2.3). In general, in our opinion, the conditions (1 4) and (1.6) are
independent. If (1.4) holds, then we have (1.5).

Many authors have investigated the Marcinkiewicz-type strong law of
large numbers for random fields {X,, neZ%} in the case d = 1. Etemadi [2]
extended the classical law of large numbers for independent and identically
distributed random variables to the case where the random variables are pair-
wise independent and identically distributed. Choi and Sung [1] have shown
that if {X,, n > 1} is a sequence of pairwise independent and dominated in
distribution by a random variable X such that E|X|?(log. |X|)* < oo,
1 < p < 2, then (S,—ES,)/n'’? - 0 as. as n — co. In the case d = 2, also Etema-
di [2] proved that if {X,, neZ%} is a sequence of pairwise independent and
identically distributed random variables such that E |X,|(log |X|) < co, then
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(S, —ES,)/In| >0 as. as n — co. On the other hand, Hong and Hwang [4]
proved that if {X,, neZ%} is a double sequence of pairwise independent ran-
dom variables such that, for every neZ% and all ¢ > 0,

(1.7) P(X,|Zz ) < P(X|=1)
and E|X|?(log, |X|)? < 0, 1 < p <2, then
(1.8) (S,—ES,)/(n)** >0 as. as n— c0.

Furthermore, Hong and Hwang [4] proved that if (1.7) holds with a random
variable X such that E|X|?(log, |X]) < o0, 1 <p <2, then -

(1.9) (S.—ES)/(n)? -0 in L; as n— .

This paper contains complements to the results presented by Hong
and Hwang [4] and their generalizations. Let us observe that the condition
(1.7) implies (1.4). We would also like to note that some calculations given
in the paper by Hong and Hwang [4] are not understandable, for example,
why

@p2le Gje
[ PE<IXP*<@)*P)dt= [ x*dF(x),
0 0
where F (x) is the distribution of X. Assume that, for example, P(X > 0) = 0.
Then the right-hand side of the last equality equals zero, but the left-hand side
can be positive (cf. (2.2), (2.3), (2.10), (2.14)+2.16) in Hong and Hwang [4]).

Let us observe that the Marcinkiewicz-type strong law of large num-
bers holds for identically distributed random variables with arbitrary de-
pendence structure if 0 < p < 1, cf,, e.g., Petrov [5], Chapter IV, Theorem 16.
Fazekas and Téméacs [3] extend this result to the case of weakly mean dom-
inated random fields {X,, neZ%}. Thus, this paper also contains comple-
ments to some results given by Fazekas and Toémacs [3] and their generaliza-
tions. We present the Marcinkiewicz-type strong law of large numbers for
l<p<2.

2. RESULTS

We can now formulate our main results.

THEOREM 1. Let {X,, neZ%} be a random field of pairwise independent
random variables satisfying the condition (1.4). If, for some 1 <p <2,

2.1) E|X|?(log |X])** < o0,
then
(2.2) (S.—ES,)/In|*® -0 as. as n— o0.

9 — PAMS 221
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THEOREM 2. Let {X,, ncZ%} be a random field of pairwise independent
random variables satisfying the condition (1.4). If, for some 1 <p <2,

(2.3) ~ E|XPP(log+ IX])*"" < oo,
then
(2.4) (S,—ES,)/In|*? -0 in L, as n— .

3. AUXILIARY LEMMAS

In the proofs of the results stated in Section 2 we need some lemmas,
which we present in this section.
Let {X,, n€Z%} be a random field. Let us put

=X I(X.| < n|'?), Xi=X.-X,,
where 1 <p < 2.

Lemma 1. Let {X,, ne Z%} be a random field of random variables satisfying
the condition (1.4). Then for every 1 < p < 2 there exists a positive constant
C such that

(3.1) Y, EX./(In*") < CE| X[ (log.+ [ X))*~*
neZd

and

(3.2) Y. EIX,|/(n])'" < CE|X|?(log, | X])* 1.
neZd

Let us observe that we do not assume that the random field {X,, ne Z% }
is pairwise independent.

Proof By (1.4) we have

33 Y E@Y(n)r= Y lnl—ZfPTP((X;)2>r)dr

neZd neZd
m|2/p K2/m
Z 1 j P(t <X, 1Y) dt = Z k2P j Z P(lX,,I2 ) dt
IIEZd 0 n:e|=k

k2/p

<C z k=27 d (k) j P(XP* > f)dt

k2/p

=C 2 k=217 d (k) j {P(X2 = k¥7)+ P(t < |X|? < k*?)} dt

k2/p

—C'Y dP(X] > k7)+C 2 AWK | P < X? <Km)d.
k=1




Marcinkiewicz-type strong law of large numbers 131

But, by (1.2), we get

34 i d(k)P(X] = k'/r) = i d(k) i P(i”” < X< (i+ 1)1/1’)
k=1 i=k

= 3 (3 AP <X < (+1%) = 3 MyOPEP < 1X] < 6+1)7)
i=1 k=1 i=1

4}

<€, Y ilogs i~ P(i'" <X < (i+1)"?) < C, E|XP (log. IX])~*,

i=1

where C, and C, are absolute constants depending only on p ami- d. On the
other hand,

k2/p

(3.5) Z AWK [ P <X? < k2/7) dt

k i2/p
= Z k2P d(k) S [ P(e< X? < k¥P)dt
i=1(—1)2/p

8

< k_zl-"d(k) Z P((i—l)zlp < X2 < k2/p)(i2/p_(i_1)2/p)
k

1 i=1

8

k
< Y k2Pdk) Y P(i—1)Y7 < |X]| < kHP)iZP -t
k i=1

=1

8

k k
k2P d(k) Y 271y P((—1)YP < |X] < jUP).
j=i

k=1 i=1

But

(3.6) Z j2ip—1 Z P((l 1)1/p < |X| <J1/p)

i=1 _, i
k J k
= ¥ P((—1)" < X <j9) ¥ 271 < C, Y P P((— DM < 1X] <)),
j=1 . i=1 j=1 ]

where C, is an absolute constant. Hence, by (3.5) and (3.6), we have

k2/p

3.7) Z d(k) k=P j P(t < X2 < k*?)dt
< Cy ), k7Pd(k) Z J*P P((G—-DY? < |X| < j'7)
k=1 i=1

=Co Y, PPP(-DYP < IX] <j7) Y k7P d(K).
k=j

j=1
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But d(k) = M (k)—M (k—1), so that by (1.2) and the mean-value theorem
we get
(3.8) Y k72Pd(k) < Cs Y, k™ (logky'~* < Cg j2 722 (log j)* 1,
k=j k=j
where, here and in what follows, C with or without subscripts denotes a positive
generic constant,
Consequently, (3.5)+3.8) yield

k2/p

(3.9) 2 d(kyk=2I® j P(t < X? < k¥P)dy -

<C Z jlog j'~* P((j—1)'* < |X| < j*/?) < CE|X[? (log,, |X])*~*.
j=1
Thus, from (3.3), (3.4) and (3.9) we get (3.1).
Let us observe that, by (1.4),

(310) ¥ EIX;/n) = 3 1nl-Ye [ P(XZ > 0dr
0

neZd ncZd

S Inl~ el POX,| > %)+ | P(Xd > 0)de)

ncZd [n|1/P
=Y k7 N kUPP(X,| > kMP)+ Z k~ip _f Y. P(X,| =1f)dt
k=1 niin|=k k=1 K1/P |n|:|n| =k

<C z d(k)P(X| > k7 +C Z k17 d (k) j P(X| > t)at.

k= =1 ki/p

Furthermore, by (1.2), we get

(3.11) z d(K) P(X] > k') = 2 d(k) f P(k'? < |X]| < (k+1)17)

k= k=1 i=k

Ms,..

P(j < 1XI < (+1)) Y. d(i

j=1

< C Y jllog )y~ P(j*"” < |X] < (j+ 1)) < CE|X|? (log [ X])* L.
j=1
On the other hand, we have
w (j+1)i/p
(3.12) Z k=17 d(k) j P(X| = t)dt = Z k™ 1/”d(k)z j' P(X] = t)dt
k=1 ki/p j=k  jire

< Y kTVPd(k) Z P(X| > j*7) jHe=t

k=1 =k
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= Y kT Pd(l) Y LY P(VP < X < i+ DY)
k=1 =k i=j

J

Y PP <|X| < i+ 1)1P) Y, jHet
i=k J=k

=Y k™Y d(k)
k=1

£C, k“””d(k) Z il/pp(illp < [ X| < G+ 1)1/p)

k=1 i=k
= Y VP P(iP < |X| < (i+1)V%) Y k™7 d (k) -
i=1

k=1

< C, ), illogif ™' P(V? < |X| < (i+1)'?) < C3 E|X|P (log+ X"~
i=1
Thus, taking into account (3.10)+3.12) we easily get (3.2), and this completes
the proof of Lemma 1.

LemMa 2. Let {X,, ne Z%} be a random field of pairwise independent ran-
dom variables such that EX, = 0, ne Z%. Then there exists a positive constant
C such that

(3.13) E(max |Sy)? < Cllog.. n* ¥ EXZ,
1<k<n

<k< k<n
d
where, for n = (ny, ..., ny), [log, n| = [[,_, log, n.

Proof If m =1, then (3.13) holds. We now turn to the case 1 <n =
(nq, ..., n)eZ%. Let s = s(m) = (s, ..., Sq), where s;, 1 < i < d, are integers such
that 2% ' <n;<2% if m;>1 and 5;,=0 if m;=1, ie, s;=[logyn] =
=min {k > 0: log, n; < k}. Set Xj = X, if k <n and X =0 otherwise. We
obviously have

ZX*= ZX"’ S,,=S,f,k$n,

k<2s k<n

where 2°=(2%,...,2°) and S§ =) _ XF.

i<k B

Let us divide every interval (0, 2%] into (0, 2%~ '] and (2~ !, 2%] and each
of these two intervals into two halves, and so on. Thus, the elements of the j;-th
partition are of length 2774 j=0,1,...,s, so that we obtain the
J = (1, j25 ..., jorth partition P; = P;, . of (0, 2°]x...x (0, 2*] by the j;-th
partition of (0,2%], 1 <i<d. Furthermore, let us observe that for every
k=(ky,...,k)eZ%, k< n, theset (0, k] = (0, k] x...x(0, k;] is the sum of at
most |s+1| = ]_[f=1(si+1) disjoint sets each of which belongs to a different
partition. Thus, we can write
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where Y, is the sum of all random variables X belonging to the set
(ag, b11x...x(aqs, bgl, bi—a; =24, 1<i<d, and such that r <k, where

I=(4,..., 1)
Let

T,= % I%P T= ) T,

k<24 0<r<s
where Y, is the sum of all random variables X;¥ which belong to the k-element
of P; and 2/ = (21, ..., 2/4). By the Schwarz inequality we -have
(3.14) ISu> < [s+1] Y %2 <Is+1T,
0<I<s

where s+1 =(s;+1, ..., s;+1). On the other hand,

(3.15) ET;< Y E|Xi?
k<n
and
(3.16) ET < |s+1| Z E| X, 2.
k<n

Thus, by (3.14)3.16), we get

E(max [Si)? <Is+11> Y E|Xul> <[[logzn] +1* 3 E[Xuf,

1<k<n k<n k<n
where [log,n] = ([logzny], ..., [logyn4]).
This last inequality implies (3.13) and completes the proof of Lemma 2.

Lemma 2 is a d-dimensional version of Lemma 2.2 presented by Hong and
Hwang [4].

4. PROOFS OF THEOREMS

The symbol C, with or without subscripts, denotes a positive generic con-
stant.

Proof of Theorem 1. Let us put
Xo =X, I(X,| <|n'?), X3=X,—Xy,

Sa= Y X4y Su=Y Xi

k<n k<n
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Then, by (1.4), we get

@) Y PX,#X)= i Y. P(X,|>n'<C i d(k)P(X| > k'7)
neZd k=1 n:n|=k k=1

[=¢)

—CY 4k 3 PP < IX] < (j+1))

i=k

=C ) P(j'* <|X| < (j+1)"?) M (j)
j=1

<Gy Y, jlog, jy' "  P(j' < |X| < (j+ 1)) < G, E|XP (log. |X)* ™ < co.
i=1 ‘

Thus, by (4.1) and the Borel-Cantelli lemma, we obtain
4.2) (Sa—S,)/|n|'’? >0 as. as n— 0.

On the other hand, we have
4.3)  (Sa—ES,)/In|'? = (Sy—S,)/|n|*/? +(S,— ES,)/|n|"/? + (ES, — ES,)/|n|'/?
and
(44 |ES, —ES,|/In|'" < ) E|Xj|/|n|*.
' k<n
Moreover, by (3.2) in Lemma 1, we have
@3) X (X Elxy)izqie
kezd <2k

<C Z EX}{)lii" < C,E|X|P(log, | XD*~ ! < o0,

d
ez

where, for k = (ky, ..., kg), here and subsequently 2* = (2%, ..., 2¥4), We con-
clude from (4.5) that

(4.6) ’ Y EIXI/2YP >0 as n— .
k<2m
Moreover, for every neZ% such that 2* < n < 2**! we have
4.7) )y E|X$'|/12k+1|1/” < Y EIX{/In"? < Y E|X7|/24e
i<2k i<n i<2k+1

and |2¥*1| = 29)2%| for all ke Z%. By using now (4.4) combined with (4.5}(4.7),
we find

(4.8) |ES, —ES,|/|n|'? -0 as n— oo.
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Now we prove that
4.9 (Sp,—ES,)/|n)*? -0 as. as n— 0.

By Chebyshev’s inequality and (3.1) in Lemma 1, we get

4.10) ). P(ISy%—ESql = e|2%?) <672 ), E(Sy—ES5) |22

keZd keZd

<e? Z (12%|~2/7) ZkE(Xé)z <Ce 2y E(X;)2/|n|2/p
i<2

kezd

< Ce 2E|XP(logy | X))~ < 0.

d
nezZd

Thus, by the Borel-Cantelli lemma and (4.10), we have
(4.11) (85— ES5)/12°'" -0 as. as n— 0.

On the other hand, if 2 < n < 2¥*1, then

4.12)  |S,—ES,|/In"/? < |Su—ESyl/In|*?+| 3 (Xi—EX))|/|n|'/?

2k<i<n
< S —ESHl/[2P+  max |T(, k)I/124'7,
) 2k<j<2k+1
where

T, k= Y (X,—EX).

2k<1I<i

Now, by using Lemma 2, easy computations lead to

@13) ¥ P( max |TG,Kk)l>e24")

kezd ~ 2k<i<2k+

<& ?) E( max |T(, k)24

kezd 2k<i<2k

< Ce™2 ) 1247 %7 flog, 212917 ¥} EX)

keZd 2k <<kt

SCyie”2 Y kPRMTP Y E(X)

keZd 2k<i<2k+1

< Cpe72 Y (log, - |K|)? k|~ %7 E(X})?,
keZd

where, if k = (ky, ..., k;), then
(2k+1_2k) — (2k1+1_2k1, . 2ka+1_2k,1) — 2k.
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Moreover, as in the proof of Lemma 1 ((3.3)+3.9)), we get

4.14) Y (log,- [k|)* |K|™*? E(X})*

keZd
<C Z (log. k2 k™ 2/?({ 2 POXP >0
cki (log K>k Z/Pd(k)kzj/pP(lez > t)dt
< cki (log K)*d(k) P(X| > k!'7) i
ki (log, K)*d (k) k™ Z/szj/pp(t < X7 < k27 dt
i (Zl: (k) (log+ k)*) P(i*? < |X| < (i +1)'/7)
C Y k=27 dk)(log, k2 f | j/ P(t < X* < k¥7)dt

=1 i=1(@—1)up

k
C i (log i)> M () P (i'? < |X]| < (i+1)'?)

+C Z k=27 d (k) (log .. k)2 Z P((i—1)%7 < X? < k/7) (22 — (i — 1)21%)
k=1 i=1
< CLE|X]|(log+ [ X])**1
© k
+C; ¥ k™2 d(K)(log, k)* ¥ 2771 P((i— )17 < |X| < kP

k=1 i=1

= C,E|X]|(log. |X|)"**

+C, Z k=27 d (k) (log , k) Z i1 Z P((—D'? < |X]| < j*/7)

k=1 i=1 j=i

< C,E|X|(log. |X])"**

L] k
+Cs3 Y, k7P d(k)(log. k)? Y /7 P((j—1)"7 < |X| < j*7)
k=1

i=1

E|X|(log. |X])***

+Cy Y PPP(—1< X <j) ¥ k™2 d (k) (log . k)

ji=1 k=j

E|X|(log X" +Cs 3, jlog. j)* ' P(j—1 < |XIF < j)

j=1

< CsE|X]|(log [X[)***.
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Finally, (4.9) follows by combining (4.11) with (4.12){(4.14) and the
Borel-Cantelli lemma. We complete the proof of Theorem 1 by using (4.3) to-
gether with (4.2), (4.9) and (4.8).

Proof of Theorem 2. It follows that
(4.15)  E|S,—ES,l/In|**
< E|S,—S.|/|In|''?+ E |S, — ES,|/|n|'? + |ES,— ES,|/|n|*/?,

(4.16) E(Sa—Sal/in['" < 3 E|X"|/1n|*",

k<n

4.17) E|S,—ES,)/in""? < {E(Sa—ES)2}/In|'? < { Y, E(X3)/n['}*

k<n
and, by (4.8),
(4.18) |ES, —ES,|/|n|*? >0 as n— .

Notice that (4.8) is a consequence of (2.3). Moreover, (2.3) also implies that
(4.6) and (4.7) hold. Thus, by (2.3), we also get

4.19) Y E|X{l/ln|'" >0 as n— oo.
k<n

On the other hand, by (3.1) in Lemma 1, we get
@20 3 (Y, EGPYRPr<C ¥ EEPMPP < CoE X Qog X
Hence, by (4.20),
4.21) Y EX*/12"*? >0 as n— 0.

. k<2n

Next, by using the fact that for every 2¥ < n < 2%*?
Y EXD 2P < Y EQX) PP < ), E(X)Y/129P,
i<2k i<a i2k+1

and since [2¢*1] = 2?|2%, we obtain

4.22) Y E(Xp)?*/Inl*? >0 as n— o0.

k<n

Finally, (2.4) follows by combining (4.15) with (4.16)4.19) and (4.22).
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