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dom variables, where Zd,, d & 1, is the set of positive d-dimensional 
lattice points with coordiiatewisc partial ordering. 

191 Mathematics subject Classification: Primary 60F05,60F15. 

Key wo~ds and pbmses: Marcinhewin strong law d large num- 
bers, pairwise independent random variables, random fields. 

1. INTRODUCTION 

Let Zd,, d 2 1, be the set of positive integer d-dimensional lattice points. 
The points in Zd, will be denoted by m, n, etc., or, sometimes, when necessary, 
more explicitly by (m,, m2, .. ., md), (nl, n2, . . ., nd), etc. Also, for n = (n,, .. ., nd) 

d 
we define In1 = n,=, ni. We shall write 0 and 1 for points (0, 0, . .., 0) and 
(1, 1, . . . , I), respectively. The set Zd, is partially ordered by stipulating m < n 
if mi < ni for each i, 1 C i g d. Furthermore, we shall write rn < n if m d n and 
mi < ni for at Ieast one i, 1 < i < d. In this paper the limit n + oo will mean 
m x l  di$d ni 00. 

Let us define 

d (x) = Card (n E Zd, : In] = [XI) 
and 

M, (x) = Card {n E Zd,: In1 < [XI) = M (x), 

where [x] denotes the greatest integer not exceeding x, x E [0, a). We have, cf. 
Sirnithe [6], [?I, 

(1.1) Md(n)=a(log+n)d-l/(d-l)!-~,-l(n),  d 2 2 ,  

where log, x = max (1, log x), x > 0. Thus, by (1.1), 

(1-2) M d ( ~ ) = ~ ( ~ ( l o g + x ) d - l )  as x+m.  
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Furthermore, for every 6 > 0, 

Let {X,, n E Z $ }  be a random field of painvise independent random varia- 
bles, defined on a probability space (62, d, P).  For n E Z ~ ,  define the partial 
sum 

The aim of this paper is to present the Marcinkiewicz-type strong law of large 
numbers for random fields (X,, n E Zd,} of pairwise independent random 
variables. The basic assumption we make is that, for some 0 < C < a, 

for all k E N and every t > 0, where X is a random variable. Let us observe that 
if (1.4) holds, then for all n €2: and every t > 0 

1 1 1  
(1.5) C f'[lXkl 3 t) < C P(lX,l 3 t )  = C C P(lX,l 2 tl 

k Q n  k:Ikl d In1 i = l  k:IkI=i 

14 
< C C d(i)P(IXI 2 t) = CMd(tnl)P(IXI 2 t ) .  

i= 1 

Thus, from this point of view, the condition (1.4) seems to be weaker than the 
following one: 

for all n ~ Z d ,  and every t > 0. 
If (1.6) holds, then we sometimes say that the sequence {X,, n ~ Z d , }  is 

weakly mean dominated by the random variable X, cf. Fazekas and T6mScs [3] 
(Definition 2.3). In general, in our opinion, the conditions (1.4) and (1.6) are 
independent. If (1.4) holds, then we have (1.5). 

Many authors have investigated the Marcinkiewicz-type strong law of 
large numbers for random fields {X,, n ~ Z d , }  in the case d = 1. Etemadi [2] 
extended the classical law of large numbers for independent and identically 
distributed random variables to the case where the random variables are pair- 
wise independent and identically distributed. Choi and Sung [I] have shown 
that if (X,, n 2 1) is a sequence of painvise independent and dominated in 
distribution by a random variable X such that EIXIP(log+ < oo, 
1 < p c 2, then (Sn-ES,)/nl/P + 0 a.s. as n -, co. In the case d = 2, also Etema- 
di [2] proved that if (X,, n E Z ~ , }  is a sequence of pairwise independent and 
identically distributed random variables such that E IX,l(log+ IXII) < co, then 
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(S,-ES,,)/lnl+ 0 a.s. as n + m. On the other hand, Hong and Hwang [4] 
proved that if (X,, n EZ:) is a double sequence of pairwise independent ran- 
dom variables such that, for every n E Z: and all t > 0, 

and E IXIP(log+ IX1)3 < a, 1 < p < 2, then 

Furthermore, Hong and Hwang [4] proved that if (1.7) holds with a random 
variable X such that E IXIP(log+ 1x1) < a, 1 < p < 2, then - 

This paper contains complements to the results presented by Hong 
and Hwang [4] and their generalizations. Let us observe that the condition 
(1.7) implies (1.4). We would also like to note that some calculations given 
in the paper by Hong and Hwang [4] are not understandable, for example, 

where F (x) is the distribution of X. Assume that, for example, P(X 2 0) = 0. 
Then the right-hand side of the last equality equals zero, but the left-hand side 
can be positive (cf. (2.2), (2.3), (2.10), (2.14H2.16) in Hong and Hwang [4]). 

Let us observe that the Marcinkiewicz-type strong law of large num- 
bers holds for identically distributed random variables with arbitrary de- 
pendence structure if 0 < p < 1, cf., e.g., Petrov [5], Chapter IV, Theorem 16. 
Fazekas and T6mbcs [3] extend this result to the case of weakly mean dom- 
inated random fields (X,, n ~ Z d , ) .  Thus, this paper also contains comple- 
ments to some results given by Fazekas and Tbmbcs [3] and their generaliza- 
tions. We present the Marcinkiewicz-type strong law of large numbers for 
1 < p < 2 .  

2. RESULTS 

We can now formulate our main results. 

THEOREM 1 .  Let {X,, 'n E Z $ )  be a random field of pairwise independent 
random variables satisfying the condition (1.4). If, for some 1 < p < 2, 

then 

9 - PAMS 22.1 



THEOREM 2. Let (X,, n E 25)  be a random field of pairwise independent 
random variables satisfying the condition (1.4). If, for some 1 < p < 2, 

(2.3) E IXIP (log + IX])d- ' < a, 
than 

(2-4) (S, - ESa)/lnlll* 4 0 in Ll as s 4 co . 

3. AUXILIARY LEMMAS 

In the proofs of the results stated in Section 2 we need some lemmas, 
which we present in this section. 

Let {X,, s EZ$] be a random field. Let us put 

x = x I ( X I  < n i p ,  x:' = x.-x,, 
where 1 < p < 2. 

LEMMA 1. Let (X,, n E 2:) be a randomJieId of random variables satisfying 
the condition (1.4). Then for every 1 < p < 2 there exists a positive constant 
C such that 

(3.1) 

and 

Let us observe that we do not assume that the random field {X,, n ~ Z d , )  
is pairwise independent. 

Proof. By (1.4) we have 

= c z d (k) P (1x1 3 k1IP) + C z d (k) k- ' l p  j P (t < X2 < k21p)  dt. 
k =  1 k =  1 0 
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But, by (1.2), we get 

(3.4) x d ( k )  P (1x1 2 k1IP) = d (k )  C P (illp d [XI < (i+ 1)113 
k =  1  A= 1 i = k  

= z d (k ) )  P (il/P < 1x1 < (i + 1)lIp) = M ,  (3 P (illP G 1x1 < (i  + l)"P) 
i=l k = l  i =  1 

m 

$ C 1  i (log+ 136-l P (il/p 6 1x1 < ( i  + < C2 E lXlp (log + IXl)d-l, 
i =  1 

- 

where C1 and C2 are absolute constants depending only on p and d. On the 
other hand, 

41 k 2 / P  

(3.5) d ( k )  k-21p j ~ ( t  6 x2 < k21p) dt 
k =  1 0 

m k i 2 l p  

= C k-'/Pd(k) C j P(t  < X Z  < k2/p)dt 
k = l  i= 1 (i- 1 ) z l P  

m k  

< C k- 21p d ( k )  z P((i - l)*/p < XZ < k2/p) (i2/p - (i - l)21p) 
k=l i =  1 

But 

where C4 is an absolute constant. Hence, by (3.5) and (3.6), we have 

m k 

< C4 C k-2 /pd(k)  C j2/p P ((j- l ) l / p  < 1x1 < jllp) 
k =  1 j= 1 

m m 

= C4 j2Ip P (6- l ) l / p  < 1x1 < jllp) C k-'/pd (k).  
j=  1 k =  j 
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But d (k) = M ( k )  - M ( k -  1), so that by (1.2) and the mean-value theorem 
we get 

where, here and in what follows, C with or without subscripts denotes a positive 
generic constant. 

Consequently, (3.5)-(3.8) yield 

Thus, from (3.3), (3.4) and (3.9) we get (3.1). 
Let us observe that, by (1.41, 

Furthermore, by (1.2), we get 

On the other hand, we have 

< z k -  llV (k)  C P (1x1 2 j l l p )  j l l P - I  



Marcinkiewicz-type strong law of large numbers 133 

m m m 

- - k-llpd (k) C jllp-I P(illp < 1x1 < (i+ I)ltp) 
k- 1 j = k  i =  j 

Thus, taking into account (3.10)-(3.12) we easily get (3.2), and this completes 
the proof of Lernma I. 

LEMMA 2. Let (X,, n E Zd,} be a random$eld of pairwise independent ran- 
dom uariables such that EX, = 0, n ~ Z d + .  Then there exists a positive constant 
C such that 

(3.13) E ( max 1Sk1)2 6 C llog+ nI2 z EX;, 
1 SkSn k$n 

d 
where, for n = (nl , . . ., nd), (log + n( = n,, , log + ni. 

Proof. If r = 8, then (3.13) holds. We now turn to the case 1 < n = 

(n,, . . ., nJ EZ:. Let s = s (n) = (sly . . ., sd), where si, 1 < i < d, are integers such 
that 2"'-I < pai < 2"' if ni > 1 and si = 0 if ni = 1, i.e., si = rlogznil = 

= min {k 2 0: log, ni 6 k). Set X,* = X, if k < n and X,* = 0 otherwise. We 
obviously have 

where 2" = (2"', . . . ,2"3 and Sz = xis X f  . 
Let us divide every interval (0,2si] into (0, 2"'-'1 and (2"-l, 2si] and each 

of these two intervals into two halves, and so on. Thus, the elements of the ji-th 
partition are of length 2"'-ji, ji = 0, 1, . . ., si, so that we obtain the 
j = ( j , ,  j,, . . ., jd)-th partition Pj = P j  ,,..., of (0, 2"'] x . . . x (0, 2"*] by the ji-th 
partition of (0, 2"'J, 1 < i 6 d. Furthermore, let us observe that for every 
k = (k,, .. ., k,)~Zd,, k < n, the set (0, k] = (0, kl] x .. . x (0, kd] is the sum of at 
most ls+ll = n:=,(si+ 1) disjoint sets each of which belongs to a diaerent 
partition. Thus, we can write 
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where I;,k is the sum of all random variables X: belonging to the set 
(al, bl] x . . . x (ad, bd], bi- ui = 21t, 1 < i 6 d, and such that v < k, where 
1 = ( i l ,  ..., id). 

Let 

where Y,  is the sum of all random variables X: which belong to the k-element 
of PJ and 2j = (2ji, .. ., 2jd). By the Schwarz inequality we -have 

where s + 1 = (sl + 1, . . ., sd + 1). On the other hand, 

and 

Thus, by (3.14H3.163, we get 

where r log, n] = ( r log, n1l , . . . , r log, ndl ). 
This last inequality implies (3.13) and completes the proof of Lemma 2. 

Lemma 2 is a d-dimensional version of Lemma 2.2 presented by Hong and 
Hwang [43. 

4 PROOFS OF TEEOREMS 

The symbol C, with or without subscripts, denotes a positive generic con- 
stant. 

P r o o f  of Theorem 1. Let us put 
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Then, by (1.4), we get 

m m 

(4.1) C P (Xn # XA) = P (lX,I > IAI~'~) < C d (k) P (1x1 3 kllP) 
n~Zd, k = l  n:lsl=k k = l  

Thus, by (4.1) and the Borel-Cantelli lemma, we obtain 

On the other hand, we have 

(4.3) ( S ,  - ES,)/JnJ1lP = (S, - Si)/lnl'IP + (S:, - Ex)/InlliP + ( E X  - ES,)/In[liP 

and 

Moreover, by (3.2) in Lemma 1, we have 

where, for k = (k,, . . ., kd), here and subsequently 2" = (2k1, . . ., 2kd). We con- 
clude from (4.5) that 

Moreover, for every s E Zd, such that 2k < n < 2&+', we have 

(4.7) E IX;'I/I~~+'I'" < E Izl/lnl < c E 1~;'1/12~ll" 
i < 2 R  i d a  IC2&+'  

and 12&+'l = 2d12kI for all k ~ Z d , .  By using now (4.4) combined with (4.5H4.7), 
we find 
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Now we prove that 

(4.9) (s: -~s;)/lrrllJp 4 o a.s. as n 4 co . 

By Chebyshev's inequality and (3.1) in Lemma 1, we get 

Thus, by the Borel-Cantelli lemma and (4.10), we have 

(4.1 1) (S2, - ES2.)/12"111P + 0 a.s. as + a). 

On the other hand, if 2& < n < 2'+ l ,  then 

< ISbr - + max 1 T (i, k)l/12kl "', 
Z k < I < Z k + *  

where 

T(i, k) = x (Xi- EX;). 
2k<14i  

Now, by using Lemma 2, easy computations lead to 

max l ~ ( i ,  k)l 2 E 12k11J*) (4'13) k&d+ P ( k < j < 2 k + 1  

where, if k = (k,, . . ., kd), then 
(2k+1-2k)=(2k1+1-2ki 2kafl-kd-2k 

9 ..- Y 2 ) -  . 
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Moreover, as in the proof of Lemma 1 ((3.3)-(3.9)), we get 

CO kZ/P 

a c C (log, k )2 . k~2 /pd  (k) j P (1x1~ 2 t)  d t  
A =  1 0 

m 

< c flog+ k)' d (k)  P (1x1 2 kl/P) 
A= 1 

00 k 2 / ~  

+ C (log, k)2 d (k)  k - 2 / p  j P (t < XZ < k2/P) d t  
k= 1 0 

m i 

m k 

+ C C k - 2ip d (k)  (log + k)2 C P ((i - 1)2/p < X 2  < k2/p) (i2/p - (i - 1 ) 2 / p )  
k = l  i =  1 

+ C2 k-2iPd (k)(log+ k)2 C i2/p-' P ((i - 1 ) l l p  < 1x1 < kl/p) 
k =  1 i =  1 

+ C2 k-'"d (k) (log+ k)' 2 i2/p-' 2 P (G- 1)l" < 1x1 < j l l q  
k =  1 i =  1 j = i  

+ C,  k-  21P d (k) (log+ k)' C j2/PP ( ( j -  1)llp < 1x1 < jl/P) 
k =  1 j =  1 



138 E. B. Czerebak-Mrozowicz et al. 

Finally, (4.9) follows by combining (4.11) with (4.12)-(4.14) and the 
Borel-Cantelli lemma. We complete the proof of Theorem 1 by using (4.3) to- 
gether with (4.2), (4.9) and (4.8). 

Proof  of Theorem 2. It follows that 

and, by (4.81, 

Notice that (4.8) is a consequence of (2.3). Moreover, (2.3) also implies that 
(4.6) and (4.7) hold. Thus, by (2.3), we also get 

On the other hand, by (3.1) in Lemma 1, we get 

(4.20) z ( z E (Xi)2)/12k12tp < C z E < C1 E 1x1 (log, IXljd- l .  
k&d, i < Z k  kdd ,  

Hence, by (4.20), 

Next, by using the fact that for every 2k < n < 2k'1 

and since [2k+11 = 2d12kl, we obtain 

(4.22) E ( X L ) ~ / I ~ ~ ~ ~ ~ + O  as n - o o .  
k < n  

Finally, (2.4) follows by combining (4.15) with (4.16)-(4.19) and (4.22). 
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