SOME REMARKS ON $S \alpha S$, β-SUBSTABLE RANDOM VECTORS

JOLANTA K. MISIEWICZ* (Zielona Gora) and SHIGEO TAKENAKA** (Okayama)

Abstract. An $S \alpha S$ random vector X is β-substable, $\alpha<\beta \leqslant 2$, if $X \stackrel{d}{=} Y \Theta^{1 / \beta}$ for some symmetric β-stable random vector $Y, \Theta \geqslant 0$ a random variable with the Laplace transform $\exp \left\{-t^{\alpha / \beta}\right\}, Y$ and Θ are independent. We say that an $S \alpha S$ random vector is maximal if it is not β-substable for any $\beta>\alpha$.

In the paper we show that the canonical spectral measure for every $S \alpha S, \beta$-substable random vector $X, \beta>\alpha$, is equivalent to the Lebesgue measure on S_{n-1}. We show also that every such vector admits the representation $X=Y+Z$, where Y is an $S \alpha S$ sub-Gaussian random vector, Z is a maximal $S \alpha S$ random vector, Y and Z are independent. The last representation is not unique.

Mathematics Subject Classification: 60A99, 60E07, 60E10, 60E99.
Key words and phrases: Symmetric α-stable vector, substable distributions, spectral measure.

Let us remind first the well-known definitions of symmetric α-stable random variables, random vectors and stochastic processes, $\alpha \in(0,2]$. The random variable X is symmetric α-stable if there exists a positive constant A such that

$$
\boldsymbol{E} \exp \{i t X\}=\exp \left\{-A|t|^{\alpha}\right\}
$$

A random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ is symmetric α-stable if for every $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ the random variable $\langle\xi, X\rangle=\sum_{k=1}^{n} \xi_{k} X_{k}$ is symmetric α-stable. This is equivalent to the following condition:

$$
\forall \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \exists c(\xi)>0\langle\xi, X\rangle \stackrel{d}{=} c(\xi) X_{1}
$$

It is well known that if X is an $S \alpha S$ random vector on \boldsymbol{R}^{n}, then there exists a finite measure v on \boldsymbol{R}^{n} such that

$$
\begin{equation*}
\boldsymbol{E} \exp \{i\langle\xi, X\rangle\}=\exp \left\{-\int_{\boldsymbol{R}^{n}} \int|\langle\xi, x\rangle|^{\alpha} v(d x)\right\} \tag{*}
\end{equation*}
$$

[^0]The measure v is called the spectral measure for an $S \alpha S$ random vector X. If v is concentrated on the unit sphere $S_{n-1} \subset \boldsymbol{R}^{n}$, then it is called the canonical spectral measure for X. The canonical spectral measure for a given $S \alpha S$ vector X is uniquely determined.

An $S \alpha S$ random vector X is β-substable, $\alpha<\beta \leqslant 2$, if there exists a symmetric β-stable random vector \boldsymbol{Y} such that

$$
X \stackrel{d}{=} Y \Theta^{1 / \beta}
$$

where $\Theta \geqslant 0$ is an α / β-stable random variable with the Laplace transform $\exp \left\{-t^{\alpha / \beta}\right\}, \boldsymbol{Y}$ and Θ are independent.

Definition 1. An $S \alpha S$ random vector X is maximal if for every $\beta \geqslant \alpha$ and every $S \beta S$ random vector \boldsymbol{Y}, and every Θ independent of \boldsymbol{Y} the equality $X \stackrel{d}{=} Y \Theta$ implies that $\alpha=\beta$ and $\Theta=$ const.

A stochastic process $\left\{X_{t}: t \in T\right\}$ is symmetric α-stable if all its finite--dimensional distributions are symmetric α-stable, i.e., if for every $n \in N$ and every choice of $t_{1}, \ldots, t_{n} \in T$ the random vector $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ is symmetric α-stable.

For more information on stable random vectors, processes and distributions see [2]. Almost all $S \alpha S$ random vectors and stochastic processes studied in literature are maximal; and even more, almost all of them have pure atomic spectral measure. In [1] one can find some results on characterizing maximal $S \alpha S$ random vectors in the language of geometry of reproducing kernel spaces, however, except some trivial cases, these results are given only for infinite--dimensional $S \alpha S$ random vectors. The following, surprisingly simple theorem characterizes maximal symmetric α-stable random vectors on \boldsymbol{R}^{n} :

Theorem 1. Assume that a random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ is symmetric α-stable and β-substable for some $\beta \in(\alpha, 2]$. Then the canonical spectral measure v for the vector \boldsymbol{X} has a continuous density function $f(u)$ with respect to the Lebesgue measure on the unit sphere $S_{n-1} \subset \mathbb{R}^{n}$, and $f(u)>0$ for every $u \in S_{n-1}$.

Proof. From the assumptions we infer that there exists a symmetric β-stable random vector $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ such that $X \stackrel{d}{=} Y \Theta^{1 / \beta}$, where $\Theta>0$ independent of \boldsymbol{Y} is α / β-stable with a Laplace transform $\exp \left\{-t^{\alpha / \beta}\right\}$. Assume that

$$
\boldsymbol{E} \exp \{i t\langle\xi, \boldsymbol{Y}\rangle\}=\exp \left\{-c(\xi)^{\beta}|t|^{\beta}\right\} .
$$

This means that for every ξ we have

$$
\langle\xi, \boldsymbol{Y}\rangle \stackrel{d}{=} c(\xi) Y_{0}, \quad \text { where } E \exp \left\{i t Y_{0}\right\}=\exp \left\{-|t|^{\beta}\right\} .
$$

In particular,

$$
\boldsymbol{E}|\langle\xi, \boldsymbol{Y}\rangle|^{\alpha}=c(\xi)^{\alpha} \boldsymbol{E}\left|Y_{0}\right|^{\alpha} .
$$

Since $\alpha<\beta$, we have $c^{-1}=\boldsymbol{E}\left|Y_{0}\right|^{\alpha}<\infty$ and $c(\xi)^{\alpha}=c \boldsymbol{E}|\langle\xi, \boldsymbol{Y}\rangle|^{\alpha}$. Calculating now the characteristic function for the vector X we obtain

$$
\begin{aligned}
\boldsymbol{E} \exp \{i\langle\xi, \boldsymbol{X}\rangle\} & =\boldsymbol{E} \exp \left\{i\left\langle\xi, \boldsymbol{Y} \Theta^{1 / \beta}\right\rangle\right\} \\
& =\boldsymbol{E} \exp \left\{-c(\xi)^{\beta} \Theta\right\}=\exp \left\{-c(\xi)^{\alpha}\right\} \\
& =\exp \left\{-c \boldsymbol{E}|\langle\xi, \boldsymbol{Y}\rangle|^{\alpha}\right\} \\
& =\exp \left\{-\int_{\mathbf{R}^{n}}|\langle\xi, \boldsymbol{x}\rangle|^{\alpha} c f_{\beta}(\boldsymbol{x}) d \boldsymbol{x}\right\}
\end{aligned}
$$

where $f_{\beta}(\boldsymbol{x})$ denotes the density function of the $S \beta S$ random vector \mathbf{Y}. This means that the function $c f_{\beta}(x)$ is the density of a spectral measure for the random vector \boldsymbol{X}.

To get the canonical spectral measure v_{0} for the $S \alpha S$ random vector \boldsymbol{X} from this spectral measure it is enough to make the spherical substitution $\boldsymbol{x}=r \boldsymbol{u}$ and integrate out the radial part. Consequently, for every Borel set $A \subset S_{n-1}$ we obtain

$$
v_{0}(A)=\iint_{A}^{\ldots} \underbrace{\int_{0}^{\infty} c f_{\beta}(r u) r^{n-1+\alpha} d r}_{g(u)} w(d u),
$$

where w is the Lebesgue measure on S_{n-1}. Since f_{β} is üniformly continuous on \boldsymbol{R}^{n} and $f_{\beta}>0$ everywhere, $g(u)$ is a continuous function and $g(u)>0$ everywhere. The uniqueness of the canonical spectral measure implies that the function $g(u)$ is the density of the measure v_{0}, which completes the proof.

Corollary 1. Every random vector with a pure atomic spectral measure is maximal. In fact, for maximality of the $S \alpha S$ random vector it is enough that its spectral measure μ is zero on a set in S_{n-1} of positive Lebesgue measure.

Corollary 2. Let (E, \mathscr{B}, μ) be a σ-finite measure space and let $\boldsymbol{Y}=$ $\{Y(B) ; B \in \mathscr{B}, \mu(B)<\infty\}$ be an independently scattered $S \alpha S$ random measure on (E, \mathscr{B}) controlled by the measure μ. We say that a stochastic process $X=\left\{X_{t} ; t \in T\right\}$ is a set-indexed $S \alpha S$-process if there exists a map S from T to \mathscr{B} such that

$$
X_{t}=Y\left(S_{t}\right)
$$

Every set-indexed $S \alpha S$-process is maximal.
Proof. Notice that any finite-dimensional marginal distribution of a set--indexed $S \alpha S$-process has a pure point spectrum. For example, the 3 -dimensional marginal characteristic function is

$$
\begin{aligned}
& E \exp \left\{i \left(z_{1} X_{t_{1}}+\right.\right. z_{2} \\
&\left.\left.X_{t_{2}}+z_{3} X_{t_{3}}\right)\right\}=E \exp \left\{i\left(z_{1} Y\left(S_{1}\right)+z_{2} Y\left(S_{2}\right)+z_{3} Y\left(S_{3}\right)\right)\right\} \\
&= \exp \left\{\left|z_{1}\right|^{\alpha} \mu\left(S_{1} \cap S_{2}^{c} \cap S_{3}^{c}\right)+\left|z_{2}\right|^{\alpha} \mu\left(S_{1}^{c} \cap S_{2} \cap S_{3}^{c}\right)\right. \\
&+\left|z_{3}\right|^{\alpha} \mu\left(S_{1}^{c} \cap S_{2}^{c} \cap S_{3}\right)+\left|z_{2}+z_{3}\right|^{\alpha} \mu\left(S_{1}^{c} \cap S_{2} \cap S_{3}\right) \\
&+\left|z_{3}+z_{1}\right|^{\alpha} \mu\left(S_{1} \cap S_{2}^{c} \cap S_{3}\right)+\left|z_{1}+z_{2}\right|^{\alpha} \mu\left(S_{1} \cap S_{2} \cap S_{3}^{c}\right) \\
&\left.+\left|z_{1}+z_{2}+z_{3}\right|^{\alpha} \mu\left(S_{1} \cap S_{2} \cap S_{3}\right)\right\} .
\end{aligned}
$$

Some of important $S \alpha S$-processes are set-indexed processes: for example, multiparameter Lévy motion, multiparameter additive processes, generally linearly additive processes, a class of self-similar $S \alpha S$-processes (see, e.g., [3]-[6]). Moreover, all these processes have very interesting properties, called determinisms.

Corollary 3. If an $S \alpha S$ random vector X is not maximal, i.e., if X is β-substable for some $\beta>\alpha$, then there exist a symmetric Gaussian random vector \boldsymbol{Z} and a maximal $S \alpha S$ random vector \boldsymbol{Y} such that

$$
X \stackrel{d}{=} Z \Theta^{1 / 2}+Y
$$

where $\Theta \geqslant 0$ has the Laplace transform $\exp \left\{-t^{\alpha / 2}\right\}, \boldsymbol{Z}, \boldsymbol{Y}$ and Θ are independent.
Proof. Since every continuous function attains its extremes on very compact set, we have

$$
A=\inf \left\{g(\boldsymbol{u}): u \in S_{n-1}\right\}>0,
$$

where $g(\boldsymbol{u})$ is the density of the canonical spectral measure for X obtained in Theorem 1. Now it is easy to see that $\boldsymbol{X} \stackrel{\underline{d}}{=} \boldsymbol{Z} \Theta^{1 / 2}+\boldsymbol{Y}$ for the Gaussian random vector \boldsymbol{Z} with the characteristic function $\exp \left\{-A^{1 / \alpha} \sum_{k=1}^{n} \xi_{k}^{2}\right\}$, and the $S \beta S$ random vector \boldsymbol{Y} with the spectral measure given by the density function $f(\boldsymbol{u})=g(\boldsymbol{u})-A$.

Remark 1. The representation obtained in Corollary 3 is not unique. In fact, for every $S \alpha S \beta$-substable random vector X and every symmetric Gaussian random vector \boldsymbol{Z} taking values in the same space \boldsymbol{R}^{n} there exist a constant $c>0$ and a maximal $S \alpha S$ random vector Y such that

$$
X \stackrel{d}{=} c Z \Theta^{1 / 2}+Y
$$

where Θ as in Corollary $3, \boldsymbol{Y}, \boldsymbol{Z}$ and Θ are independent.
Proof. The representation (*) for the characteristic function of an $S \alpha S$ random vector holds for every $\alpha \in(0,2]$ including the Gaussian case. However, for $\alpha=2$ we do not have uniqueness for the spectral measure v. In fact, v can always be taken here from the class of pure atomic measures on S_{n-1}, but such a representation is not useful for our construction. We will use the measure v_{A} constructed as follows:

Let $v=v_{I}$ be the uniform distribution on the unit sphere $S_{n-1} \subset R^{n}$, and let $U=\left(U_{1}, \ldots, U_{n}\right)$ be the random vector with the distribution v. Then we have

$$
\exp \left\{-\int_{S_{n-1}} \ldots \int|\langle\xi, u\rangle|^{2} c_{n} v(d u)\right\}=\exp \left\{-\frac{1}{2}\langle\xi, \xi\rangle\right\}
$$

where $c_{n}^{-1}=2 E U_{1}^{2}$. Now let Σ be the covariance matrix for the random vector Z and let $\Sigma=A A^{T}$. We denote by v_{1} the distribution of the random vector $A U$. Then

$$
\begin{aligned}
\exp \left\{-\int \ldots \int\langle\xi, \boldsymbol{x}\rangle^{2} c_{n} v_{1}(d x)\right\} & =\exp \left\{-\int_{\mathbf{S}_{n-1}} \ldots \int\langle\xi, A \boldsymbol{u}\rangle^{2} c_{n} v(d u)\right\} \\
& =\exp \left\{-\int \ldots \int\left|\left\langle A^{T} \xi, \boldsymbol{u}\right\rangle\right|^{2} c_{n} v(d u)\right\} \\
& =\exp \left\{-\frac{1}{2}\left\langle A^{T} \xi, A^{T} \xi\right\rangle\right\}=\exp \left\{-\frac{1}{2}\langle\xi, \Sigma \xi\rangle\right\}
\end{aligned}
$$

which is the characteristic function for the Gaussian vector \boldsymbol{Z}. It is easy to see now that for a suitable constant $a>0$

$$
\exp \left\{-\int_{\boldsymbol{R}^{n}}^{\ldots}|\langle\xi, \boldsymbol{x}\rangle|^{\alpha} c_{n} v_{1}(d \boldsymbol{x})\right\}=\exp \left\{-a(\langle\xi, \Sigma \xi\rangle)^{\alpha / 2}\right\}
$$

which is a characteristic function of the sub-Gaussian vector $\boldsymbol{Z} \Theta^{1 / 2}$. We define now the measure v_{A} as the projection (in the sense described in the proof of Theorem 1.) of the measure v_{1} to the sphere S_{n-1} and we obtain

$$
\int \underset{R^{n}}{ } \ldots|\langle\xi, x\rangle|^{\alpha} c_{n} v_{1}(d x)=\int_{S_{n-1}} \ldots \int|\langle\xi, u\rangle|^{\alpha} v_{A}(d u) .
$$

Since v_{1} is absolutely continuous with respect to the Lebesgue measure, v_{A} has the same property and $v_{A}(d u)=f_{A}(u) \omega(d u)$ for some continuous positive function f_{A}. If $g(u)$ is the density of the spectral measure for \boldsymbol{X}, then there exists $c_{0}>0$ such that

$$
c_{0}=\sup \left\{c>0: g(u)-c f_{A}(u) \geqslant 0\right\} .
$$

Now it is enough to define the maximal $S \alpha S$ random vector X by its canonical spectral measure absolutely continuous with respect to the Lebesgue measure with density $h(u)=g(u)-c_{0} f_{A}(\boldsymbol{u})$ and put $c=c_{0}^{1 / \alpha}$. \square

REFERENCES

[1] J. K. Misiewicz, Sub-stable and pseudo-isotropic processes. Connections with the geometry of sub-spaces of L_{α}-spaces, Dissertationes Math. 358 (1996).
[2] G. Samorodnitsky and M. Taqqu, Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman \& Hall, London 1993.
[3] Y. Sato, Distributions of stable random fields of Chentsov type, Nagoya Math. J. 123 (1991), pp. 119-139.
[4] Y. Sato and S. Takenaka, On determinism of symmetric α-stable processes of generalized Chentsov type, in: Gaussian Random Fields, World Scientific, 1991, pp. 332-345.
[5] S. Takenaka, Integral-geometric constructions of self-similar stable processes, Nagoya Math. J. 123 (1991), pp. 1-12.
[6] S. Takenaka, On determinism of set-indexed SaS processes, in: Trends in Probability and Related Analysis 1999, World Scientific, 1999, pp. 285-290.

Jolanta K. Misiewicz
University of Zielona Góra
ul. Szafrana
65-246 Zielona Góra, Poland
-Shigeo Takenaka
Department of Applied Mathematics
Okayama University of Science
700-0005 Okayama, Japan

[^0]: * Institute of Mathematics, University of Zielona Góra.
 ** Department of Applied Mathematics, Okayama University of Science.

