PROBABILITY AND MATHEMATICAL STATISTICS Vol. 22, Fase. 2 (2002), pp. 253–258

SOME REMARKS ON $S\alpha S$, β -SUBSTABLE RANDOM VECTORS

BY

JOLANTA K. MISIEWICZ* (ZIELONA GÓRA) AND SHIGEO TAKENAKA** (OKAYAMA)

Abstract. An S α S random vector X is β -substable, $\alpha < \beta \leq 2$, if $X \stackrel{d}{=} Y \Theta^{1/\beta}$ for some symmetric β -stable random vector Y, $\Theta \ge 0$ a random variable with the Laplace transform $\exp\{-t^{\alpha/\beta}\}$, Y and Θ are independent. We say that an S α S random vector is maximal if it is not β -substable for any $\beta > \alpha$.

In the paper we show that the canonical spectral measure for every $S\alpha S$, β -substable random vector X, $\beta > \alpha$, is equivalent to the Lebesgue measure on S_{n-1} . We show also that every such vector admits the representation X = Y + Z, where Y is an $S\alpha S$ sub-Gaussian random vector, Z is a maximal $S\alpha S$ random vector, Y and Z are independent. The last representation is not unique.

Mathematics Subject Classification: 60A99, 60E07, 60E10, 60E99.

Key words and phrases: Symmetric α -stable vector, substable distributions, spectral measure.

Let us remind first the well-known definitions of symmetric α -stable random variables, random vectors and stochastic processes, $\alpha \in (0, 2]$. The random variable X is symmetric α -stable if there exists a positive constant A such that

$$E\exp\left\{itX\right\} = \exp\left\{-A\left|t\right|^{\alpha}\right\}.$$

A random vector $X = (X_1, ..., X_n)$ is symmetric α -stable if for every $\xi = (\xi_1, ..., \xi_n)$ the random variable $\langle \xi, X \rangle = \sum_{k=1}^n \xi_k X_k$ is symmetric α -stable. This is equivalent to the following condition:

$$\forall \xi = (\xi_1, \ldots, \xi_n) \exists c(\xi) > 0 \langle \xi, X \rangle \stackrel{d}{=} c(\xi) X_1.$$

It is well known that if X is an $S\alpha S$ random vector on \mathbb{R}^n , then there exists a finite measure v on \mathbb{R}^n such that

(*)
$$E \exp\{i\langle\xi, X\rangle\} = \exp\{-\int \dots \int_{\mathbb{R}^n} |\langle\xi, x\rangle|^{\alpha} v(dx)\}.$$

* Institute of Mathematics, University of Zielona Góra.

** Department of Applied Mathematics, Okayama University of Science.

The measure v is called the spectral measure for an $S\alpha S$ random vector X. If v is concentrated on the unit sphere $S_{n-1} \subset \mathbb{R}^n$, then it is called the *canonical spectral measure* for X. The canonical spectral measure for a given $S\alpha S$ vector X is uniquely determined.

An S α S random vector X is β -substable, $\alpha < \beta \leq 2$, if there exists a symmetric β -stable random vector Y such that

 $X\stackrel{d}{=} Y\Theta^{1/\beta},$

where $\Theta \ge 0$ is an α/β -stable random variable with the Laplace transform $\exp\{-t^{\alpha/\beta}\}$, Y and Θ are independent.

DEFINITION 1. An $S\alpha S$ random vector X is maximal if for every $\beta \ge \alpha$ and every $S\beta S$ random vector Y, and every Θ independent of Y the equality $X \stackrel{d}{=} Y\Theta$ implies that $\alpha = \beta$ and $\Theta = \text{const.}$

A stochastic process $\{X_t: t \in T\}$ is symmetric α -stable if all its finitedimensional distributions are symmetric α -stable, i.e., if for every $n \in N$ and every choice of $t_1, \ldots, t_n \in T$ the random vector $(X_{t_1}, \ldots, X_{t_n})$ is symmetric α -stable.

For more information on stable random vectors, processes and distributions see [2]. Almost all $S\alpha S$ random vectors and stochastic processes studied in literature are maximal; and even more, almost all of them have pure atomic spectral measure. In [1] one can find some results on characterizing maximal $S\alpha S$ random vectors in the language of geometry of reproducing kernel spaces, however, except some trivial cases, these results are given only for infinitedimensional $S\alpha S$ random vectors. The following, surprisingly simple theorem characterizes maximal symmetric α -stable random vectors on \mathbb{R}^n :

THEOREM 1. Assume that a random vector $X = (X_1, ..., X_n)$ is symmetric α -stable and β -substable for some $\beta \in (\alpha, 2]$. Then the canonical spectral measure ν for the vector X has a continuous density function f(u) with respect to the Lebesgue measure on the unit sphere $S_{n-1} \subset \mathbb{R}^n$, and f(u) > 0 for every $u \in S_{n-1}$.

Proof. From the assumptions we infer that there exists a symmetric β -stable random vector $\mathbf{Y} = (Y_1, ..., Y_n)$ such that $X \stackrel{d}{=} \mathbf{Y} \Theta^{1/\beta}$, where $\Theta > 0$ independent of Y is α/β -stable with a Laplace transform $\exp\{-t^{\alpha/\beta}\}$. Assume that

$$E\exp\left\{it\langle\xi, Y\rangle\right\} = \exp\left\{-c\left(\xi\right)^{\beta}|t|^{\beta}\right\}.$$

This means that for every ξ we have

 $\langle \xi, Y \rangle \stackrel{d}{=} c(\xi) Y_0$, where $E \exp\{it Y_0\} = \exp\{-|t|^{\beta}\}$.

In particular,

$$E|\langle \xi, Y \rangle|^{\alpha} = c(\xi)^{\alpha} E|Y_0|^{\alpha}.$$

Since $\alpha < \beta$, we have $c^{-1} = E |Y_0|^{\alpha} < \infty$ and $c(\xi)^{\alpha} = cE |\langle \xi, Y \rangle|^{\alpha}$. Calculating now the characteristic function for the vector X we obtain

$$E \exp \{i \langle \xi, X \rangle\} = E \exp \{i \langle \xi, Y \Theta^{1/\beta} \rangle\}$$
$$= E \exp \{-c(\xi)^{\beta} \Theta\} = \exp \{-c(\xi)^{\alpha}\}$$
$$= \exp \{-cE |\langle \xi, Y \rangle|^{\alpha}\}$$
$$= \exp \{-\int \dots \int |\langle \xi, x \rangle|^{\alpha} cf_{\beta}(x) dx\},$$

where $f_{\beta}(x)$ denotes the density function of the $S\beta S$ random vector Y. This means that the function $cf_{\beta}(x)$ is the density of a spectral measure for the random vector X.

To get the canonical spectral measure v_0 for the SaS random vector X from this spectral measure it is enough to make the spherical substitution x = ru and integrate out the radial part. Consequently, for every Borel set $A \subset S_{n-1}$ we obtain

$$v_0(A) = \int \dots \int_{A}^{\infty} \int_{0}^{\infty} cf_{\beta}(ru) r^{n-1+\alpha} dr w (du),$$

where w is the Lebesgue measure on S_{n-1} . Since f_{β} is uniformly continuous on \mathbb{R}^n and $f_{\beta} > 0$ everywhere, g(u) is a continuous function and g(u) > 0 everywhere. The uniqueness of the canonical spectral measure implies that the function g(u) is the density of the measure v_0 , which completes the proof. \square

COROLLARY 1. Every random vector with a pure atomic spectral measure is maximal. In fact, for maximality of the SaS random vector it is enough that its spectral measure μ is zero on a set in S_{n-1} of positive Lebesgue measure.

COROLLARY 2. Let (E, \mathcal{B}, μ) be a σ -finite measure space and let $Y = \{Y(B); B \in \mathcal{B}, \mu(B) < \infty\}$ be an independently scattered SaS random measure on (E, \mathcal{B}) controlled by the measure μ . We say that a stochastic process $X = \{X_i; i \in T\}$ is a set-indexed SaS-process if there exists a map S from T to \mathcal{B} such that

$$X_t = Y(S_t).$$

Every set-indexed $S\alpha S$ -process is maximal.

Proof. Notice that any finite-dimensional marginal distribution of a setindexed $S\alpha S$ -process has a pure point spectrum. For example, the 3-dimensional marginal characteristic function is J. K. Misiewicz and S. Takenaka

$$\begin{split} E \exp\left\{i(z_1 X_{t_1} + z_2 X_{t_2} + z_3 X_{t_3})\right\} &= E \exp\left\{i\left(z_1 Y(S_1) + z_2 Y(S_2) + z_3 Y(S_3)\right)\right\}\\ &= \exp\left\{|z_1|^{\alpha} \mu(S_1 \cap S_2^c \cap S_3^c) + |z_2|^{\alpha} \mu(S_1^c \cap S_2 \cap S_3^c) + |z_3|^{\alpha} \mu(S_1^c \cap S_2^c \cap S_3) + |z_2 + z_3|^{\alpha} \mu(S_1^c \cap S_2 \cap S_3) + |z_3 + z_1|^{\alpha} \mu(S_1 \cap S_2^c \cap S_3) + |z_1 + z_2|^{\alpha} \mu(S_1 \cap S_2 \cap S_3^c) + |z_1 + z_2 + z_3|^{\alpha} \mu(S_1 \cap S_2 \cap S_3)\right\}. \end{split}$$

Some of important $S\alpha S$ -processes are set-indexed processes: for example, multiparameter Lévy motion, multiparameter additive processes, generally linearly additive processes, a class of self-similar $S\alpha S$ -processes (see, e.g., [3]–[6]). Moreover, all these processes have very interesting properties, called *determinisms*.

COROLLARY 3. If an $S\alpha S$ random vector X is not maximal, i.e., if X is β -substable for some $\beta > \alpha$, then there exist a symmetric Gaussian random vector Z and a maximal $S\alpha S$ random vector Y such that

$$X \stackrel{d}{=} Z \Theta^{1/2} + Y,$$

where $\Theta \ge 0$ has the Laplace transform exp $\{-t^{\alpha/2}\}, \mathbb{Z}, \mathbb{Y}$ and Θ are independent.

Proof. Since every continuous function attains its extremes on very compact set, we have

$$A = \inf \{ g(u): u \in S_{n-1} \} > 0,$$

where $g(\mathbf{u})$ is the density of the canonical spectral measure for X obtained in Theorem 1. Now it is easy to see that $X \stackrel{d}{=} Z\Theta^{1/2} + Y$ for the Gaussian random vector Z with the characteristic function $\exp\{-A^{1/\alpha}\sum_{k=1}^{n}\xi_{k}^{2}\}$, and the $S\beta S$ random vector Y with the spectral measure given by the density function $f(\mathbf{u}) = g(\mathbf{u}) - A$.

Remark 1. The representation obtained in Corollary 3 is not unique. In fact, for every $S\alpha S \beta$ -substable random vector X and every symmetric Gaussian random vector Z taking values in the same space \mathbb{R}^n there exist a constant c > 0 and a maximal $S\alpha S$ random vector Y such that

$$X \stackrel{d}{=} c Z \Theta^{1/2} + Y,$$

where Θ as in Corollary 3, Y, Z and Θ are independent.

Proof. The representation (*) for the characteristic function of an $S\alpha S$ random vector holds for every $\alpha \in (0, 2]$ including the Gaussian case. However, for $\alpha = 2$ we do not have uniqueness for the spectral measure ν . In fact, ν can always be taken here from the class of pure atomic measures on S_{n-1} , but such a representation is not useful for our construction. We will use the measure ν_A constructed as follows:

Let $v = v_I$ be the uniform distribution on the unit sphere $S_{n-1} \subset \mathbb{R}^n$, and let $U = (U_1, ..., U_n)$ be the random vector with the distribution v. Then we have

$$\exp\left\{-\int_{S_{n-1}} |\langle \xi, u \rangle|^2 c_n v(du)\right\} = \exp\left\{-\frac{1}{2}\langle \xi, \xi \rangle\right\},\$$

where $c_n^{-1} = 2EU_1^2$. Now let Σ be the covariance matrix for the random vector Z and let $\Sigma = AA^T$. We denote by v_1 the distribution of the random vector AU. Then

$$\exp\left\{-\int \dots \int \langle \xi, \mathbf{x} \rangle^2 c_n v_1(d\mathbf{x})\right\} = \exp\left\{-\int \dots \int \langle \xi, A\mathbf{u} \rangle^2 c_n v(d\mathbf{u})\right\}$$
$$= \exp\left\{-\int \dots \int |\langle A^T \xi, \mathbf{u} \rangle|^2 c_n v(d\mathbf{u})\right\}$$
$$= \exp\left\{-\frac{1}{2}\langle A^T \xi, A^T \xi \rangle\right\} = \exp\left\{-\frac{1}{2}\langle \xi, \Sigma \xi \rangle\right\},$$

which is the characteristic function for the Gaussian vector Z. It is easy to see now that for a suitable constant a > 0

$$\exp\left\{-\int \dots \int |\langle \xi, x \rangle|^{\alpha} c_n v_1(dx)\right\} = \exp\left\{-a(\langle \xi, \Sigma \xi \rangle)^{\alpha/2}\right\},\$$

which is a characteristic function of the sub-Gaussian vector $Z\Theta^{1/2}$. We define now the measure v_A as the projection (in the sense described in the proof of Theorem 1) of the measure v_1 to the sphere S_{n-1} and we obtain

$$\int \dots \int |\langle \xi, \mathbf{x} \rangle|^{\alpha} c_n v_1(d\mathbf{x}) = \int \dots \int |\langle \xi, \mathbf{u} \rangle|^{\alpha} v_A(d\mathbf{u}).$$

Since v_1 is absolutely continuous with respect to the Lebesgue measure, v_A has the same property and $v_A(du) = f_A(u)\omega(du)$ for some continuous positive function f_A . If g(u) is the density of the spectral measure for X, then there exists $c_0 > 0$ such that

$$c_0 = \sup \{c > 0: g(u) - cf_A(u) \ge 0\}.$$

Now it is enough to define the maximal $S\alpha S$ random vector X by its canonical spectral measure absolutely continuous with respect to the Lebesgue measure with density $h(u) = g(u) - c_0 f_A(u)$ and put $c = c_0^{1/\alpha}$.

REFERENCES

- [1] J. K. Misiewicz, Sub-stable and pseudo-isotropic processes. Connections with the geometry of sub-spaces of L_{α} -spaces, Dissertationes Math. 358 (1996).
- [2] G. Samorodnitsky and M. Taqqu, Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman & Hall, London 1993.

- [3] Y. Sato, Distributions of stable random fields of Chentsov type, Nagoya Math. J. 123 (1991), pp. 119-139.
- [4] Y. Sato and S. Takenaka, On determinism of symmetric α-stable processes of generalized Chentsov type, in: Gaussian Random Fields, World Scientific, 1991, pp. 332-345.
- [5] S. Takenaka, Integral-geometric constructions of self-similar stable processes, Nagoya Math. J. 123 (1991), pp. 1-12.
- [6] S. Takenaka, On determinism of set-indexed SαS processes, in: Trends in Probability and Related Analysis 1999, World Scientific, 1999, pp. 285-290.

Jolanta K. Misiewicz University of Zielona Góra ul. Szafrana 65-246 Zielona Góra, Poland

_Shigeo Takenaka Department of Applied Mathematics Okayama University of Science 700-0005 Okayama, Japan

Received on 3.6.2002