PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 23, Fasc. 1 (2003), pp. 153–172

ON STABILITY OF TRIMMED SUMS

Tien-Chung Hu Chiung-Yu Huang Andrew Rosalsky

Abstract: Let $\{X_n, n \geq 1\}$ be a sequence of i.i.d. random variables and let $\{a_n, n \geq 1\}$ and $\{b_n, n \geq 1\}$ be sequences of constants where $0 < b_n \uparrow \infty$. Let $X_n^{(1)}, X_n^{(2)}, \dots, X_n^{(n)}$ be a rearrangement of X_1, \dots, X_n such that $|X_n^{(1)}| \geq |X_n^{(2)}| \geq \dots \geq |X_n^{(n)}|$. Consider the sequence of weighted sums $T_n = \sum_{i=1}^n a_i X_i, n \geq 1$, and, for fixed $r \geq 1$, set $T_n^{(r)} = \sum_{i=1}^n a_i X_i I(|X_i| \leq |X_n^{(r+1)}|), n \geq r+1$; i.e., $T_n^{(r)}$ is the sum T_n minus the sum of the $X_n^{(k)}$'s multiplied by their corresponding coefficients for $k=1,\dots,r$. The main results provide sufficient and, separately, necessary conditions for $b_n^{-1}T_n^{(r)}-k_n \to 0$ almost surely for some sequence of centering constants $\{k_n, n \geq 1\}$. The current work extends that of Mori [14], [15] wherein $a_n \equiv 1$.

2000 AMS Mathematics Subject Classification: 60F1S.

Key words and phrases: Extreme terms, lightly trimmed sums, almost sure convergence, strong law of large numbers.

THE FULL TEXT IS AVAILABLE HERE