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LINEARLY ADDITIVE RANDOM FIELDS WITH INDEPENDENT
INCREMENTS ON TIME-LIKE CURVES

BY

SHIGEO TAKENAKA (OkAvAMA)

Abstract. Let V be a convex cone in R". A curve L=
{I);teR,} R is called a time-like curve if {I(shs=zt} <
1(t)+ ¥ holds for any t. A random field {X (¢); te R"} whose restriction
X|.() = X (!(2)) on time-like curve L becomes an additive process is
considered and it is characterized as a set-indexed random field on the
dual cone V*,

0. SOME FACTS FROM PROJECTIVE GEOMETRY

0.1. Local coordinate. Let P" = (R"*!\{0})/(R\{0}) be the n-dimensional
real projective space and x = (x4, X,, ..., X5, Xo) be its homogeneous coordi-
nate. That is, two vectors x and y are identified in P" if there exists a non-zero
real number ¢ such that x =c¢-y.

The subset H,, = {(x1, X2, ..., X4, 0)} is called the (hyper-)plane at infinity.
We can introduce a local coordinate in the set P"\H, as =z(x)=
(x1/X%0> X2/X0, ...» Xu/Xo), and identify P"\H , with R". In this report, we will
use these local coordinates and use x instead of n(x) to simplify the notation.

0.2. Hyperplanes. To any vector a = (ay, a,, ..., a,) (or (ay, a3, ..., a,, 1)
in homogeneous coordinates) there corresponds a hyperplane

.Ha= {xEP”; a-x=a1x1+a2x2+'”+anx”___ __1}

(in homogeneous coordinates the condition inside the brackets takes the form
ax=a;x;+...4a,x,+aoxe = 0). Let us introduce a map * from P" onto the
set of all hyperplanes as a* = H,. Let us use the same notation to denote the
inverse map of ¥, that is, a** = (H,)* = a (the map * is called the duality map
between points and hyperplanes in P7). Note that a* is the hyperplane which is
perpendicular to the vector a and the distance from the origin O is —1/]a] (i.e.,
located on the opposite side of the origin).

0.3. Some properties. Let us fix a point a. Take any point yea* and
consider the following set of hyperplanes:

yeay={{z;z-y= -1} y-a= -1}
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It follows that Uyea* y* = {a}. This means that the dual hyperplane a* of
a point a is identified with the set of all hyperplanes H, = y* which contain the
point a.

For any point a, define the set S(a) = {x; @' x < — 1} which can mean the
set of all hyperplanes crossing the line segment Oa (see [8]).

1. RANDOM MEASURES AND LINEARLY ADDITIVE RANDOM FIELDS

1.1. Random measure. Let (E, 4, u) be a o-finite measure space. Fix an
infinitely divisible law and write its characteristic function as e “®,

DeFmNITION 1.1. A random field % = {Y(B); Be %, u(B) < o} is called
a random measure with controlled measure (E, #, u) if the following conditions
are satisfied:

1. E[eizY(B)] — e—u(B)tp(z);

2. for any A, Be % such that AnB = O, Y(A) and Y (B) are independent
and Y(AuB)=Y(4)+Y(B) holds as.;

3. for any disjoint family 4,e%, n=1,2,...,

Y(UA4)=) Y(4,) as.

1.2. Linearly additive random fields.
DerFmNiTION 1.2 (linearly additive random fields). An R"-parameter random

‘field {X (#); teR"} is called linearly additive if it is additive on any line. That is,

the process Z (s) = X (sv+ o) has independent increments on any line {sv+v,}.
Mori [2] obtained the following theorem:

THEOREM 1.1 (Mori [2]). Let {X (t)} be an R"-parameter linearly additive
random field. Then there exists uniquely a measure u on the set of all hyperplanes
in R" and the field has the representation

X(@®=7Y(S),

where the set S, is defined in Section 0.3, and {Y (B); B a measurable set in R"} is
the random measure which corresponds to the infinite divisible law of {X (t)}
controlled by (R", p).

Let us call this measure the Chentsov—Mori measure of {X}.

2. MULTIPARAMETER ADDITIVE RANDOM FIELDS

2.1. R" -parameter case.

DEFINITION 2.1 (Rocha-Arteaga and Sato [3]). An R"-parameter random
field {X (#); teR"} is called a multiparameter additive random field if the fol-
lowing conditions hold:
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1. For any points s, <s, <...<s,, the differences X (s,})—X(s,-1),
n=2,3,..., m make an independent system, where u <t means that u, < t,
hold for any k-th coordinate.

2. I §,<s,5,85<s, and s,—s; =8,—53, then X(s;)—X(s;) and

X (s4)— X (s3) are subject to the same law (i.e. {X} is invariant under the paral-

lel transforms).
3. X(0)=0 as.
4. X (s) is right-continuous and has left limits with respect to the order <.

TueOREM 2.1 (Takenaka [11]). Let {X (t); te R"} be a linearly additive multi-
parameter random field. Then there exists uniquely a measure u which concen-
trates on (R_Y', the field {X} has the following Chentsov type representation:

X =Y(S0),

where Y= {Y} is the random measure controlled by the measure u(x)
(=((dr)/r"*1)dv(u), x = r-u, ue$"~ '), which is invariant under the dual actions
of the parallel transforms.

2.2. The case of convex come parameter.

2.2.1. Convex cone.

DEerFINITION 2.2. A closed subset V — R" is called a convex cone if the
following conditions are satisfied:

1. There exists v, such that vy-v >0 for all veV.

2. Vis a convex set, that is for any vy, v,eVand for all ¢, 0 < c <1, it
follows that cv;+(1—c)v,eV. '

3. For any veV and for all ¢ >0, cveV.

Dermirion 2.3. Let V be a convex cone. The dual cone V* is defined as:
V*={ueR% u-v<0, VoeV}.

Note that the dual cone V* is also a convex cone, and we have (V¥)* = V.

2.2.2. EXAMPLES.

e Let us set V=FK". Then V*=R".

e Let V= {(x4, ..., Xu); JIE+.. +x3 < x;} be the future cone. Then

the dual cone Vf* = {\/x3+...4+x2 < —x,} is the past cone in physics where
we take the speed of light equal to 1.

2.3. V-parameter additive random fields. Let V' = R%. be a convex cone.
A curve L= {I(t); teR,} = V is called a time-like curve if {I(s); s >t} < I@)+V
holds for any teR,.

DermNITION 2.4. A random field {X (#); te V} is called an additive random
field with respect to V if the parameter restriction {X(f) = X (I(t)); teR.}
becomes an additive process for any time-like curve L.
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Note that R is a convex cone. Thus the multiparameter additive field
considered in Section 2.1 is an example of an additive field with respect to the
cone R" .

THEOREM 2.2 (Takenaka [12]). Let {X (t); te R"} be a linearly additive ran-
dom field and V be a convex cone. If {X (t); te V'} is an additive random field with
respect to V, then there exists uniquely a measure p which concentrates on the dual
cone V* and the process {X} has the following Chentsov type representation:

X (1) =Y(S@),
where {Y (*)} is the random measure controlled by p.
24. Proof. Let us take vq, v,, v3, ...€ V. Consider the differences
X(v) = Y(S(U1)),
X (©240)—X (01) = Y(S(v2+0v1) = Y(S(v0)),
X (03402 +02) =X 03+ 03) = V(S (03 +05+01)) — Y (S @2 +01),

If the corresponding set S(-)nV* with respect to the increasing sequence of
points vy, v3+v,, ¥4 +0,+v3,... is an increasing sequence of subsets, the
above differences are of the form

X (v)) = Y (S(v),
X(y+v)—X(v) = Y(S (Uz+U1)\S(U1)),
X (v3+ 0,4+ 01)— X (v3+01) = Y(S 03+ 05+ 0)\S (02 +v4)),

and are independent of each other.

Let us show the above. To make it simple consider the following two sets:
S(vy) = {vy-x < —1} and S(vy+v;) = {(vs+v,)-x < —1}. We are now con-
cerned with the intersection of these two sets. Let us consider the intersection of
the boundary of two sets:

B={x;v;-x=—1, (va+v,)- x=—1}.

It follows that for any ze B, z-v, = 0. Recall the definition: V* = {u; u-v <0,
Vve V}; the equation z-v, = 0 means that the set B is located outside of the
dual cone V*. The distances of two boundary hyperplanes from the origin are
1/llvyll, 1/llvy + v4]]. Consequently, we have ||v4|| < [lvy +v,||. These facts prove
that the following relation of the sets holds:

(Si+v)NV*) > (SN V*).

Since the support of the Chentsov—Mori measure related to this field X is V*,
X (v; +v,)— X (vy) is independent of X (v,).
In the same manner we can prove the main result.
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