

LINEARLY ADDITIVE RANDOM FIELDS WITH INDEPENDENT INCREMENTS ON TIME-LIKE CURVES

RV

SHIGEO TAKENAKA (OKAYAMA)

Abstract. Let V be a convex cone in \mathbb{R}^n . A curve $L = \{l(t); t \in \mathbb{R}_+\} \subset \mathbb{R}^n$ is called a *time-like curve* if $\{l(s); s \geq t\} \subset l(t) + V$ holds for any t. A random field $\{X(t); t \in \mathbb{R}^n\}$ whose restriction $X|_L(t) = X(l(t))$ on time-like curve L becomes an additive process is considered and it is characterized as a set-indexed random field on the dual cone V^* .

0. SOME FACTS FROM PROJECTIVE GEOMETRY

0.1. Local coordinate. Let $P^n = (R^{n+1} \setminus \{0\})/(R \setminus \{0\})$ be the *n*-dimensional real projective space and $x = (x_1, x_2, ..., x_n, x_0)$ be its homogeneous coordinate. That is, two vectors x and y are identified in P^n if there exists a non-zero real number c such that $x = c \cdot y$.

The subset $H_{\infty} = \{(x_1, x_2, ..., x_n, 0)\}$ is called the (hyper-)plane at infinity. We can introduce a local coordinate in the set $P^n \setminus H_{\infty}$ as $\pi(x) = (x_1/x_0, x_2/x_0, ..., x_n/x_0)$, and identify $P^n \setminus H_{\infty}$ with R^n . In this report, we will use these local coordinates and use x instead of $\pi(x)$ to simplify the notation.

0.2. Hyperplanes. To any vector $\mathbf{a} = (a_1, a_2, ..., a_n)$ (or $(a_1, a_2, ..., a_n, 1)$ in homogeneous coordinates) there corresponds a hyperplane

$$H_a = \{x \in \mathbb{P}^n; a \cdot x = a_1 x_1 + a_2 x_2 + ... + a_n x_n = -1\}$$

(in homogeneous coordinates the condition inside the brackets takes the form $\mathbf{a} \cdot \mathbf{x} = a_1 x_1 + \ldots + a_n x_n + a_0 x_0 = 0$). Let us introduce a map * from P^n onto the set of all hyperplanes as $\mathbf{a}^* = H_a$. Let us use the same notation to denote the inverse map of *, that is, $\mathbf{a}^{**} = (H_a)^* = \mathbf{a}$ (the map * is called the *duality map* between points and hyperplanes in P^n). Note that \mathbf{a}^* is the hyperplane which is perpendicular to the vector \mathbf{a} and the distance from the origin \mathbf{O} is $-1/|\mathbf{a}|$ (i.e., located on the opposite side of the origin).

0.3. Some properties. Let us fix a point a. Take any point $y \in a^*$ and consider the following set of hyperplanes:

$${y^*; y \in a^*} = {\{z; z \cdot y = -1\}; y \cdot a = -1\}.$$

It follows that $\bigcup_{y \in a^*} y^* = \{a\}$. This means that the dual hyperplane a^* of a point a is identified with the set of all hyperplanes $H_y = y^*$ which contain the point a.

For any point a, define the set $S(a) = \{x; a \cdot x \le -1\}$ which can mean the set of all hyperplanes crossing the line segment \overline{Oa} (see [8]).

1. RANDOM MEASURES AND LINEARLY ADDITIVE RANDOM FIELDS

1.1. Random measure. Let (E, \mathcal{B}, μ) be a σ -finite measure space. Fix an infinitely divisible law and write its characteristic function as $e^{-c\varphi(z)}$.

DEFINITION 1.1. A random field $\mathcal{Y} = \{Y(B); B \in \mathcal{B}, \mu(B) < \infty\}$ is called a random measure with controlled measure (E, \mathcal{B}, μ) if the following conditions are satisfied:

- 1. $E \lceil e^{izY(B)} \rceil = e^{-\mu(B)\varphi(z)}$;
- 2. for any A, $B \in \mathcal{B}$ such that $A \cap B = \emptyset$, Y(A) and Y(B) are independent and $Y(A \cup B) = Y(A) + Y(B)$ holds a.s.;
 - 3. for any disjoint family $A_n \in \mathcal{B}$, n = 1, 2, ...,

$$Y(\bigcup_{n} A_n) = \sum_{n} Y(A_n)$$
 a.s.

1.2. Linearly additive random fields.

DEFINITION 1.2 (linearly additive random fields). An \mathbb{R}^n -parameter random field $\{X(t); t \in \mathbb{R}^n\}$ is called *linearly additive* if it is additive on any line. That is, the process $Z(s) \equiv X(sv+v_0)$ has independent increments on any line $\{sv+v_0\}$.

Mori [2] obtained the following theorem:

THEOREM 1.1 (Mori [2]). Let $\{X(t)\}$ be an \mathbb{R}^n -parameter linearly additive random field. Then there exists uniquely a measure μ on the set of all hyperplanes in \mathbb{R}^n and the field has the representation

$$X(t) = Y(S_t),$$

where the set S_t is defined in Section 0.3, and $\{Y(B); B \text{ a measurable set in } \mathbb{R}^n\}$ is the random measure which corresponds to the infinite divisible law of $\{X(t)\}$ controlled by (\mathbb{R}^n, μ) .

Let us call this measure the Chentsov-Mori measure of $\{X\}$.

2. MULTIPARAMETER ADDITIVE RANDOM FIELDS

2.1. R_{+}^{n} -parameter case.

DEFINITION 2.1 (Rocha-Arteaga and Sato [3]). An \mathbb{R}^n -parameter random field $\{X(t); t \in \mathbb{R}^n\}$ is called a multiparameter additive random field if the following conditions hold:

- 1. For any points $s_1 \leq s_2 \leq ... \leq s_m$, the differences $X(s_n) X(s_{n-1})$, n = 2, 3, ..., m, make an independent system, where $u \leq t$ means that $u_k \leq t_k$ hold for any k-th coordinate.
- 2. If $s_1 \leq s_2$, $s_3 \leq s_4$ and $s_2 s_1 = s_4 s_3$, then $X(s_2) X(s_1)$ and $X(s_4) X(s_3)$ are subject to the same law (i.e. $\{X\}$ is invariant under the parallel transforms).
 - 3. X(0) = 0 a.s.
 - 4. X(s) is right-continuous and has left limits with respect to the order \leq .

THEOREM 2.1 (Takenaka [11]). Let $\{X(t); t \in \mathbb{R}^n\}$ be a linearly additive multiparameter random field. Then there exists uniquely a measure μ which concentrates on $(\mathbb{R}_-)^n$, the field $\{X\}$ has the following Chentsov type representation:

$$X(t) = Y(S(t)),$$

where $Y = \{Y\}$ is the random measure controlled by the measure $\mu(x) = ((dr)/r^{n+1}) dv(u)$, $x = r \cdot u$, $u \in S^{n-1}$, which is invariant under the dual actions of the parallel transforms.

2.2. The case of convex cone parameter.

2.2.1. Convex cone.

DEFINITION 2.2. A closed subset $V \subset \mathbb{R}^n$ is called a *convex cone* if the following conditions are satisfied:

- 1. There exists v_0 such that $v_0 \cdot v \ge 0$ for all $v \in V$.
- 2. V is a convex set, that is for any $v_1, v_2 \in V$ and for all $c, 0 \le c \le 1$, it follows that $cv_1 + (1-c)v_2 \in V$.
 - 3. For any $v \in V$ and for all $c \ge 0$, $cv \in V$.

DEFINITION 2.3. Let V be a convex cone. The dual cone V^* is defined as:

$$V^* = \{ u \in \mathbb{R}^n; \ u \cdot v \leq 0, \ \forall v \in V \}.$$

Note that the dual cone V^* is also a convex cone, and we have $(V^*)^* = V$.

2.2.2. Examples.

- Let us set $V = \mathbb{R}^n_+$. Then $V^* = \mathbb{R}^n_-$.
- Let $V_f = \{(x_1, \ldots, x_n); \sqrt{|x_2^2 + \ldots + x_n^2|} \le x_1\}$ be the future cone. Then the dual cone $V_f^* = \{\sqrt{x_2^2 + \ldots + x_n^2} \le -x_1\}$ is the past cone in physics where we take the speed of light equal to 1.
- **2.3.** V-parameter additive random fields. Let $V \subset \mathbb{R}_+^n$ be a convex cone. A curve $L = \{l(t); t \in \mathbb{R}_+\} \subset V$ is called a *time-like curve* if $\{l(s); s \ge t\} \subset l(t) + V$ holds for any $t \in \mathbb{R}_+$.

DEFINITION 2.4. A random field $\{X(t); t \in V\}$ is called an additive random field with respect to V if the parameter restriction $\{X_L(t) = X(l(t)); t \in \mathbb{R}_+\}$ becomes an additive process for any time-like curve L.

Note that \mathbb{R}_{+}^{n} is a convex cone. Thus the multiparameter additive field considered in Section 2.1 is an example of an additive field with respect to the cone \mathbb{R}_{+}^{n} .

THEOREM 2.2 (Takenaka [12]). Let $\{X(t); t \in \mathbb{R}^n\}$ be a linearly additive random field and V be a convex cone. If $\{X(t); t \in V\}$ is an additive random field with respect to V, then there exists uniquely a measure μ which concentrates on the dual cone V^* and the process $\{X\}$ has the following Chentsov type representation:

$$X(t) = Y(S(t)),$$

where $\{Y(\cdot)\}$ is the random measure controlled by μ .

2.4. Proof. Let us take $v_1, v_2, v_3, ... \in V$. Consider the differences

$$X(v_1) = Y(S(v_1)),$$

$$X(v_2+v_1)-X(v_1) = Y(S(v_2+v_1))-Y(S(v_1)),$$

$$X(v_3+v_2+v_1)-X(v_2+v_1) = Y(S(v_3+v_2+v_1))-Y(S(v_2+v_1)),$$

If the corresponding set $S(\cdot) \cap V^*$ with respect to the increasing sequence of points $v_1, v_1 + v_2, v_1 + v_2 + v_3, \dots$ is an increasing sequence of subsets, the above differences are of the form

$$\begin{split} X(v_1) &= Y\big(S(v_1)\big), \\ X(v_2+v_1)-X(v_1) &= Y\big(S(v_2+v_1)\backslash S(v_1)\big), \\ X(v_3+v_2+v_1)-X(v_2+v_1) &= Y\big(S(v_3+v_2+v_1)\backslash S(v_2+v_1)\big), \end{split}$$

and are independent of each other.

Let us show the above. To make it simple consider the following two sets: $S(v_1) = \{v_1 \cdot x \le -1\}$ and $S(v_1 + v_2) = \{(v_1 + v_2) \cdot x \le -1\}$. We are now concerned with the intersection of these two sets. Let us consider the intersection of the boundary of two sets:

$$B = \{x; v_1 \cdot x = -1, (v_1 + v_2) \cdot x = -1\}.$$

It follows that for any $z \in B$, $z \cdot v_2 = 0$. Recall the definition: $V^* = \{u; u \cdot v \leq 0, \forall v \in V\}$; the equation $z \cdot v_2 = 0$ means that the set B is located outside of the dual cone V^* . The distances of two boundary hyperplanes from the origin are $1/||v_1||$, $1/||v_1+v_2||$. Consequently, we have $||v_1|| < ||v_1+v_2||$. These facts prove that the following relation of the sets holds:

$$(S(v_1+v_2)\cap V^*)\supset (S(v_1)\cap V^*).$$

Since the support of the Chentsov-Mori measure related to this field X is V^* , $X(v_1+v_2)-X(v_1)$ is independent of $X(v_1)$.

In the same manner we can prove the main result.

REFERENCES

- [1] K. Kojo and S. Takenaka, On canonical representations of stable M₁-processes, Probab. Math. Statist. 13 (1992), pp. 229-238.
- [2] T. Mori, Representation of linearly additive random fields, Probab. Theory Related Fields 92 (1992), pp. 91-115.
- [3] A. Rocha-Arteaga and K. Sato, Topics in Infinitely Divisible Distributions and Lévy Processes, Communicación Técnica No 1-01-15/15-08-2001 (2001).
- [4] Y. Sato, Distributions of stable random fields of Chentsov type, Nagoya Math. J. 123 (1991), pp. 119-139.
- [5] Y. Sato, Structure of Lévy measures of stable random fields of Chentsov type, Probab. Math. Statist. 13 (1992), pp. 165-176.
- [6] Y. Sato and S. Takenaka, On determinism of symmetric α-stable processes of generalized Chentsov type, in: Gaussian Random Fields, World Scientific, 1991, pp. 332-345.
- [7] S. Takenaka, Representations of Euclidean random field, Nagoya Math. J. 105 (1987), pp. 19-31.
- [8] S. Takenaka, Integral-geometric constructions of self-similar stable processes, Nagoya Math. J. 123 (1991), pp. 1-12.
- [9] S. Takenaka, Examples of self-similar stable processes, in: Stochastic Processes, Springer, 1993, pp. 303-311.
- [10] S. Takenaka, On determinism of set-indexed SαS-processes, in: Trends in Probability and Related Analysis 1999, World Scientific, 1999, pp. 285-290.
- [11] S. Takenaka, On Set-Indexed Processes (in Japanese), Bulletin of Okayama Univ. of Science 37A (2002), pp. 15-21.
- [12] S. Takenaka, Linearly additive random fields with independent increments on time-like curves, in: Problems on Infinitely Divisible Processes (6), Cooperative research report, Institute of Statistical Mathematics 146 (2002), pp. 13-19.

Department of Applied Mathematics Okayama University of Science 700-0005, Okayama, Japan

Received on 7.6.2002