
PROBABILITY 
AND 

MATHEMATICAL STATISTICS 

MULTIPAR~~ETER SUPERADDITWE ERGODIC T H E O R E S  
FOB MEAN ERGODIC L1-CON 

Abstract. Let T and S be commuting Markovian operators on 
L1(X). We prove that when the operators are mean ergodic and 
{F(,,,,} is a directionally (T, S)-superadditive dominated process, then 
the "averages" n-2F(,,n, converge in LI-norm. If, further, the process is 
strongly superadditive, then the same averages converge a.e. as well. 
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1. INTRODUCTION 

Let (X, Z, p) be a a-finite measure space and T a linear contraction of L1 (X). 
We will call T a Mmkovian operator if T is positive and j ~ f  d p  = Sf d p  for all 
f~ L1 (X )  (ic. T* 1 = 1). We denote by An (T) the average n- T i .  If T and 

S are linear L,-contractions, A(,,,.,(T, S )  will denote (mn)-'zy=-; xyi,' T i  S'. 
When T and S commute, A, (T) A, ( S )  = A(,,,) (T, S) .  

An L1-contraction T is called mean ergodic if A,(T)  f  converges in L,- 
-norm for all f  eL1 (cf. [13]). 

Let T and S be positive linear contractions of L1 (X, p). A family of inte- 
grable functions F = (F(m,n)](m,n)EN~ with P(o,o) = P(n,o) = F(o,n) = 0 for all n 2 1 
will be called a directionally (T, S)-superadditive process (or a directionally 
superadditive process with respect to T and S )  if for all k, I, m y  n 2 0 we have 

(1.1) J ' ( m + , ,  2 F(m,n)+ Tm F,,n) and F{m,n +,I 2 J'(m,n) + Sn f'(m,l)-  

F is called a strongly (T, S)-superadditive process (see [4], [9] and 1141) if for all 
k, E ,  m, n 2 0 we have 
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If { - Frm+,)} is directionally (strongly) (T, S)-superadditive, then F is called 
directionally (strongly) (T, S)-subadditiue; if' both {F~,, , ,)  and {-F(,,n)} are di- 

m - 1  1-1 rectionally (T, S)-superadditive, then Frmrl = C=o X j E o  TiSjF(1,ll, and {F,,,,) 
is called a (T, S)-additive process. 

Remark.  Directional superadditivity (called superadditivity in [7] and 
[14]) is called 2-supcradditiuity in [13], p. 202. The notion of superadditivity 
defined in [I] {which can be similarly defined in [7] also for Markov operators 
on L1, but will not be used in this paper) implies directional superadditivity, 
but is weaker than strong superadditivity. - 

A superadditive process F is called bounded (with time constant yF) if 

and F is called dominated if there exists g~ L,  (called a dominant) such that 

A dominated process is necessarily bounded, with lgl dp 2 y p  for every domi- 
nant g. A dominant g is called an exact dominant if jlgldp = y,. 

Remarks .  1. A directionally superadditive process is positive (F(,,n, 2 0 
for all m, n > 0) whenever F(l,l, 2 0. 

2. If F is a directionally (strongly) superadditive process, then it is the sum 
of an additive process and the positive directionally (strongly) superadditive 
process defined by 

F;m,n, = F(,,,, - 2 1 Ti ~j FI1,,, for all m, n > 0. 
j = O  j = o  

Furthermore, F' = {I;;,,,,) is bounded (dominated) if F is bounded (domi- 
nated). 

In the sequel we will use the notation n = (n, n) for any integer n > 0. For 
positive integers m, n, u, and v,  (u, v )  d (m, n) means u < m and v < n, and 
(u, V )  < (my n) if (u, v) < (my n) and (u, v) # (m, n). Unless stated otherwise, 
T and S will denote positive linear operators. 

Multiparameter additive and superadditive processes with respect to Ll-L, 
contractions (i.e., Dunford-Schwartz operators) have been a subject of intensive 
study by various authors. It is known that if T and S are Dunford-Schwartz 
operators, then the (ordinary) averages n-'~;:,' TiSjf or the unrestricted 
averages ( m n ) - l ~ ~ = ~ l ~ ~ ~ :  ~ ' ~ j f  converge as. (see 131, 183, [lo], and [12]) 
when f E L1 or f E L log+ L, respectively. Also, if T and S are Markovian Dun- 
ford-Schwartz operators and F = (F(,,,,) is a bounded strongly (T, S)-superad- 
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ditive process, then n-2  F, converge a.e. (see [4] and 191). Almost everywhere 
convergence of unrestricted "averages" of strongly superadditive processes with 
respect to operators induced by measure-preserving transformations is establish- 
ed in [14], and the same convergence is obtained in [l] assuming only superad- 
ditivity of the process. Moving averages were considered in [11] for the superad- 
ditive processes of [I], and for strongly superadditive processes norm conver- 
gence was obtained in [5]  without restricting the moving averages. On the other 
hand, it is known (e.g., [13], p. 151) that the pointwise ergodic theorem need not 
hold for a general Markovian LI-contraction, so the above results are not valid if 
T and S are only L1- {or only La-) contractions. In 161, we obtained ergodic 
theorems for one-parameter superadditive processes with respect to a mean er- 
godc Markovian operator, which need not be an L,contraction. In this paper we 
study the norm and a.e. convergence of the "averages" PI-' Fm of superadditive 
processes with respect to commuting mean ergodic L1-contractions. The results 
obtained extend some ergodic theorems, proved previously by various authors 
(see [14], [7], [4], and [9]), to the setting of multiparameter superadditive 
processes relative to mean ergodic operators. It should be noted that the result 
of [I] has not yet been extended to Markovian operators. 

2. NORM CONVERGENCE 

First we note that the time constant y~ is attained as a limit: 

PROPOSITION 2.1. If Tand S are commuting Markovian operators on L,, 
and if F is a bounded directionally (T, S)-superadditive process, then 

I 

P r o  of. See [41, pp. 615-616, or [9]. The proof there uses only the direc- 
tional superadditivity of the process F and the fact that T and S are Mar- 
kovian. 

In investigating the norm and a.e. convergence of multiparameter proces- 
ses, we will often use the Brunel operator associated with the contractions 
under discussion (see [3] and [13], p. 213, for the definition of the Brunel 
operator). Moreover, we will often make use of the following theorem, which 
was proved in [6], that is why we will state it here (two-parameter version) for 
easy reference. 

THEOREM A ([6], Theorem 2.2). Let T and S be commuting contractions of 
L,, and let U be the corresponding Brunel operator. 

(i) If U is mean ergodic, then A, (T", S") f converges in Ll-norm for mJixed 
and every f E L1. 

(ii) If the moduli z and a of T and S, respectively, commute, then U is mean 
ergodic if and only if A,(T, S) f converges in L1-norm for every f €L1. 
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If T and S are commuting mean ergodic contractions on a Banach space 
B with El = limn,, A, (T) and E ,  = limn,, A, (S), then, for every XE By 
limn,, llAn(T, S)X -El Ez xll = 0 ([6], Lemma 2.3). Hence, it follows from The- 
orem A (ii) that if T and S are (commuting) mean ergodic positive &-con- 
trations, so is their Brunel operator. 

THEOREM 2.2. Let T and S be commuting Markovian operators on L1 with 
mean ergodic Brunei operator U. If F is a dominated directionally (T, 5')-superad- 
ditiue process, then n-2 F ,  converges in L1-norm. The Iimitfmctiun is both T- and 
S-invariant. - 

Proof. By Theorem A (i), n - 2 ~ ~ ~ b ~ ; ~ :  T ~ s ~ F ( ~ , ~ )  converges in L,- 
-norm, so we can assume that F is a posltive process. Since I; is dominated, 

n - 1  n - 1  

n - ' F , ~ n - ~  C TiSJg for some g ~ ~ T .  
t = O  j = O  

Again by Theorem A (i), An IT, S) g converges in L1-norm. By the "splitting 
theorem" ([13], p. 77), the limit g* is T- and S-invariant. Since U is a convex 
combination of Ti and s%, also Ug* = g*. If C = (g* > 0) and D = X-C, 
then 

Therefore, it is enough to prove the norm convergence on C. Since Tg* = 

Sg* = g*, L1 (C) is both T- and S-invariant. Let = TJ,,(,-I and $ = SILI[,-), 
and define G(,,,, = l ,F~,, ,) .  Then G = (G(,,,)) is bounded, and 

Similarly, G(,,, +1 ,  2 G(,,,) + 9 G(m,I). Thus G is a bounded (t $-superadditive 
process. Then n-2 G, converges in norm by Theorem 5.2 in [7], since the 
equivalent finite measure g8dp is invariant for f and $. 

Remarks. 1. Strong superadditivity is not needed for the norm conver- 
gence. 

2. If T and S have a common invariant equivalent probability, the norm 
convergence is obtained in [7] for bounded processes (see [14] for T and 
S induced by measure-preserving transformations). However, our proof of Theo- 
rem 2.2 requires that F be dominated (not just bounded). 

3. If TI, T,, .. ., T, are commuting Markovian operators on L,,  a family 
of L1-functions F = (Fz]  is called directionally (TI, . . ., &)-superadditive if 

Fs+kG >Ii , -+ciFFn'f(k-ni)e'r  for all l < i < d ,  

where ii = (nl, a,, . .., nd), and Zi is the i-th coordinate unit vector, 1 < i < d. 
In this case, if the associated Brunel operator U is mean ergodic, then the 
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same arguments yield the norm convergence of the averages n - d  F,, where 
R = (PI, n, . . ., n). 

4. The superadditivity of [I], defined for d commuting measure-preserv- 
ing transformations, can also be defined for d Markovian operators on L1; 
strong (TI, z, . . ., &)-superadditivity can be defined by using an analogue of 
the formula which computes the volume of a d-dimensional box from the d- 
dimensional distribution. For example, for commuting Markovian operators 
T, S and R on L1, the strong superadditivity will be defined by 

3. ALMOST EVERlWHCRE CONVERGENCE 

First we obtain the following a.e. result for additive processes (which gene- 
ralizes Theorem 2.8 of [6]). 

THEOREM 3.1. Let Tand S be commuting (not necessarily positive) contrac- 
tions on L1 whose moduli also commute. If the associated Brunel operator U is 
man ergodic, then A,(T, S) f converge a.e. and in L1-norm for all f EL, .  

Proof. By definition, the Brunel operator of T and S is the same as that 
of their moduli z = I TI and a = IS(. By Theorem A (i), A, (T, S) f and A, (7, a) f 
converge in L,-norm for all f E L1. Therefore, by Corollary (a) to Theorem 1 in 
[12] ,  A,(T, S') f converges a.e. for all f~ L,. Replacing T and S by z and a,  
respectively, we have also the ae. convergence of A,(r, a) f for all f~ L,. a 

The previous result will be extended to directionally superadditive proces- 
ses that have an exact dominant. For norm convergence, domination is suf- 
ficient by Theorem 2.2. 

THEOREM 3.2. Let Tand S be commuting Markovian operators on L, whose 
associated BrurzeE operator is mean srgodic. If F is a directionally (T, S)-superad- 
ditive process with an exact dominant, then lim,,, n-2 F,  exists a.e. and in L,-norm. 

Proof. By Theorem 3.1, A,(T, S) F(,,,, converge a.e., so we can assume 
that F is non-negative. Let 0 < g~ L1 be the exact dominant. Then 

1 1 "-1 

-Fs  < C T'Sjg = A,(T, S)g.  n2 n i , j=o 

Since A, (T, S) g converges a.e. and in Ll , by Theorem 3.1 (or Theorems 2.2 and 
2.8 in [6]), the a.e. limit is necessarily the L1-limit. Hence 

12 - PAMS 23.1 
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By Proposition 2.1, for a given E > 0, we can find a positive integer no such 
that 

We use Theorem A: since U is mean ergodic, by part (i) the averages 
A, (TnO, SnO) f converge in L,-norm for all f E L1, and by part (ii) also the 
Brunel operator associated with TnO and Sno is mean ergodic. The process 

is a (Tn", Sm)-additive process, so n - = H ,  converges a.e. and in norm to the 
same limit, by Theorem 3.1. Since T and S are Markovian, we obtain 

For any n let k ,  = [n/no] and jn = kn no. By directional superadditivity and 
positivity of F we have 

By directional superadditivity, F~n,,,n,,o, 2 H ,  (the proof by induction uses 
k- 1 the inequality F(kno,no) 2 Ci=O TinoF~no,,o,, which is also proved by induction). 

Hence we get 

which implies 

Since E > 0 is arbitrary, this gives lim inf n - 2  F ,  = lim sup n-2  F ,  a.e., and 
hence lirnn-'F, exists a.e. 

Remarks . 1. In the one-dimensional case, for T Markovian there is an 
exact dominant if {Fn) is a bounded superadditive process (cf. [2]). 

2. The one-dimensional result of [6] does not require the positive contrac- 
tion T to be Markovian. 

3. Our proof requires an exact dominant. In [I] there is a (two-parameter) 
example of a bounded (in fact, dominated) superadditive process which has no 
exact dominant. 

4. In [I] there is also a two-parameter example of a superadditive process 
which is not strongly superadditive, but still has an exact dominant. 
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THEOREM 3.3. Let Tand S be commuting Markovian operators on L1 whose 
associated Brunel operator U satisfies U1 < 1. If F is a directionally (T, S)- 
supemdditive process with an exact dominant, then n -2F ,  converges a.e. 

Proof. By Theorem 3 in [I21 (the proof of Theorem 2.4 in [6] is incom- 
plete), A, (T, S) f converges a.e. for every f E L, .  Hence, by considering 

we may assume that F,  is positive. - 

If g E L: is a dominant, we. have 

where S > 0 is a constant (from the construction of the Brunel operator), and 
m(n) = [,,h]+l. 

The measure is subinvariant for the Brunel operator U. Hence both its 
conservative and dissipative parts (C and D, respectively) are absorbing ([13], 
p. 131). The conservative part is further decomposed into two absorbing sets: 
C1 - on which U has an equivalent finite invariant measure, and Co - on 
which there is no absolutely continuous finite invariant measure. By the Dun- 
ford-Schwartz theorem, A,(U) f converges a.e. for all f EL, ,  and the limit is 
0 a.e, on Dl = D u C o .  Hence n - 2 F , + 0  a.e. on Dl. 

It remains to prove convergence a.e. on C 1 .  Since U is Markovian, 
U* lC1 = lC1, SO also T* lcl = lc, = S* l,,, by the Brunel-Falkowitz lemma. 
Hence L1 (C1) is invariant under both T and S, and their respective restrictions 
are denoted by pand g. As in Theorem 2.2, if we define G( m,n, = I,, F(,,,,, we 
obtain a (z g-superadditive process. Similarly, H = ID, F is a superadditive 
process with respect to Tand S, the restrictions of T and S to L, (D l )  (which is 
also invariant). If g is a dominant for F, then Q = I,, g is a dominant for G and 

= ID, g is a dominant for H. Since all the restrictions are also Markovian, 
Proposition 2.1 shows that y, = y~+y, .  Hence, if g is an exact dominant for F, 

is an exact dominant for G, and since and $ are mean ergodic, the previous 
theorem yields a.e. convergence on C1 of n-'G, = n-' I,, F,. H 

Next, we show that for strongly superadditive processes, boundedness 
suffices for a.e. convergence. The two different conditions imposed in the pre- 
vious theorems on the BruneI operator U, that it be mean ergodic or that it be 
an L,-contraction, are special cases of the condition that U is pointwise 
ergodic, i.e., A,(U) f (x) converges a.e. for every f E L1 (and, by Fatou's lemma, 
the limit function is integrable). 

THEOREM 3.4. Let Tand S be commuting Markovian operators on L1 whose 
associated Brunel operator U is pointwise mgodic, and let P be a bounded strong- 
l y  (T, S)-superadditive process. Then n-* F,  converges a.e. to  an Ll-function. 
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Proof. By the proof of Lemma 4.3 of [9] (which assumes the subinvari- 
ance of the measure, i.e., the fact that U is also an L,-contraction, only for 
deducing that U is pointwise ergodic), pointwise ergodicity of U implies that 
for F positive we have 

(3.1) for all a > 0. 

Since U is pointwise ergodic, the a.e. convergence of additive processes follows 
from Theorem 1 (b) in [12], and Fatou's lemma yields the integrability of the 
limit function. Now the proof of Theorem 3.1 in [9] proves our theorem (the 
integrability of the limit for F positive is also there). 

Remark.  The result of [I], for T and S induced by transformations 
preserving the same measure, requires only the superadditivity introduced 
there, which is weaker than strong superadditivity, It is not clear if Theorem 3.4 
can be proved for operators in this setting. 

When the Brunel operator satisfies U1 < 1, (3.1) can be improved to give 
a ''maximal inequality". This can be obtained from one of the inequalities in the 
proof of Lemma 4.3 in [9] (using the maximal inequality for U) .  We present 
here a simple proof, which does not depend on the intricate arguments of [2]. 

PROPOS~ON 3.5. Let T and S be commuting Markovian operators on L, 
whose associated Brunel operutor U sati$es U1 4 1, and let F be a bounded 
positive strongly (T, S)-superadditive process. Then, for any a > 0, 

1 
( { x :  s p x >  1) 4 .  a: 

Proof. Strong superadditivity of the positive process implies that (see [9] 
and [4]), for each k > 1, the functions 

l k k  

are in L:, and satisfy Jgkd,u = k - 2 S F k d p  4 yF, and 
n-1 

Gi:=  C TiS jgka  F,  for all l < n < k .  
i , j = O  

Brunel's estimate (1131, Theorem 3.4, p. 213) yields 

1 
(3.2) ( l - ~ ~ ; F n 4 2 6 : < d ~ , [ V ) g k  f o r a l l 1 4 n 4 k .  

Fix integers N and r, and put k = rN. Since 1 - n/(rN) 2 (r - l)/r for n < N, 
(3.2) yields 

(r - 1)' 
(3.3) max - 

l C n C N  r2n2 
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Since llgd1 G yP, the maximal ergodic inequality for U (1131, p. 51) yields for 
a > O  

By letting r + a, and then N 4 m, we obtain the desired inequality. EJ 

- 

4. ON CONDITIONS RELATED TO 
UNRES'FWICTED ALMOST EVERYWHERE CONVERGENCE 

Smythe 1141 proved unrestricted a.e. ergodic convergence for bounded 
strongly (T, S)-superadditive process F c L Iog+ L with some additional con- 
dition (which will be called C), which, as remarked there, is not easy to verify 
(although it is, in a sense, necessary). Some stronger but easier-to-check con- 
ditions were proposed in [14]. Let 

d ( ~ , ~ )  = F ( k , l )  - TF(k-lac) -SF{k,l- 1) f TSF(k- 1 , l  1) 

and define 
i m n  

It was shown in 1141 that C is implied by 

Also, if 

then (4.2) and the condition F c Llog' L imply (4.1) and the unrestricted a.e. 
ergodic convergence [14]. However, neither of the conditions (4.1) and (4.2) is 
much easier to verify, and it was conjectured in [14] that the conditions 
F c Llog+ L and (4.2) can be replaced by the single condition 

Llog + L 

In other words, the question is if Theorem 2.2 in [14] is valid when its assump- 
tions are replaced by (4.3). If condition (4.3) implied (4.1) (it certainly implies 
F c Llog+ L), then Theorem 2.2 of [14] could be applied to obtain the a.e. 
unrestricted convergence. It was shown in [14] that in many interesting cases 
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condition (4.3) implies (4.2), and hence (4.1). Unfortunately, these implications 
are not true in general. We will construct a dominated superadditive process 
F = (F1,,,,] c Llog+ L for which (4.3) holds and (4.1) does not. 

LEMMA 4.1. Let S be a Markovian operator and G = {Gj) an S-superad- 
ditive process. Then F(,,,, : = mG, de#nes a strongly ( I ,  S)-superadditive process 
( I  is the identity transformation). If G is bounded, then F has an exact dominant. 

The proof of strong superadditivity is a simple computation. If G is 
bounded, then by [2] it has an exact dominant, which is then an - exact domi- 
nant for F.  

Let ( X ,  E,  p) be the unit interval with Lebesgue measure. 

CLAIM 0. There exists a sequence {pk}k30 of fnon-negative measurabIe func- 
tions on X with: 

I (ii) 

(iii) 

Proof. Let a,, = n+l  for n 2 0. Put to = 1, and for n 2 1 put 

We now define p, = an~ro,t,l. Then pn 2 0, and we have: 

(i) IIpnll,=an<a for every n 2 0 .  

L 
(iii) I I ~ P ~ I I L I ~ ~ + L  = t n  2mnlog Van) = (n  + 1) log (n  + 1) 

log 4 + + O  as n - a .  
(n + 1) Clog (n + 1112 

(iv) IIi C ~ n l I ~ l o g + ~  2 c C (tn- 1 - tn) nlog n - C 
I 

= 00. fa 
n= 1 n B  1 (n + 1) log+ (n + 1) 

Let S be a measure-preserving transformation on (X, E,  p). The operator 
induced by S will also be denoted by S. 
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For any sequence (pk )kBO of positive functions with properties (iHiv), 
we can construct a strongly (I, S)-superadditive positive process as follows. 
Let { N k :  k 3 -1) be a strictly increasing sequence of integers with N-l = 0; 
let qj = 0 for j $ {Nk: k 3 - 11, q ~ &  = pk+ l .  Define inductively fo = 0, and 
fr+l  = S f i + q j .  Thus, fi =po l  for n < N o  we have f, = Sn-lp0, and 
fN,+ = SNOpo + p i .  We now put F,,,,) = nz;=, f,. Clearly, F(o,n, = Feso1 = 0. 
The definitions yield that 

k n-Nr-i-l 
4-41 ,  = [ x Sj p,] for k defined by Nk- < n - < Nk. 

r=O j = O  

k n-NT-1-1 L e t G o = ~ a n d f o r n > O d e h e G , = ~ r = , [ ~ j = o  . S f p , ]  with k = k(n) 
defined by Nk - < n 6 Nk . 

CLAIM 1. The process {G,) is S-superadditive. 

Pro of. We have to prove G, + 2 G, + Sn G,, which is obvious if n or I is 
zero. Let TI > 0 and 1 > 0, and take integers k, ir, v such that Nk- 1 < n < Nk, 
N u - l < l < N , ,  and N,- ,<n+I<N,.  Then 

When u > k, this yields, since always v u, that 

Gn+l-SnGi 2 z [x S'p,] 2 [ x Sjp,]  2 G,. 
r=O j = O  r = 0  j = 0  

When u < k, we subtract more and add less (since k < u) to obtain 

proving the claim. H 

CLAIM 2. F is a bounded (I, S)-superadditive process. Furthermore, 
F c Llog+ L. 

P r  o of. By Claim 1 and Lemma 4.1,F is strongly ( I ,  5')-superadditive. Let 
# = z;=,p,, which is in L, by property (ii) of ( p , } .  Then 4 is a dominant for 
the S-superadditive process G, since 

Hence F has an exact dominant, by Lemma 4.1. Property (iv) of { p , )  shows that 
q5 # L  log+ L. Equality (4.4) and property (i) of (p,)  yield that each F(,,,) is 
bounded, so F c Llog' L. ra 
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We will now assume that S is ergodic, and choose ( N k ) k B o  SO that our 
process satisfies (4.3) but not (4.1). First we will make a careful selection of the 
sequence {NA)k2  as follows. 

Define yk = IIx:=, P k l l l  = z:=, Itpklll. By the ergodic theorem, 

By Egorov's theorem, for any E ,  > 0 there exist a positive integer No and a set 
A, E Z with p(Ao) 2 1 -so,  such that 

- 

Vn 3 No: IA,(S)po(x)-yol < EO on A,. 

On the remaining part of X, An(S)po is obviously bounded by a,. Similarly, 
An P I  + l l ~ ~ l l ~  a.e., and hence 

1 
lim - z- (Sjx) + llplll a.e. (since n/(n + N o )  + 1). .-, n+No j = o  

Thus 

n - N o - 1  
On the remaining part of X, An (S) po (x)  + n- ' Cj=,  p, (Sjx)  is bounded by 
a,  + ao. We choose a sequence skJO satisfy-ing 

Therefore, for any > 0 there exists a positive integer N1 > No and A, EE 
with p (A,)  > 1 -cl such that 

k k 

(4.5) E~ (2 z ai) log* (2 C ai)  < 1 for all k 2 0, 
i = O  i = O  

V n > N 1 :  

and continuing the above process inductively, we obtain a strictly increasing 
sequence of positive integers Nk and a sequence of sets Ak E C with p (Ak) > 1 - E ~ ,  

such that 

On all of X, so in particular on the remaining part X - A , ,  the function 

1 n - N o - 1  

An(S)po(x)+- p , ( S j ~ ) - ~ ~  
n j = o  

is bounded by z:=, 4.  

< E ,  on A, .  
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I 
I CLAM 3. F satisfies (4.3). 

n-Np-1-1 P r a o f. Recall that for n > 0 we defined G. = C=, [C j= sj P,] 
I 

with k = k (n) defined by Nk-, < n < Nk, and (mn)- F(,,,, = n- G,. For 
n > No we have k(n)  2 1, and we can define 

I 1 k - 1  n - N p - l - l  I n-Nk-  a - 1 
I Hn(x)=--Z bp.(x) and Jn(x)=-  C Sipk(x). 

r = O  i = O  n i=o 

We then have n m l  G, = H,+ J, .  Since the function w(t )  = Itllog' ttl is convex, 
- 

we ' obtain 

Since n > Nk-l, we have, by (4.61, y k - l - ~ k - l  < H,(x) < ~ ~ - ~ + e ~ - ~  on 
A,- ,, and on the rest of the space H.(r) C Zri,' a,. Since m (t) is increasing on 
[0, m), the condition (4.5) yields 

1 12Hn I I L I ~ ~  + L = j a (2Hd d~ + I2H,) d p  
Ak- 1 -4;- 1 

k - 1  

< m ( a ~ ) ~ ( A k - i ) + ~ k - l ~ ( 2  C ai) C u(ak)+l-, 
i =  0 

where ah = 2 (yk- + E ~ -  ,). But for every k we have yk < zTzo llpilll = ll&ll, 
and ~k < EO, SO we obtain IIHnllLlog+L < ~ ( 2  11$11, + 2 ~ ~ ) +  1 for every n > 0. 

Now, since w is nondecreasing and convex, we have 

By the measure-preserving property of S, 

Therefore, we have 

11& ~ ( ~ . ~ 1  L10g + L ~(2114111 + ~ E o ) + ~ + s u P  k I I ~ P ~ I I L I ~ ~ + L  

for n > No and any rn > 0, which, by property (iii) of (p,), yieIds (4.3). H 
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C L ~  4. F fails to satisfy (4.1). 

Proof. Observe that, for any i, j 2 1, the definitions yield 

Hence 

1 " def 
q(m,n~ = - C (Gj-SGj-d= c ~ n .  

n j=l 
- 

Let k = k(j) be defined by Nk- < j < Nk. When Nk-  < j -  1, we obtain 
A j =  c : = ~ ~ ~ .  When Nk-, = j -1 ,  we obtain 

k 
Thus, we always have A j 2  Cr=,pr, so 

The set ( j: 1 6 j 6 pt, k ( J? > r }  contains n - Nr- numbers, and pr is in the sum 
for each of these j. Hence 

Given M > 0, by (iv), find k such that lk~:=, PrllLl,+L > M. Then choose 
N > Nk such that, for all n 2 N, (n-Nk)/n > 4. Hence, for n N, we have 
k (n) > k, and (n - Nr - l)/n 2 4 for r < k, so 

k(n) Re marks. 1. Notice that, since all the terms are positive, F(,,) 2 m &. , pj 
by (4.417 so suPrn,n I l F ( m , n ) I I ~ l o g + ~  = a by (iv). 

2. In our example, unrestricted a.e. ergodic convergence holds, by the 
one-dimensional "subadditive ergodic theorem" applied to {G,). Thus, the 
conjecture (see [14]) that condition (4.3) implies the unrestricted a.e. ergodic 
convergence is still open. 
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