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ON THE EXIT TIME OF o-STABLE PROCESS

BY
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Abstract. In this paper we investigate the probability that a-stable
Lévy process stays in convex body up to time ¢, This can be optimally
estimated from below by the same probability but of the rotationally
invariant process.
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INTRODUCTION

Let (X,, P*) be an a-stable process with values in #°. For D c %4, we
define 7p = inf{t > 0, X,¢ D}. It is very important to know the behaviour of
P*(tp > t). For example, _[;0 P*(tp > t)dt estimates the Green function of D,
and the behaviour of log P (t;, > 1), for ¢ — oo, estimates the eigenvalues of the
generator (see [2]-[5] and [9]). So far, P*(tp > t) has been described in the
case when the distribution of X, is rotationally invariant. This paper is devoted
to the general case of a-stable processes. In fact, we prove that if D is symmetric
and convex, then P%(tp > 1) is less than P%(zp > t), where X is a rotationally
invariant a-stable process.

PRELIMINARIES
In this paper, (X,, P*) denotes a-stable Lévy process (i.e. a homogeneous
process with independent increments) with values in %9, 0 < « < 2. Whenever

we mention a-stable process we think about the process as described above.
The Fourier transform of X, is given by the formula

Eexp(i(y, -Xt)) = exp(_ts’d_’ll Ky’ S>|10'(d:$)),
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where o is a certain symmetric, positive, finite measure concentrated on $%71,
{-,> denotes the standard scalar product, and |-| = (-,*)*/? is a norm. Such
a measure ¢ (called the spectral measure) determines the distribution of X,
whence the distribution of the whole process [8]. It is well known that trajec-
tories of (X,) are right continuous and have left-hand limits a.s.

Now we show the main tool of our paper. First we introduce the following
three families of random objects.

1. Let (X;)®2, denote a sequence of iid. real variables such that
PX;>t)=e . Put I'y=X,+...+X,. _

2. (Z,)®-, denotes a sequence of iid. #%valued symmetric vectors such
that E|Z,|* < o0, that is P(—Z,e') = P(Z,€e").

3. (U=, denotes a sequence of i.i.d. real-valued variables with uniform
distribution on [0, 1].

Moreover, we assume that (I';), (Z,), (U,) are independent families.

The following representation is crucial for our purposes.

ProPOSITION (the Series Representation, see [6], [7], [10]). We have:

@ Yo Iy Z, 1y, 11(2) converges a.s. in D0, 1] both in the supremum
and the Skorohod metrics.

(b) Y(t) = Z:°=1 Iyt Z,-1y,1,0), 0 <t <1, is an a-stable process with
independent and homogeneous increments.

(c) The Fourier transform of Y(t) is equal to

Eexp(i(y, Y(2))) = exp(— CLtEl(y, Z)),

where C, = j":fx"’sinxdx and Z £ Z,; hence the spectral measure of Y (1) is
equal to '

z
A) = C, E1,{ = ||Z|*.
o (4) A(I Zl>| |
COROLLARY. Let (X,, P*) be an a-stable Lévy process with spectral measure
o and o (8" Y) = 1. Assume that (Z,)%, are i.id. and ¥ (Z,) = o. Let (g,)2=, be
a sequence of Gaussian variables, with distribution N (0, 1), and assume that the
families (I',), (Z,), (U,) and (g,) are independent. Then the series

1

lfa o
. & Fn_llu'Zn'gn.l (t)
(CGE |gllf') p) (1]

is a representation of X (t) (in distribution on DO, 1]).

Since our proof is based on representation of the process via the mixture
of Gaussian processes, we shall recall a definition and some nice features of
Gaussian measures.

(*) X is a Gaussian vector if for every ye#* the real random variable
(v, X) has distribution N (m, ¢%), where m = E(y, X) and ¢* = E(p, X)*.
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(**) If X is a symmetric Gaussian random vector with values in %#¢, then
there exist numbers A; >4, >...> 1,20 and an orthomormal system
{v1, v, ..., va} such that

L(X)=L(Aiv1g1+A30292+...4+AaVada),

where g; are ii.d. with distribution N (0, 1).

(%¥) ANDERSON INEQUALITY [1]. Let X be a symmetric Gaussian vector in
A%, and V a symmetric convex set in R*. Then for every acR*

P(X+acV)<P(XeV).

The inequality above implies that if X is Gaussian and Y is any random
vector independent of X, then ’

P(X+YeV)<P(XeV).

From all a-stable Lévy processes on % we distinguish the special one, the
so-called “rotation invariant” process denoted by X (t). Its characteristic func-
tional depends on |y|: for every ye %,

Eexp(i(y, X)) = exp(—t|y]).

THE MAIN RESULT

Now we can state and prove our theorem.

THEOREM. Let (X,, P*) be an a-stable Lévy process with spectral measure
o and o(S°" 1) = 1. Let X, denote the rotationally invariant a-stable process.
Take arbitrary reN and let Vi, V,, ..., V, be any convex symmetric sets in #°
and 0<t; <t <...<t, <1 be any sequence from [0, 1]. Then

Po(

3

iD-

(X, ¥) > P(() (Vi)
Proof. First choose and fix any arbitrary orthonormal system in %9, say
{e1, ez, ..., e4}. Assume that (gy);=,,. . are independent and have identical
distribution N (0, 1). Put e
M(@) = (ﬁ_l_)”“‘ i Iy (e, Gint...+eiGan) L, 11(t)
C:Elgl*) =4 v

(as usual, (gis), (I'n), (U,) are independent). M (¢) is an a-stable process. For
ye#® we have

. 1
ECXP(’(J’, M(t))) = EXP(—W’«“EI(}G €191 +-"+engn)|a> = exp(—t{yl?,
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because g3, g2, .-, gn aTC independent N (0, 1) variables. Consequently, M () is
a version of X (¢). Let

X(@)=C, Z Iyt Ze go iy, (),

n=1

where #(Z,) = o, g, are independent N (0, 1) and

1 1/a
Co=|=—=1) .
: (C;E Igl“‘> _

Fix the points 0 = £y < t; < t; < ... <t, < 1. In the rest of the proof all proba-
bilities and expectations are regarded as conditional: we fix (U,, I',, Z,); then
the distribution of

Xt)=C, ), I'y'™ Zy gn iy, 11(2)

n=1

is Gaussian.

Let us put G, = X,,—X,,_,and V, =G, +... +G, k=1, ..., r. If we fix
(r',), (U,) and (Z,), then Gl, G,, ..., G, are independent Gaussian vectors with
values in #°. It is easy to see that (Yl, Y2, ..., Y,) generates a Gaussian vector in
(ﬂ")r Observe that if G,, G,, ..., G, are other independent vectors such that
G, < G,, then

LY, Yoo .., W) =2(%, 5, ..., ¥), where ¥, = Gi+...4G,.
All we have to do now is to estimate the quantity
P((Yl, Y2, . Y,.)EVIX...X I/,.)

Since, by virtue of (xx),

=Cp ) I'yVZ, gy 1(ty—1 < U, <1y)

n=1

Gk = th—'X

te—-1

is a Gaussian vector, there exists an orthonormal system, say {vys, ..., Va}, and
numbers Ay = Ay = ... = Ag = 0 such that

d
Gy = A Vi G+ AanVaxgon+ - -+ Aak Vak Ga-

We can find Ay, easily:

= sup E(x, G)? = C? sup ZF 2a(x, Z) A(teey < U, < 1)

<C YT 1(t-1 < Uy < ty)

n=1
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By a similar argument,

oo

B, GHLglyl(Y T2 1(t, < U, < 1)
1 .

(we use the fact that {vyy, ..., vy} is an orthonormal system). Taking the expec-
tation of Iy, Z,, U,, we get the desired conclusion.

Remarks. 1. Taking V; =V, V closed, and using standard approxima-
tion arguments, we get for ¢ > 0 the estimate P%(ty > t) = P%(ty > 1).

2. The spectral measure ¢ of X has the mass greater than 1 if d > 1.
Indeed,

1 .
O'Sd_l)_ EI3191+...+edgd|a= E(g%++g§)‘1/2

1
~ Elg® Elgl*
However, let us take any v, €#%“ such that |v,[ =1 and consider

oo

Xt)=C, Y I'y 01 g1 11y, 1:(0),

n=1
and
X@=_c, > ry 1m'lm,,,l](f)'(v’l G1ntV2gon+ ...+ 0aGam)-
n=1
Put V= {x: |(vy, x)| < 1}. Now,

[e o]

(v1, X(t)) =C, Y. Iy 1y, 11(8) G1n 4 (01, X @)

n=1

hence
P?{(’CV > t) = P%(TV > t).
But the spectral measure of X () has a total mass equal to

1
———Elv g =1.
Elgr ~"™

This proves that the inequality is optimal.

3. Assume that X (¢) has the spectral measure gy which is absolutely con-
tinuous with respect to the spectral measure oz of X. Let oy (ds) = £ () a¢(ds)
(0% is equal to uniform measure on $¢~! multiplied by (E[g|)~*-E(g?+...+g3)*?).
Assume that f (s) > C > 0 for s€ $?~1. Then, under the conditions of our theo-
rem, we have

PO( ﬂ (X,eW) < P ﬂ (CY=X, e V).
i=1 i=1

For the proof, observe that X, £ X,+ C'* X,, where X, and X, are independent
a-stable processes and X, has a spectral measure ¢ = ox— Caz. Using the
Anderson inequality gives the desired result.
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Let us put
G¥ = g ATk var+ GauAu v+ 4 Ga ATw Vas

where

=Y T (- < U, < 1)

.....

independent of (g,). Observe that "
91k/11kv1k+92k)~2k1’2k+--n+gaklakvak+g'1k'\/mm1k h
+9'2k'\/M‘Uzk+-w+gdk'M‘Uak
L A Ot Gk A Voo F Gar AN V.

Therefore, we can choose independent Gaussian vectors G,, D,, G, D,,
..., G,, D, and independent Gaussian vectors G¥, G%, ..., GF such that for
k=1, o b WE have

(@) Gu+Dy = GF,

(b) Gk % Gka

(© G_l? =q_1lekU1k“}_‘---+gdk1kadk-

Put Y;c = G]_ +"'+Gk’ Zk = Dl +...+Dk, I’;‘f= = GT+...+G;::. The Ander-
son inequality implies that

P(Y%,....YHeVix..xV)=P(Y, ..., Y)+(Z4, ..., Z)eV; x...x }})

<P((Y, ..., D)eVix..xV)=P(Y1, ..., Y)eV x...x V).
Let us compute the distribution of (YF¥). Since
G¥ = guc A V1k+ 9ok A V2 + - -+ Garc A1k Var

it is easy to see that
1,, .
Z(G¥) = g(a—(x(tk)_x(tk—l))>-

Indeed, let ye%?; then
(y, ()2 t)—X (t- 1)))

=C, Z L1ty < U, < tk)'(()’a e)gint...+, ed)gdn)
n=1 .

ic, Y Iyt (-, < U, < tk)'gm\/(ys e +...4+(, e
n=1 N *

L gC (Y T 11 < U, < 1),
=1

where #(g) = N (0, 1).
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