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INTRODUCTION 

Let (X,, P") be an a-stable process with values in @. For D c ad, we 
define z ,  = i d ( t  2 0,  X,#D) .  It is very important to know the behaviour of 
PX(rD > t). For exampIe, J," PX ( T ~  > t )  dt estimates the Green function of D, 
and the behaviour of log P (zD > t) ,  for t -, oo, estimates the eigenvalues of the 
generator (see [2]-[5] and 191). So far, P x ( t D  > t) has been described in the 
case when the distribution of X, is rotationally invariant. This paper is devoted 
to the general case of a-stable processes. In fact, we prove that if D is symmetric 
and convex, then P$(T, > t )  is less than P$ (t, > t), where 2 is a rotationally 
invariant ol-stable process. 

In this paper, (X,, Px)  denotes ol-stable Ltvy process (i.e. a homogeneous 
process with independent increments) with values in Bd, 0 < a < 2. Whenever 
we mention a-stable process we think about the process as described above. 

The Fourier transform of X, is given by the formula 
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where a is a certain symmetric, positive, finite measure concentrated on Sd-l, 
(-, -) denotes the standard scalar product, and I - 1  = ( . , - ) ' j 2  is a norm. Such 
a measure a (called the spectral measure) determines the distribution of XI,  
whence the distribution of the whole process [a]. It is well known that trajec- 
tories of (X,) are right continuous and have left-hand limits as. 

Now we show the main tool of our paper. First we introduce the following 
three families of random objects. 

1. Let (Xi),",, denote a sequence of i.i.d. real variables such that 
P ( X i  > t )  = e-'. Put r n = X l +  ...+ X,. 

2. (Z&@= denotes a sequence of i.i.d. gd-valued symmetxi< vectors such 
that EIZnIa < m, that is P ( - Z , E . )  = P ( Z , E - ) .  

3, (U,),"= , denotes a sequence of i.i.d, real-valued variables with uniform 
distribution on LO, 11. 

Moreover, we assume that (r,), (Z,), (U,) are independent families. 
The following representation is crucial for our purposes. 

PROPOSITION (the Series Representation, see [6], [7], [lo]). We haue: 
(a) zr= T,l/a. Z,,. lLUm,ll I t )  converges U.S. in D [0, 11 both in the supremum 

and the Skorohod metrics. 
(b) Y (t) = Em r; '1" . Z ,  - (t), 0 < t < 1, is an a-stable process with 

n = l  
independent and homogeneous increments. 

(c) The Fourier transform of Y(t)  is equal to 

~ e x p ( i ( y ,  YW))  = exp(-C&tE I(Y, Z)IU), 

where C: = j: x-" sin x dx and Z 2.; hence the spectral measure of Y (t)  is 
equal to 

COROLLARY. Let (X,, Px) be an a-stable Ldvy process with spectral measure 
0 and o(Sd-l) = 1. Assume that (Z,),"=, are i,i.d. and 9 (2") = a. Let (g,)zl be 
a sequence of Gaussian variables, with distribution N ( 0 ,  I), and assume that the 
families (r3, (23, (Un) and (9,) are independent. Then the series 

is a representation of X ( t)  (in distribution on D LO, I]). 

Since our proof is based on representation of the process via the mixture 
of Gaussian processes, we shall recall a definition and some nice features of 
Gaussian measures. 

(*) X is a Gaussian vector if for every y E Wd the real random variable 
.(y, X) has distribution N ( m ,  a2), where m = E ( y ,  X) and a2 = ECy, X)2. 
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(**) If X is a symmetric Gaussian random vector with values in Wd, then 
there exist numbers I l  2 r12 2 . . . 3 Ad 3 0 and an orthonormal system 
( v l ,  v2, . . ., vd)  such that 

where gi are i.i.d. with distribution N ( 0 ,  1). 

(*,*I ANDERSON INEQUALITY [I]. Let X be a symmetric Gaussiun vector in 
Bd, and V a symmetric convex set in Wd.  Then for every U E  W d  

- 
P ( X + a €  V) < P ( X E  V). 

The inequality above implies that if X is Gaussian and Y is any random 
vector independent of X, then 

From all a-stable U v y  processes on ad we distinguish the special one, the 
so-called "rotation invariant" process denoted by *(t). Its characteristic func- 
tional depends on lyl : for every y E Bd, 

THE MAIN RESULT 

Now we can state and prove our theorem. 

THEOREM. Let (X, ,  Px) be an a-stable Lkvy process with spectral measure 
a and a ( S d - l )  = 1. Let Tt denote the rotationally invariant a-stable process. 
Take arbitrary r E N  and let Vl, V2, . . ., T/, be any convex symmetric sets in Bd 
and 0 < tl  < t2 < . . . < t, < 1 be any sequence from [0, I]. Then 

Proof.  First choose and fix any arbitrary orthonormal system in @, say 
( e l ,  e2 ,  . .., e,). Assume that (g,)i,l ,...,, are independent and have identical 

k=1,2, ... 
distribution N(0 ,  1). Put 

(as usual, (g,), (r.), (U,) are independent). M ( t )  is an a-stable process. For 
y E @ we have 
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because a,, g2,". . ., g, are independent N ( 0 ,  1) variables. Consequently, M (t) is 
a version of X (t). Let 

m 

X ( t )  = C, C I'i 'la * Zn - g n  11~, , i3  ('1, 
n=l 

where 9 (2,) = a,  g, are independent N (0, 1) and 

Fix the points 0 = to < tl < t2 < . . . < t, 6 1. In the rest of the proof all proba- 
bilities and expectations are regarded as conditional: we fix (U, ,  T,, Z,); then 
the distribution of 

m 

x (t) = C, C r, 'la . Zn . gn ' I rvn, l l  ( t )  
n =  1 

is Gaussian. 
Let us put Gh = X,-X ,,-, and = GI+ ... +G,, k = 1, ..., r. If we fix 

(r,), (U,)  and (Z,), then G I ,  G,, . . ., G, are independent Gaussian vectors with 
values in Wd. It is easy to see that (Yl ,  E;, . . ., Y,) generates a Gaussian vector in 
(ad)'. Observe that if GI, G2, . . . , fir are other independent vectors such that 
Gn f en, then 

9 ( ( Y  , Y ,  . . . ) )  = 9 ( (  , . . . ) )  where = el + . . . + ek. 
AU we have to do now is to estimate the quantity 

P((Yl ,  Y2, .. ., &)€ v1 x . .  . x K). 

Since, by virtue of (w), 

is a Gaussian vector, there exists an orthonormal system, say (v,,, . . ., udh), and 
numbers I l k  2 AZA 2 . . . > Adk 2- 0 such that 

We can find I l k  easily: 
m 

- 2 1 a ' ( ~ ,  ~ ~ ) ~ . l ( t k - l  < Un < t k )  = Sup E (X, Gk)' = C: SUP r n  
1x1 = 1 lxl=l n=l  



214 M. Lewandowski  

By a similar argument, 

(we use the fact that {tilkl . .., vdk)  is an orthonormal system). Taking the expec- 
tation of r n ,  Z, ,  U,, we get the desired conclusion. 

Remarks .  I. Taking = V, V closed, and using standard approxima- 
tion arguments, we get for t > 0 the estimate P:(zv > t) 2 P$(T, > t). 

2. The spectral measure a of 8 has the mass greater than I if d > 1. 
Indeed, 

However, let us take any v 1 ~ 9 t d  such that lull = 1 and consider 

and 

n = l  

Put V =  (x: I(vl, x)f < 1). Now, 

hence 

P$(z, > t) = pi(=, > t). 

But the spectral measure of X ( t )  has a total mass equal to 

This proves that the inequality is optimal. 
3. Assume that X(t) has the spectral measure ox which is absolutely con- 

tinuous with respect to the spectral measure ~f of *. Let o,(ds) = f (s)-of(ds) 
(a,- is equal to uniform measure on Sd - multiplied by (E lgl") - E @f + . . . + g,2)q2). 
Assume that f (s) 2 C > 0 for sf Sd-l. Then, under the conditions of our theo- 
rem, we have 

r r 

P O ( n  ~x,EF)) G PO(, ( c ~ ~ , ~ ~ E F ) ) .  
i= 1 i =  1 

For the proof, observe that X, f Xz + C1/" St, where X, and 8, are independent 
ol-stable processes and X, has a spectral measure a = ax- Cof. Using the 
Anderson inequality gives the desired result. 
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Let us put 

where 

For a moment, let us denote by (giJi=l,...,d a sequence of i.i.d. N(0 ,  1) variables, 
n=1,2, ... 

independent of (g,). Observe that 

Therefore, we can choose independent Gaussian vectors GI, Dl, G,, D,,  
..., G,, D, and independent Gaussian vectors G:, G z ,  . .., G: such that for 
k = 1, ..., r we have 

(a) Gk+& G:, 
(b) G k  G,, 
( ~ 1  Gk* ' g l k ~ ? k ~ l k + - . . ~ - g d k A ? k v d k .  
Put K =  el+ ...+ G k , Z k =  D l +  ...+ D,, Y: = G : +  ...+ G:. TheAnder- 

son inequality implies that 

< P((Fl,  ..., K)€Vl x... x K) = P((Y1, ...¶ K)€Vl x . . . x  K). 
Let us compute the distribution of (Y,*). Since 

it is easy to see that 

Indeed, let y E Wd; then 

m 
d 
= gculd(z r;21K-1(0-1 < u. < tk))li2, 

n = l  

where 9 (g) = N(0 ,  1). 
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