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Abstract. Let {Y®, n > 1} denote the sequence of k-th record
values of the sequence {X,, n > 1} of ii.d. random variables with an
absolutely continuous distribution function F. Fix re N. We show
that, for some very broad class of distributions F, the limit distribution
of the sequence

k(Y#,-YP), k21,
is the gamma distribution with pdf

r

S = (r—jl—)—!x"l exp(—4ix), x>0,

where 4 > 0 is a parameter which depends on F. We prove the similar
result for k-th lower record values Z®, Moreover, we discuss the asy-
mptotic behaviour of quotients of these quantities.

1. INTRODUCTION

Let {X,, n = 1} be a sequence of independent identically distributed ran-
dom variables with a common distribution function (cdf) F and probability
density function (pdf) f. Moreover, let X,.,, ..., X,., denote the order statistics
of a sample X,, ..., X,.

For a fixed k > 1 we define the k-th (upper) record times U, (n), n > 1, of the
sequence {X,, n>1} as U,(1) =1,

Ucn+1) =min{j > Uc(): Xjj14-1 > Xpmvumr-1)> 121,

and the k-th upper record values as Y® = Xy, m.vem+x—1 for n =1 (cf. [3]).
Note that for k=1 we have Y{" = Xy, (.v,e:= R, — (upper) record
values of the sequence {X,, n> 1} and that YP = X,,, = min(X4, ..., X}).
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Similarly, for a fixed k > 1 we define the k-th lower record times L, (n),
n>=1, of the sequence {X,, n>1} as L;(1)=1,

Li(n+1) = min {j > Ly(n): Xpjrr-1 < Xk:Lk(n)+k*1}s nzl,

and the k-th lower record values as Z® = X1 m+r—1 for n>= 1.

Note that for k = 1 we have Z{") = X .1, := R, — (lower) record values
of the sequence {X,, n> 1} and that Z{P = X, = max(X,, ..., X}).

In [4] it has been shown that if F is an absolutely continuous distribution
function “with probability density function f, concentrated on the interval
S < R, and if h(x) = f(x)/(1—F(x)) is a differentiable function with a bounded
first derivative, then

k(Y8 —YP)BW,, k- oo,
(D — in distribution), where W, is exponentially distributed for all n with the df
Ff(x)=1—exp(—ix), x>0,

and A = h(xg) (the right limit of hA(x) at the point x,), xo = infS, and F§,
F* denote the distribution concentrated at zero and the improper distribution
concentrated at infinity, respectively.

Moreover, it is shown in [2] that, under suitable assumptions, the limit
distributions of sequences

k(ZP—-2Z® ), k=1,
and
n(Y®/Y®P-1),n21, n(ZP/Z8,-1),n=21,

are exponential distributions with appropriate parameters depending on F.
In this paper we extend those results and we show that for a large class of
distributions F for any fixed n, re N, the sequences

k(Yslklr—Yslk))s k 2 15 and k(Zslk)_Zslk—{-r)a k Z ]-a

converge in distribution as k — oo to some gamma distributed random varia-
bles, respectively. Moreover, we show that for any fixed k, € N, the sequences

n(Y®,/Y®_1), n>1, and n(Z®/Z®,—1), n>1,

converge weakly as n— oo to gamma or negative gamma distribution. We
illustrate our results with examples of limit behaviour of differences and quo-
tients of k-th records. In the last section we discuss alternative proofs of the
main results of the paper.
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(23) fago (x) =

NoTtATION. Throughout the paper I'(x, f), where a > 0, f > 0, denotes
a gamma distributed random variable with the pdf

B .
Jup(x) = @~ ‘exp(—Bx), x=0.

If f=0, then I'(a, p) is improper distribution concentrated at oo, and if
f =, then I'(a, B) is the distribution concentrated at zero. Similarly,
NI'(«, B), where a > 0, > 0, denotes a negative gamma distribution with
the pdf

i
I'(x)

Moreover, let F(x) =1—F(x) and
H(x) = ~log(F(v), h(x)=f(x)/F(x)=H ()

denote the hazard function and the hazard rate of F, respectively. Similarly, let
H(x)= —logF(x), h(x)=fX)/F(x)=—H (x).

We also define |

|*~lexppx, x<0.

_f;ﬁ(x)

IO i g - IO

109 = ~F9log F ) TF®)logF()’

2. PROBABILITY DISTRIBUTIONS OF Y®,—Y® AND Z®—Zz®,

It is known that the pdf of Y% is

2.1) froo (x) = (HE) "(F®) ' f(x), xeR,

K
m—1)!
and the joint pdf of (Y®, Y®), m < n, is

(m—1)!(n—m—1)!

( log FEyD" " Fo) ' ro)

2.2) oo (%, y) = (He)"  h0)

for x <y and it is 0 for x = y (cf. [5]).
Moreover, the pdf of Z"" is

n

e O W) T, xeR,




22 M. Bieniek and D. Szynal

and the joint pdf of (Z®, Z®), m < n, is

ko .
Dl —m—1 2 ) "h(x)

n—m—1
x(_logifc’) F) ' F0)

for x > y and it is O otherwise.

24) Jzg0,200 (%, y) =

LEMMA 1. The distribution function of the random variable A®) = Y®., —

is of the_.form

relpt Fu+x)\'(Fu+x)\*
P =1- 2 5] ( W )) ( %(u) ) W
Jor x >0 and it is 0 otherwise.
Proof. Using (2.2) we see that the pdf of A% is

- k" = -1 @)
25) Jaga W) = (,T_—ﬁ,(,_—l),‘{ (—log (F (w)) )

X (—log F_E:(-l-)u))" 1 (Fw +u))k_ ' f(w+u)du

for w > 0. Therefore, the df of 4% is

kn+r

n—DiG—Dis
X {jl‘(—log t)y "t dt} du,

F 409 (%) = J(~log(Fw))" " (Fu)* " f (u)

where .
o= a(u, x) = F(u+x)/F (u).
Since
[(—logey—*ftdr=1¢* {rf (;;,1_),-! (—log t)"}+c
we have
(2.6) j( logty ~1é 1ds = =D {f (T_ 1_).! (—log oc)'}
k o ik
and

n

Fag () = (n%)—, [ (~log(F@)) ™" (F@) " £

Yo
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i (—loaF@) ™ (P

Flutx)) fs'k Fu+x)
x< F) ){fgoi_i(_k’g F@ >}d”
_ Fu+x)\ [k Flu+x)\
_l_g(_F_—(lT) {igoﬁ(—log F(u) )}@Frﬁ‘l(u),

which completes the proof of Lemma 1. = , -

Using (2.3) and (2.4) instead of (2.1) and (2.2) we prove the similar result for
k-th lower records. _ v

LeMMA 2. The distribution function of the random variable D&, = Z® —Z® is
of the form

=3 Fu—x)\ (Fu—x)\*
Forn () = 1_.-;0 i‘!i(—bg F(u) )( F(w) )szs'k)(u)

for x 20 and it is O otherwise.

Proof. Using (2.4) we see that the pdf of D&} is (after similar evaluations
as in Lemma 1)

kn+r n—
@7 SO = ey (s F O R

R

- r—1 K
x(—logF(;,‘(u)w)) (Fu—w) ™" f (u—w)du

for w = 0. Therefore the df of DY) is

kn+r

f(~log F@)"  (Fw)* " f @)

o) = hie—1ia

1
x {f (—logzy ¢ Ldt} du,
8

where
B:= Bu, x) = Fu—x)/F (u).

Using (2.6) we easily complete the proof of Lemma 2. m
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3. PROBABILITY DISTRIBUTIONS OF Y® /Y% AND Z®/Z%.,

We start this section with the following lemma.

Lemma 3. For-all real numbers A, B, C, 0 < A<B<C, and n, reN,
B

fur N (C—uy~'du

4 :
_I'nr'm's 1€ Y _(Cc N
n+r =~ 1 _Antr—1ijf =~ 1 .
F(n+r) Z B \B 4 A
Now let us state and prove the results on the probability distributions of

quotients Y% /Y® and ZW/Z¥, ..

LEMMA 4. The distribution function of the random variable U, = Y® /Y ®
is of the form

(1) Fyu (@)

m—i("*’ I)JR“H@ JR0, -l ) for 20,

j=0 J
-1

=< pit Z (n-'rr 1) [ RL(, (R, D—1) dFyeg () for 0<z<1,

r—1

p— 2(”}' 1) § Ry, (R (v, D— 1Y dFyey () for 221,

j=0

where
D= P{Yﬁ,"’ <0,Y%®,> 0}, p = P{Y},") < 0}+P{Y§,"l, > 0},
and

R(y, 2) = H(y/2)/H(y).

Proof. Note that if (X, Y) is an absolutely continuous random vector
with a pdf f (x, y) such that X < Y, then the distribution function of the ran-
dom variable Z = Y/X is

(32) Fz(2)
( ® yz
P{X<0,Y>0}—f | f(x, y)dxdy for z<0,
0 —w
0 y/z
—ﬁP{X<0 Y>0+ [ | f(x, y)dxdy for 0<z<1,
© ylz
P{X<0}+P{Y>0}—[ | f(x,y)dxdy forz>=1.
\. 0 —w
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Put X = Y® and Y = Y®,; then Z = U%¥) and we obtain (3.1) combining (3.2)
with (2.2) and Lemma 3. For instance, for z < 0

krtroo -1 vz n—1 r—1
By @ =t pnrn S FON SO § (HE) (HO)-H ) ™ ho e} dy
n+r @ H(y/z)

=Ty FOV SO v (HO) ) du}ay.

Using Lemma 3 with 4 =0, B= H(y/z) and C = H(y) we obtain

i n+r—1 ntr—1 H(J’)_. ’
Fug,fl(z)_p,,_g(ﬁ(y)) f(y){20< ; )(H(y/z)) (H@/Z)—1)}dy

r—1 _ nt+r—1 J
e R L

The remaining cases 0 <z <1 and z > 1 may be treated similarly. &
In the same way we prove the following result.

LeMMA 5. The distribution function of the random variable T®) = Z®/Z%),,
is of the form

Frea 2)

~

1 .
.Zo<n+; ) [ R0, (R, 9~ 1) dFye () for z <1,
=4

1—2 ("”" )jR”’ {0, DR, D=1 B ) for 231

j=o0

-

where R(y, z) = H(yz)/H (y).

4. LIMIT DISTRIBUTIONS OF DIFFERENCES OF k-TH RECORD VALUES

THEOREM 1. Let F be an absolutely continuous distribution function with
density f and the interval S < R as the support, such that h(x) = f (x)/(1—F (x)) is
a differentiable function with bounded first derivative

4.1) W(x) <M, xeS.

Let us fix re N and assume that {F,, k > 1} is a sequence of distribution functions
of the form

r—1 k: i . k
e (C L
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for x >0 and it equals O otherwise, where {G,, k = 1} is a sequence of dis-
tribution functions such that

4.2 G,—»G, k- oo,
and G is a distribution concentrated at a point xo€0S. Then
F,—> F¥;, k- o,
where F*, is the df of I'(r, A) random variable and
lim, ..+ h(x) if xo=infS$, -
{limx_,xa h(x) if xo=supS.

Proof Applying Taylor’s formula to the function s(z) = —log(1—F(2))
we obtain

1—F(u+x/k) x\ . X, x| x2
log 1_F@ =5 u+k s(u)—h(u)k+h u+k 2
where 0 < 8 < 1. Therefore

1-F,(x) = :i: L _f(xh(u)+h’ (u+9?x>i;;~)l

ils
Ox\ x*
x exp (—xh (u))exp ( 4 (u+~k—) T) dGy (u).

By (4.1) we have

Mx?

k

Hy,(x) CXP(— ) < 1-Fi(x) < Hg,, (x)exp (Mkaz)’

where
rZ Ox\ x

11 2\ i
H,(x) = _—'_[(xh (w)y+n (u+ )——) exp (— xh (u)) dGy ().
i=oils k)k
Let us fix i€{0, 1, ..., 7—1}. Using the binomial formula we obtain

£ (xh w+# (u +67x) %2)' exp (— xh (1)) dGy ()

= £ (xch (w))’ exp (— xh () dGy ()

w3 (75 gy (1 (s 2)5 ) exnl -t

j=0 5
=1+1s,
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say. Now, by (4.2) we have
I - (Ax)'exp(—Ax), k- oo,
and by (4.1) again

i~2 /i 2\i-1-j )
| < Z <I i 1) (ka ) _[(xh(u))’exp(—xh(u))de(u) -0, k- o,
j=0 S

where A is given by (4.3) below. This proves that for x > 0

- r—1

lim Hy,(x) = ),
k— oo N

i=0

il' (Ax) exp (— Ax),

which is the tail of I'(r, ) distribution function.

Using Lemma 1 one can see (cf. Example 1 in Section 6) that if
f(x)=Aexp(—4x), x>0, then for all n,reN the random variable
k(Y®,—Y®) has the gamma I'(r, 2) distribution. The following theorem
states that for a broad class of distributions F the asymptotic distribution of
k(Y®,—Y®) is also I'(r, A) with A depending on F.

THEOREM 2. Suppose that {X,, n = 1} is a sequence of i.i.d. random varia-
bles with df F and pdf f, with the interval S = R as the support, and that
h(x) = f (x)/F (x) is a differentiable function with bounded first derivative. Then
for any fixed n, reN

k(Y®,~Y®) BT, 1), k- o,

where
4.3) A= lim h(x)
and xq = infS.

Proof. By Lemma 1 the df of k4% is

e 1= F(u+ 3/ (1=F (u+x/k)
F""‘"'f"(x)_l_.;oi_!£<—log ~F@ )( (-F@

)k dGy (u),

where G, is the distribution function of Y®. Since Y® 3 x, = infS as k — oo,
Theorem 1 implies the result. m

Remark 1. For r =1 we obtain results of [4].

In the same way, but using Lemma 2 instead of Lemma 1, we can study
limit behaviour of k(Z®—Z®, ).

THEOREM 3. Let F be an absolutely continuous distribution function with
density f and the interval S = R as the support, such that h(x) = f (x)/F (x) is
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a differentiable function with bounded first derivative
(4.4) H(x) <M, xeS.

Let us fix re N and assume that {F,, k > 1} is a sequence of distribution func-
tions of the form

F(u— x/k))i (F (u—x/k)

i) F@ ) 4G )

r—1 ki
Fi(x)=1-Y, ,—‘j' —log
i=0 L S
for x = O"and it equals O otherwise, where {G,, k > 1} is a sequence of distribution
functions such that
4.5) G,—~G, k- o,
and G is a distribution concentrated at a point x,€0S. Then
F } g F ;': 2 k— o0 N
where

lim h(x) if x, =inf§,

x—=+xg

lim h(x) if xo=supS.

X xg

A=

Proof. Applying Taylor’s formula to the function §(z) = log F(z) we ob-
tain

F(u—x/k 0 2
log———%—)=§(u—%>’—s‘(u)= —h_(u)%+ﬁ’(u——£—>%,

where 0 < 0 < 1. Therefore

r—1 2\
1-Fi()= ¥, ilj(xﬁ(u)w?(u—%)%)

oils
xexp(—xﬁ(u))exp(—l?(u+gki)%2>de(u).

By (4.4) we have

2

, ) -
M:)Ql“Fk(x)SHk,r(x)eXP( :),

ﬁk,r (x) €xp (_

where

r—1 ’ 2\i »
H,(x)= Z ilj(xﬁ(u)—h’ (u+07x) ik_) exp (—xh () dGy (u).

's
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Let us fix ie{0, 1, ..., r—1}. Using the binomial formula we obtain
2\i
§ (xh' (w)—H (u +9?x) %) exp (—xh () dG, (u)
S

= [(xh )’ exp(—xF () dG (u)

S

i=2 boGx\ xE\
+ Z ( )j(xh_(u)) ( F’(u+ k)?) exp(—xh (1)) dGy (u)
s

=1 +1,,

~ say. Now, by (4.5) we have

I, » (Ix)exp(—1ix), k- o,

and by (4.4) again

1) < iiz (l; 1) (A/Ikxz)i_l_j.sf(xﬁ(u))j exp(—xh(u)dG, () -0, k- o,

i=0

where 1 is given by (4.3). This proves that for x >0
r—1

_ 1 . -
lim Hy,(x) = ), 7 (4x)' exp(—4x),
k- w0 i=0 i

which is the tail of I'(r, 4) distribution function. =

THEOREM 4. Suppose that {X,, n > 1} is a sequence of i.i.d. random varia-
bles with df F and pdf f, with the interval S < R as the support, and that
h(x) = f (x)/F (x) is a differentiable function with bounded first derivative. Then

Jor any fixed n, re N

k(ng)_Zslk-}-r) 2’ F(r’ Da k — 00,
where 1 = lim,.,- h(x) and x, =supS§.

Proof By Lemma 2 the df of kD¥ is

r—1 i _ i — k
e )

where Gy is the distribution function of Z®. Since Z® 3 x, = sup § as k — o0,
Theorem 3 implies the result. =

Remark 2. For r =1 we obtain results of [2].
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5. LIMIT DISTRIBUTIONS OF QUOTIENTS OF i-TH RECORD VALUES

THEOREM 5. Let F be an absolutely continuous distribution function with
density f and the interval S = R as the support and suppose that q(s) is a differen-
tiable function such that

(5.1) Ix2q' (x)) < M, xeS8.
Let {G,, n = 1} be a sequence of distribution functions such that

G,—» G, n- o,

and G is a distribution concentrated at a point x, = sup S. Let us fix re N and
assume that {F,, n> 1} is a sequence of distribution functions of the form

(52) F,(»)
f r—1
P (n+;—1) _[ Rrr1(y, x)(R;l(y, x)—l)jdG,.J,,(y) for x< —n,
j=0 °
r—1 _
B p:.+ (n+; 1) .(F) R:ﬂ._l(y’ X)(R;l(y, x)—l)jdG,m-(V) fOT —n<x< 0;
j=0 e
r—1 _ ® -
=2 (n+;' 1) (R, DR 0 )= 1Y dGarn()  for x>0,
L =0 o
where p, = G,(0)—G,+,(©0), py = 1+G,(0)—G,+,(0), and
(v/(1 + x/m)
Rn ’? = H———_
¥, x) H0)
Let
(5.3) U= limﬁ xq (x).
Then: ‘

(1) if xo > O, the sequence {F,} converges weakly to F}, as n — oo, where
F}, is the df of I' (r, p) distribution;

(2) if xo < 0, the sequence {F,} converges weakly to F¥_, as n— oo, where
F¥, is the df of NI'(r, v) distribution.

Proof. Let us consider the function s(x) = log H (1). Applying Taylor’s
formula we obtain

N _ x L. ¥ yx \?
g ke, ) = §(1 +x/n)—§(u) - _yq(Y)m-l_Eq (1+8x/n)(m) ’




Limit distributions of k-th record values 31

where 0 < 0 < 1. Therefore

1 2
R0 =exp( 00, 5o (324 (5 ) )

By (5.1) we have
2
2 y < 1 E
v (1+9x/n> \M( +n) ’
Mx?

X Mx? x -
em(—yq(y)ﬁ—x)exp(hﬁ) <SR, (3, < exp(qu(y)H—x)exp (W)
Now fix je{0,1,...,r—1}. Then

Mx*(n+r—1
exp (—_('1_2‘_2) EI;, (Z,,) I[Y,.+,.EA]

< (n+;—1) FRAFT Ly, ) (Ry 1 (v, X)—1) dG,y, ()
A

Mx*(n+r—1)\ -
< exp (T Efi(Z,)] [¥nsred]s

where Z, = Y,4,9(Y,4,), with Y, having the df G,,

n+r—1 zx(n+r—1) zx  Mx? ]
f;.(z)=< g )exp(—————n+x )(exp<n+x+ 2112)—1)
_ (n+r—1 zx(n+r—1) zx  Mx? J
f"(z)_< i )CXP(— ntx )(exP<n+x__2n_2)—1>'

By (4.2) and (5.3) we have Z, 3 u as n— o0. Moreover,

h@ e =2,
j!

which gives

and

n - oo,

and

lﬂ,(z)—»e""(z—jx'z, n— 0.

Consider two possible cases:

(1) xo =supS > 0. Then p,—>0 as n— 0o, g >0 and, for n sufficiently
large, ¥, > 0. Therefore F,(x) =0 for x <0, and for x > 0
S e )
F,,(X)—> 1— Z e —j!—,

i=0

n— 0,

which is the df of I'(r, ).
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(2) xo =supS < 0. Then p, =0, u < 0 and F,(x) = 1 for x > 0. Therefore
for —n<x<0

F,(x)—> ri“l Pt (—{.;_'|x|)j,

j=0
which is the df of NI'(r, —u). =

THEOREM 6. Suppose that {X,, n = 1} is a sequence of i.i.d. random varia-
bles with df F and pdf f, with the-interval S = R as the support, and that q(x) is
a differentiable function satisfying (5.1). Then for any fixed k, reN

YS."L_1 o JT0r ) if sup§ >0,
y® NI(r, —p) if supS<0
as n— oo, where pu is given by (5.3).

Proof By Lemma 4 the distribution function of n(Y%,/Y® —1) is of the
form (5.2) with G, being the df of Y®. Since Y® 3 x, = sup S as n— oo, the
result follows from Theorem 5. m

In the same way we can study limit behaviour of quotients of k-th lower
records.

THEOREM 7. Let F be an absolutely continuous distribution function with
density f and the interval S < R as the support and assume that 4 (x) is a differen-
tiable function such that

(5.4 x2q' (x)) <M, xeS.
Let {G,, n> 1} be a sequence of distribution functions such that
G,—»G, n-o o,

and G is a distribution concentrated at a point xo, = infS. Let us fix re N and
assume that {F,, n>1} is a sequence of distribution functions of the form
Fy(x)

i( ) { By, x)(R, 1 (y, x)— 1y dF 709 (¥) for x <0,
;

( )jR"h ', DR, x)— 1y dFze () for x 20,

where

R,(y, x)= By +x/n) (yl(; (-;)x/ n)).
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Let

(5.5) f = lim xg(x).
Then:
(1) if xo > 0, the sequence {F,} converges weakly to F¥; as n— o0;
() if xo <O, the sequence {F,} converges weakly to F}_; as n— .
THEOREM 8. Suppose that {X,, n > 1} is a sequence of ii.d. random varia-
bles with df F and pdf f, with the interval S < R as the support, and that g(x) is
a differentiable function satisfying (5.4). Then for any fixed k, re N

zy p T (r, i) if infS >0,
n -1)>

zZ®, NI'(r, —f) if infS<O0

as n— oo, where fi is given by (5.5).

Remark 3. For r =1 we obtain results of [2].

6. EXAMPLES

In this section we give examples of asymptotic behaviour of differences
and quotients of k-th record values from particular distributions.

ExampLE 1. Consider exponential Exp(l) and negative exponential
NExp (1) distribution functions given by

l—e ™ for x>0,
F(x)_{O for x <0

and

e for x<0,
G(x) =
) {1 for x >0,

respectively. Then using (2.5) we see that the density function of A% from F is

Saga (x) = (Tém(kx)"l e, x>0.
This implies that kA from the df F has the gamma I'(r, 4) distribution for all
ke N. Similarly, using (2.7) we see that kD®) from the df G has also the gamma
I'(r, A) distribution for all ke N. ’
Further on, using Theorems 2 and 4 we see that kA®) from G as well as
kD from F both converge, as k — oo, to improper distribution concentrated
at oo.

3 — PAMS 231
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ExAMPLE 2. Let f; and f, be probability density functions. Write
f () = pf1(x)+af> (x),
where p =1—qe(0, 1) with

f1(x) = ae™ I— 4,0 (%),

a a
fr(x)= p—q—exp(—%x)l[o,m)(x), a>0.

Note that f (x) = (f1 *f2) (x), i.e. f; and f, satisfy the Dugué condition (cf. [6]).
Now

pa for x>0 and lim xq(x)=1,

q09 = pax—qloggq x—+wm

and by Theorem 6 we have
n(Y®,/)Y®-1)3 e, 1), n-o.
Moreover,

_ a . -
q(x)—mfor x<0 and xHI_IImXQ(x)—L

which by Theorem 8 gives
n(Z®/z8,-1)3Ir, 1), n-o.
On the other hand,

lim h(x) = lim A(x) =0,

X—— 0
and by Theorems 2 and 4 the limit distributions of differences k4%) and kD
are improper distributions concentrated at oo.
ExaMpPLE 3. Define the following distribution functions:

1— —Ax f >0,
Fl(x)={ e or x>0 2> 0:

0 for x <0,

1—e**  for x <0,
FZ(x);—{l for x = 0, n>0.

Then H,(x) = ix for x >0, and by Lemma 4 we sce that the distribution
function of quotients of k-th upper record values from F, is Fyg (z) = 0 for
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z<£1 and

r—1 -1 .
FU;?‘(Z) =1- Z (n+; )z_("“_l)(z—l)f for z > 1.

j=0
Therefore for x > 0

FH(U“"‘}—].) (x) = 1—(1 +§)

or n(UX—-1)3I(r, 1), n—> .
For quotients of k-th records from F, we have H, (x) = —l/x for x <0
and by Lemma 4 we see that Fuwog - 1y(x) = 1 for x > 0 while for —-ngx<0

N =10 [l 1 xp
_ =[1+= ! —, ,
Frog-n09 ( +n> j;[,j!n’(n—j—l)! ntx ; TR
or n(UR—-1)B3NI(r, 1), n> .
ExaMpLE 4. Consider the Pareto distribution function given by
Flx) = {I—I/x“ for x > 1,

—(ntr—-1)r—1 Jcj (n+r_1)! B r—1 xj
‘—'——_——‘ — 1-—e x Z '_],
j=o it W(n—j—1)! i=oJ!

n— oo,

0 for x < 1.
Flu+x) ( u )"
Fw  \u+x

Fars (1 x\™ oo
( Fo) )“(”H) e ko

Therefore, since Y® 3 1, k— o0, we have

Frag(9 =1 _’i ﬂ (_ o (M> k )i <M) | )

Then

and

F(uw) F(u)

r-1 (ch)i

—>1— 5
i=o b

—ax, k_’ w,

or equivalently k(Y®,—Y® B I (r, o), k— 0.

Similarly it can be shown that for k-th lower records from the negative
Pareto distribution NPareto («) with pdf f(x) = a|x|™* "1 I_,, -1)(x), where
o > 0, we have

KZP-Z9)3 e, @ as k- .

Moreover, consider inverse Pareto distribution InvPareto(x, o) and
negative inverse Pareto distribution NInvPareto(x«, 6) given by distribution
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functions

Fy (x) = (x/o), x€(0, o),

FZ(x)= 1_(........x/o-)a’ XE(_O', 0),
respectively. Let a = 1. Then using Theorems 2 and 4 it can be shown that
kA® from F, as well as kD® from F, both converge, as k — oo, to I'(r, 1/0)
distribution.

ExaMmpLE 5. We know that the limit distribution of differences kD%, of

k-th lower records from Gumbel distribution is not a proper distribution (cf.
[2]); it may be considered as the distribution concentrated at oo. This fact can

also be shown for kD). In a similar way the sequence of differences k4% of
k-th upper records from the negative Gumbel distribution

F(x)=1—exp(—¢€*), xeR,

converge to the distribution concentrated at co.
The limit properties of kA%, kD¥), n(U® —1) and n(T¥ —1) for the dis-
tributions of the above examples are shown in the Table.

Table
F kA% kD, | n(UR-1 | n(TH-1
k— oo n-> o
Exp () ~T(r, ) 3w 2re, 1) 3w
NExp(4) S o ~ T, ) 2 » ANr@, 1)
Exp (pa/q)«NegExp (a) 2w 2 o 2re, 1 | 3Nre, 1
InvExp 3w 2w 3w A r'e,1)
NInvExp 3w 3w ANr (r, 1) 3w
Pareto (a) 2re, o 2o 2w 20
NPareto (o) 5o 3r (r, 2o 2w
InvPareto (1, o) 3 I'(r, 1/0) 3w 30 3w
NInvPareto(1, o) 3w £ I, 1/o) 2w 30
NGumbel L 2w 30 AN, 1)
Gumbel 2w 3w 2re ) 20

7. DISCUSSION

In Sections 4 and 5 we studied limit distributions of k-th record values
following the approach of Gajek [4] and its extension from [2]. It leads to
theorems yielding gamma distributions as limit distributions for large classes
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of sequences of distribution functions. In particular, from Theorems 1, 3, 5 and 7
we are able to derive easily limit distributions of differences and quotients of
non-adjacent k-th record values. In this section we note that Theorems 2, 4,
6 and 8 (being consequences of Theorems 1, 3, 5 and 7) can be also obtained by
arguments based on some distribution properties of record values.

Let {Y®, n> 1} be the sequence of k-th record values of the sequence
{X,, n > 1} of i.i.d. random variables with the df F and the pdf f. Moreover, let
{Y®, n > 1} be the sequence of k-th record values of the sequence {X,, n = 1}
of iid. random variables with the df G and the pdf g. Define the function

Hg(x)=F 1(G(x)), xeR,

where F ! is the pseudo-inverse of F. We use the fact that the sequences { Y,
n > 1} and {Hg(Y®), n > 1} have the same finite-dimensional distributions. In
particular, for n> 1, k=1

Y £ He(Y9),
where £ denotes equality in distribution. Therefore
(7.1) Y®,—Y® £ Ho(Y®,)—He(Y¥) = He (09) (Y, — YD),

by the mean value theorem, where

(7.2) YP <ol <YH,.
Note that

) (on (=1L g
(7.3) 6(x)=(F~Y) (G(x))g(X)—if(H &)

Now the statement of Theorem 2 is a consequence of the followmg ar-
guments. Let G(x)=1—e™*, x > 0. By (7.1) we have

k(Y$®,—YP) £ He (0B k(YH,—TP).
But k(}_""’ —Y®) has the gamma I (r, 1) distribution and by (7.2) we obtain
0% 50 as k— oo, and then
He@®) 527!, k- oo,
where

A= lim f(x),

x—=F~1(0)
which is the same as A given in (4.3). Therefore
kYR, —Y¥) 3T, 1), k- oo

Remark 4. Theorem 4 can be proved in the same way, but with
G(x) =€*, x <0, which is a negative exponential distribution function.
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Similarly, Theorem 6 can be established as follows. Assume that
G(x) = 1—exp(—e”), xeR, is a negative Gumbel distribution function. By (7.1)
we have

n(PE,— 7).

Yad, [\ _n(ed,—YP) _ He(0

Yo YO He(Y®)"
From Lemma 1 we see that n(?"‘ —Y®) has the gamma I'(r, 1) distribution
and by (7.2) we obtain 6% 50 as n— oo, which implies

a2 1
Ho(Y®)

_ . He() xf (%)
pe i T e F () log FO

Whlch is the same as u given in (5.3). Note that y > 0if F"1(1) > 0 and u < 0if
~1(1) < 0. Therefore

Y, p JI(r, 1) if F7*(1)>0,
n 5 —1)> —
Y NI'(r, —p) if FF1(1)<0

Remark 5. Theorem 8 can be proved in the same way, but with
G(x) =exp(—e™ ), xeR, which is a Gumbel distribution function.

n— oo,

where
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