PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 23, Fasc. 1 (2003), pp. 19-38

LIMIT DISTRIBUTIONS OF DIFFERENCES AND QUOTIENTS OF NON-ADJACENT k-TH RECORD VALUES

BY

MARIUSZ BIENIEK* AND DOMINIK SZYNAL* (LUBLIN)

Abstract. Let $\{Y_n^{(k)}, n \ge 1\}$ denote the sequence of k-th record values of the sequence $\{X_n, n \ge 1\}$ of i.i.d. random variables with an absolutely continuous distribution function F. Fix $r \in N$. We show that, for some very broad class of distributions F, the limit distribution of the sequence

$$k(Y_{n+r}^{(k)}-Y_n^{(k)}), \quad k\geqslant 1,$$

is the gamma distribution with pdf

$$f_{r,\lambda}(x) = \frac{\lambda^r}{(r-1)!} x^{r-1} \exp(-\lambda x), \quad x \geqslant 0,$$

where $\lambda > 0$ is a parameter which depends on F. We prove the similar result for k-th lower record values $Z_n^{(k)}$. Moreover, we discuss the asymptotic behaviour of quotients of these quantities.

1. INTRODUCTION

Let $\{X_n, n \ge 1\}$ be a sequence of independent identically distributed random variables with a common distribution function (cdf) F and probability density function (pdf) f. Moreover, let $X_{1:n}, \ldots, X_{n:n}$ denote the order statistics of a sample X_1, \ldots, X_n .

For a fixed $k \ge 1$ we define the k-th (upper) record times $U_k(n)$, $n \ge 1$, of the sequence $\{X_n, n \ge 1\}$ as $U_k(1) = 1$,

$$U_k(n+1) = \min \{j > U_k(n): X_{j:j+k-1} > X_{U_k(n):U_k(n)+k-1}\}, \quad n \geqslant 1,$$

and the k-th upper record values as $Y_n^{(k)} = X_{U_k(n):U_k(n)+k-1}$ for $n \ge 1$ (cf. [3]). Note that for k = 1 we have $Y_n^{(1)} = X_{U_1(n):U_1(n)} := R_n$ — (upper) record values of the sequence $\{X_n, n \ge 1\}$ and that $Y_1^{(k)} = X_{1:k} = \min(X_1, ..., X_k)$.

^{*} Institute of Mathematics, Maria Curie-Skłodowska University, Lublin.

Similarly, for a fixed $k \ge 1$ we define the k-th lower record times $L_k(n)$, $n \ge 1$, of the sequence $\{X_n, n \ge 1\}$ as $L_k(1) = 1$,

$$L_k(n+1) = \min\{j > L_k(n): X_{k:j+k-1} < X_{k:L_k(n)+k-1}\}, \quad n \ge 1$$

and the k-th lower record values as $Z_n^{(k)} = X_{k:L_k(n)+k-1}$ for $n \ge 1$.

Note that for k=1 we have $Z_n^{(1)}=X_{1:L_1(n)}:=R_n'-(\text{lower})$ record values of the sequence $\{X_n, n \ge 1\}$ and that $Z_1^{(k)}=X_{k:k}=\max(X_1, ..., X_k)$.

In [4] it has been shown that if F is an absolutely continuous distribution function with probability density function f, concentrated on the interval $S \subset R$, and if h(x) = f(x)/(1-F(x)) is a differentiable function with a bounded first derivative, then

$$k(Y_{n+1}^{(k)}-Y_n^{(k)})\stackrel{D}{\to}W_n, \quad k\to\infty,$$

(D - in distribution), where W_n is exponentially distributed for all n with the df

$$F_{\lambda}^{*}(x) = 1 - \exp(-\lambda x), \quad x \geqslant 0,$$

and $\lambda = h(x_0^+)$ (the right limit of h(x) at the point x_0), $x_0 = \inf S$, and F_0^* , F_∞^* denote the distribution concentrated at zero and the improper distribution concentrated at infinity, respectively.

Moreover, it is shown in [2] that, under suitable assumptions, the limit distributions of sequences

$$k(Z_n^{(k)}-Z_{n+1}^{(k)}), k \ge 1,$$

and

$$n(Y_{n+1}^{(k)}/Y_n^{(k)}-1), n \ge 1, n(Z_n^{(k)}/Z_{n+1}^{(k)}-1), n \ge 1,$$

are exponential distributions with appropriate parameters depending on F. In this paper we extend those results and we show that for a large class of distributions F for any fixed n, $r \in N$, the sequences

$$k(Y_{n+r}^{(k)} - Y_n^{(k)}), k \ge 1,$$
 and $k(Z_n^{(k)} - Z_{n+r}^{(k)}), k \ge 1,$

converge in distribution as $k \to \infty$ to some gamma distributed random variables, respectively. Moreover, we show that for any fixed $k, r \in \mathbb{N}$, the sequences

$$n(Y_{n+r}^{(k)}/Y_n^{(k)}-1), n \ge 1, \text{ and } n(Z_n^{(k)}/Z_{n+r}^{(k)}-1), n \ge 1,$$

converge weakly as $n \to \infty$ to gamma or negative gamma distribution. We illustrate our results with examples of limit behaviour of differences and quotients of k-th records. In the last section we discuss alternative proofs of the main results of the paper.

NOTATION. Throughout the paper $\Gamma(\alpha, \beta)$, where $\alpha > 0$, $\beta > 0$, denotes a gamma distributed random variable with the pdf

$$f_{\alpha,\beta}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\beta x), \quad x \geqslant 0.$$

If $\beta = 0$, then $\Gamma(\alpha, \beta)$ is improper distribution concentrated at ∞ , and if $\beta = \infty$, then $\Gamma(\alpha, \beta)$ is the distribution concentrated at zero. Similarly, $N\Gamma(\alpha, \beta)$, where $\alpha > 0$, $\beta > 0$, denotes a negative gamma distribution with the pdf

$$\overline{f}_{\alpha,\beta}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} |x|^{\alpha-1} \exp \beta x, \quad x \leq 0.$$

Moreover, let $\overline{F}(x) = 1 - F(x)$ and

$$H(x) = -\log(\overline{F}(x)), \quad h(x) = f(x)/\overline{F}(x) = H'(x)$$

denote the hazard function and the hazard rate of F, respectively. Similarly, let

$$\overline{H}(x) = -\log \overline{F}(x), \quad \overline{h}(x) = f(x)/F(x) = -\overline{H}'(x).$$

We also define

$$q(x) = -\frac{f(x)}{\overline{F}(x)\log \overline{F}(x)}$$
 and $\overline{q}(x) = -\frac{f(x)}{F(x)\log F(x)}$.

2. PROBABILITY DISTRIBUTIONS OF $Y_{n+r}^{(k)} - Y_n^{(k)}$ AND $Z_n^{(k)} - Z_{n+r}^{(k)}$

It is known that the pdf of $Y_n^{(k)}$ is

(2.1)
$$f_{Y_n^{(k)}}(x) = \frac{k^n}{(n-1)!} (H(x))^{n-1} (\overline{F}(x))^{k-1} f(x), \quad x \in \mathbb{R},$$

and the joint pdf of $(Y_m^{(k)}, Y_n^{(k)}), m < n$, is

(2.2)
$$f_{Y_{m}^{(k)},Y_{n}^{(k)}}(x, y) = \frac{k^{n}}{(m-1)!(n-m-1)!} (H(x))^{m-1} h(x) \times \left(-\log \frac{\overline{F}(y)}{\overline{F}(x)}\right)^{n-m-1} (\overline{F}(y))^{k-1} f(y)$$

for x < y and it is 0 for $x \ge y$ (cf. [5]). Moreover, the pdf of $Z_n^{(k)}$ is

(2.3)
$$f_{Z_n^{(k)}}(x) = \frac{k^n}{(n-1)!} (\bar{H}(x))^{n-1} (F(x))^{k-1} f(x), \quad x \in \mathbb{R},$$

and the joint pdf of $(Z_m^{(k)}, Z_n^{(k)})$, m < n, is

(2.4)
$$f_{Z_{m}^{(k)},Z_{n}^{(k)}}(x, y) = \frac{k^{n}}{(m-1)! (n-m-1)!} (\overline{H}(x))^{m-1} \overline{h}(x) \times \left(-\log \frac{F(y)}{F(x)}\right)^{n-m-1} (F(y))^{k-1} f(y)$$

for $x \ge y$ and it is 0 otherwise.

LEMMA 1. The distribution function of the random variable $\Delta_{n,r}^{(k)} = Y_{n+r}^{(k)} - Y_n^{(k)}$ is of the form

$$F_{A_{n,r}^{(k)}}(x) = 1 - \sum_{i=0}^{r-1} \frac{k^{i}}{i!} \int_{S} \left(-\log \frac{\overline{F}(u+x)}{\overline{F}(u)} \right)^{i} \left(\frac{\overline{F}(u+x)}{\overline{F}(u)} \right)^{k} dF_{Y_{n}^{(k)}}(u)$$

for $x \ge 0$ and it is 0 otherwise.

Proof. Using (2.2) we see that the pdf of $\Delta_{n,r}^{(k)}$ is

(2.5)
$$f_{A_{n,r}^{(k)}}(w) = \frac{k^{n+r}}{(n-1)!(r-1)!} \int_{\mathbb{R}} \left(-\log(\overline{F}(u))\right)^{n-1} \frac{f(u)}{\overline{F}(u)} \times \left(-\log\frac{\overline{F}(w+u)}{\overline{F}(u)}\right)^{r-1} (\overline{F}(w+u))^{k-1} f(w+u) du$$

for $w \ge 0$. Therefore, the df of $\Delta_{n,r}^{(k)}$ is

$$F_{A_{n,r}^{(k)}}(x) = \frac{k^{n+r}}{(n-1)! (r-1)!} \int_{\mathbb{R}} \left(-\log(\overline{F}(u)) \right)^{n-1} (\overline{F}(u))^{k-1} f(u)$$

$$\times \left\{ \int_{a}^{1} (-\log t)^{r-1} t^{k-1} dt \right\} du,$$

where

$$\alpha := \alpha(u, x) = \overline{F}(u+x)/\overline{F}(u).$$

Since

$$\int (-\log t)^{r-1} t^{k-1} dt = t^k \left\{ \sum_{i=0}^{r-1} \frac{(r-1)!}{i! \, k^{r-i}} (-\log t)^i \right\} + C,$$

we have

(2.6)
$$\int_{\alpha}^{1} (-\log t)^{r-1} t^{k-1} dt = \frac{(r-1)!}{k^{r}} - \alpha^{k} \left\{ \sum_{i=0}^{r-1} \frac{(r-1)!}{i! \, k^{r-i}} (-\log \alpha)^{i} \right\}$$

and

$$F_{A_{n,r}^{(k)}}(x) = \frac{k^n}{(n-1)!} \int_{\mathbb{R}} \left(-\log(\bar{F}(u)) \right)^{n-1} (\bar{F}(u))^{k-1} f(u)$$

$$-\frac{k^{n}}{(n-1)!} \int_{\mathbf{R}} \left(-\log\left(\overline{F}(u)\right)\right)^{n-1} \left(\overline{F}(u)\right)^{k-1} f(u)$$

$$\times \left(\frac{\overline{F}(u+x)}{\overline{F}(u)}\right)^{k} \left\{\sum_{i=0}^{r-1} \frac{k^{i}}{i!} \left(-\log\frac{\overline{F}(u+x)}{\overline{F}(u)}\right)^{i}\right\} du$$

$$= 1 - \int_{\mathbf{S}} \left(\frac{\overline{F}(u+x)}{\overline{F}(u)}\right)^{k} \left\{\sum_{i=0}^{r-1} \frac{k^{i}}{i!} \left(-\log\frac{\overline{F}(u+x)}{\overline{F}(u)}\right)^{i}\right\} dF_{Y_{n}^{(k)}}(u),$$

which completes the proof of Lemma 1.

Using (2.3) and (2.4) instead of (2.1) and (2.2) we prove the similar result for k-th lower records.

LEMMA 2. The distribution function of the random variable $D_{n,r}^{(k)} = Z_n^{(k)} - Z_{n+r}^{(k)}$ is of the form

$$F_{D_{n,r}^{(k)}}(x) = 1 - \sum_{i=0}^{r-1} \frac{k^{i}}{i!} \int_{S} \left(-\log \frac{F(u-x)}{F(u)} \right)^{i} \left(\frac{F(u-x)}{F(u)} \right)^{k} dF_{Z_{n}^{(k)}}(u)$$

for $x \ge 0$ and it is 0 otherwise.

Proof. Using (2.4) we see that the pdf of $D_{n,r}^{(k)}$ is (after similar evaluations as in Lemma 1)

(2.7)
$$f_{D_{n,r}^{(k)}}(w) = \frac{k^{n+r}}{(n-1)! (r-1)!} \int_{\mathbb{R}} \left(-\log F(u)\right)^{n-1} \overline{h}(u) \times \left(-\log \frac{F(u-w)}{F(u)}\right)^{r-1} \left(F(u-w)\right)^{k-1} f(u-w) du$$

for $w \ge 0$. Therefore the df of $D_{n,r}^{(k)}$ is

$$F_{D_{n,r}^{(k)}}(x) = \frac{k^{n+r}}{(n-1)!(r-1)!} \int_{\mathbb{R}} \left(-\log F(u)\right)^{n-1} \left(F(u)\right)^{k-1} f(u)$$

$$\times \left\{ \int_{\mathbb{R}}^{1} (-\log t)^{r-1} t^{k-1} dt \right\} du,$$

where

$$\beta := \beta(u, x) = F(u-x)/F(u).$$

Using (2.6) we easily complete the proof of Lemma 2.

3. PROBABILITY DISTRIBUTIONS OF $Y_{n+r}^{(k)}/Y_n^{(k)}$ AND $Z_n^{(k)}/Z_{n+r}^{(k)}$

We start this section with the following lemma.

LEMMA 3. For all real numbers A, B, C, $0 \le A < B \le C$, and n, $r \in N$,

$$\int_{A}^{B} u^{n-1} (C-u)^{r-1} du
= \frac{\Gamma(n)\Gamma(n)}{\Gamma(n+r)} \sum_{i=0}^{r-1} {n+r-1 \choose i} \left\{ B^{n+r-1} \left(\frac{C}{B} - 1 \right)^{i} - A^{n+r-1} \left(\frac{C}{A} - 1 \right)^{i} \right\}.$$

Now let us state and prove the results on the probability distributions of quotients $Y_{n+r}^{(k)}/Y_n^{(k)}$ and $Z_n^{(k)}/Z_{n+r}^{(k)}$.

LEMMA 4. The distribution function of the random variable $U_{n,r}^{(k)} = Y_{n+r}^{(k)}/Y_n^{(k)}$ is of the form

$$(3.1) F_{U_{n}^{(k)}}(z)$$

$$= \begin{cases} p'_n - \sum_{j=0}^{r-1} \binom{n+r-1}{j} \int_0^\infty R^{n+r-1}(y,z) (R^{-1}(y,z)-1)^j dF_{Y_{n+r}^{(k)}}(y) & \text{for } z \leq 0, \\ p'_n + \sum_{j=0}^{r-1} \binom{n+r-1}{j} \int_{-\infty}^0 R^{n+r-1}(y,z) (R^{-1}(y,z)-1)^j dF_{Y_{n+r}^{(k)}}(y) & \text{for } 0 < z < 1, \\ p''_n - \sum_{j=0}^{r-1} \binom{n+r-1}{j} \int_0^\infty R^{n+r-1}(y,z) (R^{-1}(y,z)-1)^j dF_{Y_{n+r}^{(k)}}(y) & \text{for } z \geq 1, \end{cases}$$

where

$$p'_n = P\{Y_n^{(k)} < 0, Y_{n+r}^{(k)} > 0\}, \quad p''_n = P\{Y_n^{(k)} < 0\} + P\{Y_{n+r}^{(k)} > 0\},$$

and

$$R(y, z) = H(y/z)/H(y).$$

Proof. Note that if (X, Y) is an absolutely continuous random vector with a pdf f(x, y) such that $X \le Y$, then the distribution function of the random variable Z = Y/X is

$$(3.2) F_Z(z)$$

$$= \begin{cases} P\{X < 0, Y > 0\} - \int_{0}^{\infty} \int_{-\infty}^{y/z} f(x, y) dx dy & \text{for } z \leq 0, \\ P\{X < 0, Y > 0\} + \int_{-\infty}^{0} \int_{-\infty}^{y/z} f(x, y) dx dy & \text{for } 0 < z < 1, \\ P\{X < 0\} + P\{Y > 0\} - \int_{0}^{\infty} \int_{-\infty}^{y/z} f(x, y) dx dy & \text{for } z \geq 1. \end{cases}$$

Put $X = Y_n^{(k)}$ and $Y = Y_{n+r}^{(k)}$; then $Z = U_{n,r}^{(k)}$ and we obtain (3.1) combining (3.2) with (2.2) and Lemma 3. For instance, for z < 0

$$F_{U_{n,r}^{(k)}}(z) = p_n' - \frac{k^{n+r}}{\Gamma(n)\Gamma(r)} \int_0^\infty (\overline{F}(y))^{k-1} f(y) \left\{ \int_{-\infty}^{y/z} (H(x))^{n-1} (H(y) - H(x))^{r-1} h(x) dx \right\} dy$$

$$= p_n' - \frac{k^{n+r}}{\Gamma(n)\Gamma(r)} \int_0^\infty (\overline{F}(y))^{k-1} f(y) \left\{ \int_0^{H(y/z)} u^{n-1} (H(y) - u)^{r-1} du \right\} dy.$$

Using Lemma 3 with A = 0, B = H(y/z) and C = H(y) we obtain

$$F_{U_{n,r}^{(k)}}(z) = p_n' - \int_0^\infty \left(\overline{F}(y)\right)^{k-1} f(y) \left\{ \sum_{i=0}^{r-1} \binom{n+r-1}{i} \left(H(y/z)\right)^{n+r-1} \left(\frac{H(y)}{H(y/z)} - 1\right)^i \right\} dy$$

$$= p_n' - \sum_{j=0}^{r-1} \binom{n+r-1}{j} \int_0^\infty \left(\frac{H(y/z)}{H(y)}\right)^{n+r-1} \left(\frac{H(y)}{H(y/z)} - 1\right)^j dF_{Y_{n+r}^{(k)}}(y).$$

The remaining cases 0 < z < 1 and $z \ge 1$ may be treated similarly. \blacksquare In the same way we prove the following result.

LEMMA 5. The distribution function of the random variable $T_{n,r}^{(k)} = Z_n^{(k)}/Z_{n+r}^{(k)}$ is of the form

$$F_{T_n^{(k)}}(z)$$

$$= \begin{cases} \sum_{j=0}^{r-1} \binom{n+r-1}{j} \int\limits_{-\infty}^{0} \bar{R}^{n+r-1}(y,z) \big(\bar{R}^{-1}(y,z)-1\big)^{j} dF_{Z_{n+r}^{(k)}}(y) & \text{for } z < 1, \\ 1 - \sum\limits_{j=0}^{r-1} \binom{n+r-1}{j} \int\limits_{0}^{\infty} \bar{R}^{n+r-1}(y,z) \big(\bar{R}^{-1}(y,z)-1\big)^{j} dF_{Z_{n+r}^{(k)}}(y) & \text{for } z \geq 1, \end{cases}$$

where $\overline{R}(y, z) = \overline{H}(yz)/\overline{H}(y)$.

4. LIMIT DISTRIBUTIONS OF DIFFERENCES OF k-TH RECORD VALUES

THEOREM 1. Let F be an absolutely continuous distribution function with density f and the interval $S \subset \mathbf{R}$ as the support, such that h(x) = f(x)/(1-F(x)) is a differentiable function with bounded first derivative

$$(4.1) |h'(x)| \leq M, \quad x \in S.$$

Let us fix $r \in N$ and assume that $\{F_k, k \ge 1\}$ is a sequence of distribution functions of the form

$$F_k(x) = 1 - \sum_{i=0}^{r-1} \frac{k^i}{i!} \int_{S} \left(-\log \frac{1 - F(u + x/k)}{1 - F(u)} \right)^i \left(\frac{1 - F(u + x/k)}{1 - F(u)} \right)^k dG_k(u)$$

for $x \ge 0$ and it equals 0 otherwise, where $\{G_k, k \ge 1\}$ is a sequence of distribution functions such that

$$(4.2) G_k \to G, k \to \infty,$$

and G is a distribution concentrated at a point $x_0 \in \partial S$. Then

$$F_k \to F_{r,\lambda}^*, \quad k \to \infty$$

where $F_{r,\lambda}^*$ is the df of $\Gamma(r,\lambda)$ random variable and

$$\lambda = \begin{cases} \lim_{x \to x_0^+} h(x) & \text{if } x_0 = \inf S, \\ \lim_{x \to x_0^-} h(x) & \text{if } x_0 = \sup S. \end{cases}$$

Proof. Applying Taylor's formula to the function $s(z) = -\log(1 - F(z))$ we obtain

$$-\log\frac{1-F(u+x/k)}{1-F(u)} = s\left(u+\frac{x}{k}\right) - s(u) = h(u)\frac{x}{k} + h'\left(u+\frac{\theta x}{k}\right)\frac{x^2}{k^2},$$

where $0 < \theta < 1$. Therefore

$$1 - F_k(x) = \sum_{i=0}^{r-1} \frac{1}{i!} \int_{S} \left(xh(u) + h' \left(u + \frac{\theta x}{k} \right) \frac{x^2}{k} \right)^i$$

$$\times \exp\left(-xh(u) \right) \exp\left(-h' \left(u + \frac{\theta x}{k} \right) \frac{x^2}{k} \right) dG_k(u).$$

By (4.1) we have

$$H_{k,r}(x) \exp\left(-\frac{Mx^2}{k}\right) \leqslant 1 - F_k(x) \leqslant H_{k,r}(x) \exp\left(\frac{Mx^2}{k}\right),$$

where

$$H_{k,r}(x) = \sum_{i=0}^{r-1} \frac{1}{i!} \int_{S} \left(xh(u) + h'\left(u + \frac{\theta x}{k}\right) \frac{x^2}{k} \right)^i \exp\left(-xh(u)\right) dG_k(u).$$

Let us fix $i \in \{0, 1, ..., r-1\}$. Using the binomial formula we obtain

$$\int_{S} \left(xh(u) + h'\left(u + \frac{\theta x}{k}\right) \frac{x^{2}}{k}\right)^{i} \exp\left(-xh(u)\right) dG_{k}(u)$$

$$= \int_{S} \left(xh(u)\right)^{i} \exp\left(-xh(u)\right) dG_{k}(u)$$

$$+ \sum_{j=0}^{i-2} {i-1 \choose j} \int_{S} \left(xh(u)\right)^{j} \left(h'\left(u + \frac{\theta x}{k}\right) \frac{x^{2}}{k}\right)^{i-1-j} \exp\left(-xh(u)\right) dG_{k}(u)$$

$$:= I_{1} + I_{2},$$

say. Now, by (4.2) we have

$$I_1 \to (\lambda x)^i \exp(-\lambda x), \quad k \to \infty,$$

and by (4.1) again

$$|I_2| \leq \sum_{j=0}^{i-2} \binom{i-1}{j} \left(\frac{Mx^2}{k}\right)^{i-1-j} \int_{S} (xh(u))^j \exp(-xh(u)) dG_k(u) \to 0, \quad k \to \infty,$$

where λ is given by (4.3) below. This proves that for $x \ge 0$

$$\lim_{k\to\infty} H_{k,r}(x) = \sum_{i=0}^{r-1} \frac{1}{i!} (\lambda x)^i \exp(-\lambda x),$$

which is the tail of $\Gamma(r, \lambda)$ distribution function.

Using Lemma 1 one can see (cf. Example 1 in Section 6) that if $f(x) = \lambda \exp(-\lambda x)$, $x \ge 0$, then for all $n, r \in \mathbb{N}$ the random variable $k(Y_{n+r}^{(k)} - Y_n^{(k)})$ has the gamma $\Gamma(r, \lambda)$ distribution. The following theorem states that for a broad class of distributions F the asymptotic distribution of $k(Y_{n+r}^{(k)} - Y_n^{(k)})$ is also $\Gamma(r, \lambda)$ with λ depending on F.

THEOREM 2. Suppose that $\{X_n, n \ge 1\}$ is a sequence of i.i.d. random variables with df F and pdf f, with the interval $S \subset R$ as the support, and that $h(x) = f(x)/\overline{F}(x)$ is a differentiable function with bounded first derivative. Then for any fixed n, $r \in N$

$$k(Y_{n+r}^{(k)}-Y_n^{(k)}) \stackrel{D}{\to} \Gamma(r,\lambda), \quad k\to\infty,$$

where

$$\lambda = \lim_{x \to x, t} h(x)$$

and $x_0 = \inf S$.

Proof. By Lemma 1 the df of $k\Delta_{n,r}^{(k)}$ is

$$F_{kA_{n,r}^{(k)}}(x) = 1 - \sum_{i=0}^{r-1} \frac{k^{i}}{i!} \int_{S} \left(-\log \frac{1 - F(u + x/k)}{1 - F(u)} \right)^{i} \left(\frac{1 - F(u + x/k)}{1 - F(u)} \right)^{k} dG_{k}(u),$$

where G_k is the distribution function of $Y_n^{(k)}$. Since $Y_n^{(k)} \stackrel{D}{\to} x_0 = \inf S$ as $k \to \infty$, Theorem 1 implies the result.

Remark 1. For r = 1 we obtain results of [4].

In the same way, but using Lemma 2 instead of Lemma 1, we can study limit behaviour of $k(Z_n^{(k)} - Z_{n+r}^{(k)})$.

THEOREM 3. Let F be an absolutely continuous distribution function with density f and the interval $S \subset \mathbb{R}$ as the support, such that $\overline{h}(x) = f(x)/F(x)$ is

a differentiable function with bounded first derivative

$$(4.4) |\bar{h}'(x)| \leqslant M, \quad x \in S.$$

Let us fix $r \in \mathbb{N}$ and assume that $\{F_k, k \ge 1\}$ is a sequence of distribution functions of the form

$$F_k(x) = 1 - \sum_{i=0}^{r-1} \frac{k^i}{i!} \int_{S} \left(-\log \frac{F(u - x/k)}{F(u)} \right)^i \left(\frac{F(u - x/k)}{F(u)} \right)^k dG_k(u)$$

for $x \ge 0$ and it equals 0 otherwise, where $\{G_k, k \ge 1\}$ is a sequence of distribution functions such that

$$(4.5) G_k \to G, \quad k \to \infty,$$

and G is a distribution concentrated at a point $x_0 \in \partial S$. Then

$$F_k \to F_{r,\lambda}^*, \quad k \to \infty$$

where

$$\bar{\lambda} = \begin{cases} \lim_{x \to x_0^+} \bar{h}(x) & \text{if } x_0 = \inf S, \\ \lim_{x \to x_0^-} \bar{h}(x) & \text{if } x_0 = \sup S. \end{cases}$$

Proof. Applying Taylor's formula to the function $\bar{s}(z) = \log F(z)$ we obtain

$$\log \frac{F(u-x/k)}{F(u)} = \bar{s}\left(u-\frac{x}{k}\right) - \bar{s}(u) = -\bar{h}(u)\frac{x}{k} + \bar{h}'\left(u-\frac{\theta x}{k}\right)\frac{x^2}{k^2},$$

where $0 < \theta < 1$. Therefore

$$1 - F_k(x) = \sum_{i=0}^{r-1} \frac{1}{i!} \int_{S} \left(x \overline{h}(u) + \overline{h'} \left(u - \frac{\theta x}{k} \right) \frac{x^2}{k} \right)^i$$

$$\times \exp\left(-x \overline{h}(u) \right) \exp\left(-\overline{h'} \left(u + \frac{\theta x}{k} \right) \frac{x^2}{k} \right) dG_k(u).$$

By (4.4) we have

$$\overline{H}_{k,r}(x) \exp\left(-\frac{Mx^2}{k}\right) \leqslant 1 - F_k(x) \leqslant \overline{H}_{k,r}(x) \exp\left(\frac{Mx^2}{k}\right),$$

where

$$\bar{H}_{k,r}(x) = \sum_{i=0}^{r-1} \frac{1}{i!} \int_{S} \left(x \bar{h}(u) - h' \left(u + \frac{\theta x}{k} \right) \frac{x^2}{k} \right)^i \exp\left(- x \bar{h}(u) \right) dG_k(u).$$

Let us fix $i \in \{0, 1, ..., r-1\}$. Using the binomial formula we obtain

$$\int_{S} \left(x \overline{h}(u) - \overline{h'} \left(u + \frac{\theta x}{k} \right) \frac{x^{2}}{k} \right)^{i} \exp\left(-x \overline{h}(u) \right) dG_{k}(u)$$

$$= \int_{S} \left(x \overline{h}(u) \right)^{i} \exp\left(-x \overline{h}(u) \right) dG_{k}(u)$$

$$+ \sum_{j=0}^{i-2} {i-1 \choose j} \int_{S} \left(x \overline{h}(u) \right)^{j} \left(-\overline{h'} \left(u + \frac{\theta x}{k} \right) \frac{x^{2}}{k} \right)^{i-1-j} \exp\left(-x \overline{h}(u) \right) dG_{k}(u)$$

$$:= I_{1} + I_{2},$$

say. Now, by (4.5) we have

$$I_1 \to (\overline{\lambda}x)^i \exp(-\overline{\lambda}x), \quad k \to \infty,$$

and by (4.4) again

$$|I_2| \leqslant \sum_{j=0}^{i-2} {i-1 \choose j} \left(\frac{Mx^2}{k}\right)^{i-1-j} \int_{S} (x\overline{h}(u))^j \exp\left(-x\overline{h}(u)\right) dG_k(u) \to 0, \quad k \to \infty,$$

where $\overline{\lambda}$ is given by (4.3). This proves that for $x \ge 0$

$$\lim_{k\to\infty} \bar{H}_{k,r}(x) = \sum_{i=0}^{r-1} \frac{1}{i!} (\bar{\lambda}x)^i \exp(-\bar{\lambda}x),$$

which is the tail of $\Gamma(r, \lambda)$ distribution function.

THEOREM 4. Suppose that $\{X_n, n \ge 1\}$ is a sequence of i.i.d. random variables with df F and pdf f, with the interval $S \subset \mathbb{R}$ as the support, and that $\overline{h}(x) = f(x)/F(x)$ is a differentiable function with bounded first derivative. Then for any fixed n, $r \in \mathbb{N}$

$$k(Z_n^{(k)}-Z_{n+r}^{(k)})\stackrel{D}{\to}\Gamma(r,\bar{\lambda}), \quad k\to\infty,$$

where $\bar{\lambda} = \lim_{x \to x_0^-} \bar{h}(x)$ and $x_0 = \sup S$.

Proof. By Lemma 2 the df of $kD_{n,r}^{(k)}$ is

$$F_{D_{n,r}^{(k)}}(x) = 1 - \sum_{i=0}^{r-1} \frac{k^i}{i!} \int_{S} \left(-\log \frac{F(u-x/k)}{F(u)} \right)^i \left(\frac{F(u-x/k)}{F(u)} \right)^k dG_k(u),$$

where G_k is the distribution function of $Z_n^{(k)}$. Since $Z_n^{(k)} \stackrel{D}{\to} x_0 = \sup S$ as $k \to \infty$, Theorem 3 implies the result.

Remark 2. For r = 1 we obtain results of [2].

5. LIMIT DISTRIBUTIONS OF QUOTIENTS OF k-TH RECORD VALUES

THEOREM 5. Let F be an absolutely continuous distribution function with density f and the interval $S \subset \mathbf{R}$ as the support and suppose that q(s) is a differentiable function such that

$$|x^2 q'(x)| \le M, \quad x \in S.$$

Let $\{G_n, n \ge 1\}$ be a sequence of distribution functions such that

$$G_n \to G$$
, $n \to \infty$,

and G is a distribution concentrated at a point $x_0 = \sup S$. Let us fix $r \in N$ and assume that $\{F_n, n \ge 1\}$ is a sequence of distribution functions of the form

$$(5.2) F_n(x)$$

$$= \begin{cases} p'_n - \sum_{j=0}^{r-1} \binom{n+r-1}{j} \int_0^\infty R_n^{n+r-1}(y, x) (R_n^{-1}(y, x) - 1)^j dG_{n+r}(y) & \text{for } x \leq -n, \\ p'_n + \sum_{j=0}^{r-1} \binom{n+r-1}{j} \int_{-\infty}^0 R_n^{n+r-1}(y, x) (R_n^{-1}(y, x) - 1)^j dG_{n+r}(y) & \text{for } -n < x \leq 0, \\ p''_n - \sum_{j=0}^{r-1} \binom{n+r-1}{j} \int_0^\infty R_n^{n+r-1}(y, x) (R_n^{-1}(y, x) - 1)^j dG_{n+r}(y) & \text{for } x > 0, \end{cases}$$

where $p'_n = G_n(0) - G_{n+r}(0)$, $p''_n = 1 + G_n(0) - G_{n+r}(0)$, and

$$R_n(y, x) = H\frac{\left(y/(1+x/n)\right)}{H(y)}.$$

Let

(5.3)
$$\mu = \lim_{x \to x_0^-} xq(x).$$

Then:

- (1) if $x_0 > 0$, the sequence $\{F_n\}$ converges weakly to $F_{r,\mu}^*$ as $n \to \infty$, where $F_{r,\mu}^*$ is the df of $\Gamma(r,\mu)$ distribution;
- (2) if $x_0 \le 0$, the sequence $\{F_n\}$ converges weakly to $F_{r,-\mu}^*$ as $n \to \infty$, where $F_{r,\nu}^*$ is the df of $N\Gamma(r,\nu)$ distribution.

Proof. Let us consider the function $\underline{s}(x) = \log H(u)$. Applying Taylor's formula we obtain

$$\log R_n(y, x) = \underline{s}\left(\frac{y}{1+x/n}\right) - \underline{s}(u) = -yq(y)\frac{x}{n+x} + \frac{1}{2}q'\left(\frac{y}{1+\theta x/n}\right)\left(\frac{yx}{n+x}\right)^2,$$

where $0 < \theta < 1$. Therefore

$$R_n(y, x) = \exp\left(-yq(y)\frac{x}{n+x}\right) \exp\left(\frac{1}{2}y^2 q'\left(\frac{y}{1+\theta x/n}\right)\left(\frac{x}{n+x}\right)^2\right).$$

By (5.1) we have

$$\left| y^2 q' \left(\frac{y}{1 + \theta x/n} \right) \right| \le M \left(1 + \frac{x}{n} \right)^2,$$

which gives

$$\exp\left(-yq(y)\frac{x}{n+x}\right)\exp\left(-\frac{Mx^2}{2n^2}\right) \leqslant R_n(y, x) \leqslant \exp\left(-yq(y)\frac{x}{n+x}\right)\exp\left(\frac{Mx^2}{2n^2}\right).$$

Now fix $j \in \{0, 1, ..., r-1\}$. Then

$$\begin{split} \exp\bigg(-\frac{Mx^2(n+r-1)}{n^2}\bigg) E\underline{f}_n(Z_n) I_{[Y_{n+r}\in A]} \\ &\leqslant \binom{n+r-1}{j} \int_A R_n^{n+r-1}(y, x) \big(R_n^{-1}(y, x)-1\big)^j dG_{n+r}(y) \\ &\leqslant \exp\bigg(\frac{Mx^2(n+r-1)}{n^2}\bigg) E\overline{f}_n(Z_n) I_{[Y_{n+r}\in A]}, \end{split}$$

where $Z_n = Y_{n+r} q(Y_{n+r})$, with Y_n having the df G_n ,

$$\overline{f}_n(z) = \binom{n+r-1}{j} \exp\left(-\frac{zx(n+r-1)}{n+x}\right) \left(\exp\left(\frac{zx}{n+x} + \frac{Mx^2}{2n^2}\right) - 1\right)^j$$

and

$$\underline{f_n}(z) = \binom{n+r-1}{j} \exp\left(-\frac{zx(n+r-1)}{n+x}\right) \left(\exp\left(\frac{zx}{n+x} - \frac{Mx^2}{2n^2}\right) - 1\right)^j.$$

By (4.2) and (5.3) we have $Z_n \stackrel{D}{\to} \mu$ as $n \to \infty$. Moreover,

$$\overline{f}_n(z) \to e^{-zx} \frac{(zx)^j}{i!}, \quad n \to \infty,$$

and

$$\underline{f}_n(z) \to e^{-zx} \frac{(zx)^j}{j!}, \quad n \to \infty.$$

Consider two possible cases:

(1) $x_0 = \sup S > 0$. Then $p'_n \to 0$ as $n \to \infty$, $\mu > 0$ and, for n sufficiently large, $Y_n > 0$. Therefore $F_n(x) = 0$ for x < 0, and for x > 0

$$F_n(x) \to 1 - \sum_{j=0}^{r-1} e^{-\mu x} \frac{(\mu x)^j}{j!}, \quad n \to \infty,$$

which is the df of $\Gamma(r, \mu)$.

(2) $x_0 = \sup S \le 0$. Then $p_n = 0$, $\mu < 0$ and $F_n(x) = 1$ for x > 0. Therefore for $-n \le x \le 0$

$$F_n(x) \to \sum_{j=0}^{r-1} e^{-\mu|x|} \frac{(-\mu|x|)^j}{j!}, \quad n \to \infty,$$

which is the df of $N\Gamma(r, -\mu)$.

THEOREM 6. Suppose that $\{X_n, n \ge 1\}$ is a sequence of i.i.d. random variables with $df \ F$ and $pdf \ f$, with the interval $S \subset \mathbb{R}$ as the support, and that q(x) is a differentiable function satisfying (5.1). Then for any fixed k, $r \in \mathbb{N}$

$$n\left(\frac{Y_{n+r}^{(k)}}{Y_n^{(k)}}-1\right) \xrightarrow{D} \begin{cases} \Gamma(r,\mu) & \text{if } \sup S > 0, \\ N\Gamma(r,-\mu) & \text{if } \sup S \leq 0 \end{cases}$$

as $n \to \infty$, where μ is given by (5.3).

Proof. By Lemma 4 the distribution function of $n(Y_{n+r}^{(k)}/Y_n^{(k)}-1)$ is of the form (5.2) with G_n being the df of $Y_n^{(k)}$. Since $Y_n^{(k)} \stackrel{D}{\to} x_0 = \sup S$ as $n \to \infty$, the result follows from Theorem 5. \square

In the same way we can study limit behaviour of quotients of k-th lower records.

THEOREM 7. Let F be an absolutely continuous distribution function with density f and the interval $S \subset \mathbb{R}$ as the support and assume that $\bar{q}(x)$ is a differentiable function such that

(5.4)
$$|x^2 \bar{q}'(x)| \leq M, \quad x \in S.$$

Let $\{G_n, n \ge 1\}$ be a sequence of distribution functions such that

$$G_n \to G$$
, $n \to \infty$,

and G is a distribution concentrated at a point $x_0 = \inf S$. Let us fix $r \in N$ and assume that $\{F_n, n \ge 1\}$ is a sequence of distribution functions of the form

$$F_{n}(x) = \begin{cases} \sum_{j=0}^{r-1} {n+r-1 \choose j} \int_{-\infty}^{0} \overline{R}_{n}^{n+r-1}(y, x) (\overline{R}_{n}^{-1}(y, x)-1)^{j} dF_{Z_{n+r}^{(k)}}(y) & \text{for } x < 0, \\ 1 - \sum_{j=0}^{r-1} {n+r-1 \choose j} \int_{0}^{\infty} \overline{R}_{n}^{n+r-1}(y, x) (\overline{R}_{n}^{-1}(y, x)-1)^{j} dF_{Z_{n+r}^{(k)}}(y) & \text{for } x \ge 0, \end{cases}$$

where

$$\vec{R}_n(y, x) = \frac{\vec{H}(y(1+x/n))}{\vec{H}(y)}.$$

Let

$$\bar{\mu} = \lim_{x \to x_0^-} x\bar{q}(x).$$

Then:

- (1) if $x_0 > 0$, the sequence $\{F_n\}$ converges weakly to $F_{r,\bar{\mu}}^*$ as $n \to \infty$;
- (2) if $x_0 \le 0$, the sequence $\{F_n\}$ converges weakly to $F_{r,-\bar{\mu}}^*$ as $n \to \infty$.

THEOREM 8. Suppose that $\{X_n, n \ge 1\}$ is a sequence of i.i.d. random variables with df F and pdf f, with the interval $S \subset R$ as the support, and that $\bar{q}(x)$ is a differentiable function satisfying (5.4). Then for any fixed k, $r \in N$

$$n\left(\frac{Z_n^{(k)}}{Z_{n+r}^{(k)}}-1\right) \stackrel{D}{\to} \begin{cases} \Gamma(r, \bar{\mu}) & \text{if } \inf S > 0, \\ N\Gamma(r, -\bar{\mu}) & \text{if } \inf S \leq 0 \end{cases}$$

as $n \to \infty$, where $\bar{\mu}$ is given by (5.5).

Remark 3. For r = 1 we obtain results of [2].

6. EXAMPLES

In this section we give examples of asymptotic behaviour of differences and quotients of k-th record values from particular distributions.

EXAMPLE 1. Consider exponential $\text{Exp}(\lambda)$ and negative exponential $\text{NExp}(\lambda)$ distribution functions given by

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{for } x \ge 0, \\ 0 & \text{for } x < 0 \end{cases}$$

and

$$G(x) = \begin{cases} e^{\lambda x} & \text{for } x \leq 0, \\ 1 & \text{for } x > 0. \end{cases}$$

respectively. Then using (2.5) we see that the density function of $A_{n,r}^{(k)}$ from F is

$$f_{\Delta_{n,r}^{(k)}}(x) = \frac{\lambda^r}{(r-1)!} (kx)^{r-1} e^{-k\lambda x}, \quad x \geqslant 0.$$

This implies that $k\Delta_{n,r}^{(k)}$ from the df F has the gamma $\Gamma(r, \lambda)$ distribution for all $k \in \mathbb{N}$. Similarly, using (2.7) we see that $kD_{n,r}^{(k)}$ from the df G has also the gamma $\Gamma(r, \lambda)$ distribution for all $k \in \mathbb{N}$.

Further on, using Theorems 2 and 4 we see that $k\Delta_{n,r}^{(k)}$ from G as well as $kD_{n,r}^{(k)}$ from F both converge, as $k\to\infty$, to improper distribution concentrated at ∞ .

Example 2. Let f_1 and f_2 be probability density functions. Write

$$f(x) = pf_1(x) + qf_2(x),$$

where $p = 1 - q \in (0, 1)$ with

$$f_1(x) = ae^{ax} I_{(-\infty,0)}(x),$$

$$f_2(x) = \frac{pa}{q} \exp\left(-\frac{pa}{q}x\right) I_{[0,\infty)}(x), \quad a > 0.$$

Note that $f(x) = (f_1 * f_2)(x)$, i.e. f_1 and f_2 satisfy the Dugué condition (cf. [6]). Now

$$q(x) = \frac{pa}{pax - q \log q}$$
 for $x > 0$ and $\lim_{x \to \infty} xq(x) = 1$,

and by Theorem 6 we have

$$n(Y_{n+r}^{(k)}/Y_n^{(k)}-1) \stackrel{D}{\rightarrow} \Gamma(r, 1), \quad n \rightarrow \infty.$$

Moreover,

$$\bar{q}(x) = \frac{a}{ax - \log p}$$
 for $x < 0$ and $\lim_{x \to -\infty} x\bar{q}(x) = 1$,

which by Theorem 8 gives

$$n(Z_n^{(k)}/Z_{n+r}^{(k)}-1) \stackrel{D}{\rightarrow} \Gamma(r, 1), \quad n \rightarrow \infty.$$

On the other hand,

$$\lim_{x \to -\infty} h(x) = \lim_{x \to \infty} \overline{h}(x) = 0,$$

and by Theorems 2 and 4 the limit distributions of differences $k\Delta_{n,r}^{(k)}$ and $kD_{n,r}^{(k)}$ are improper distributions concentrated at ∞ .

Example 3. Define the following distribution functions:

$$F_1(x) = \begin{cases} 1 - e^{-\lambda x} & \text{for } x \ge 0, \\ 0 & \text{for } x < 0, \end{cases} \quad \lambda > 0;$$

$$F_2(x) = \begin{cases} 1 - e^{\mu/x} & \text{for } x < 0, \\ 1 & \text{for } x \ge 0, \end{cases} \quad \mu > 0.$$

Then $H_1(x) = \lambda x$ for x > 0, and by Lemma 4 we see that the distribution function of quotients of k-th upper record values from F_1 is $F_{U_{n,r}^{(k)}}(z) = 0$ for

 $z \leq 1$ and

$$F_{U_{n,r}^{(k)}}(z) = 1 - \sum_{j=0}^{r-1} \binom{n+r-1}{j} z^{-(n+r-1)} (z-1)^j \quad \text{for } z > 1.$$

Therefore for $x \ge 0$

$$F_{n(U_{n,r}^{(k)}-1)}(x)=1-\left(1+\frac{x}{n}\right)^{-(n+r-1)}\sum_{j=0}^{r-1}\frac{x^j}{j!}\frac{(n+r-1)!}{n^j(n-j-1)!}\to 1-e^{-x}\sum_{j=0}^{r-1}\frac{x^j}{j!},\quad n\to\infty,$$

or $n(U_{n,r}^{(k)}-1) \stackrel{D}{\to} \Gamma(r, 1), n \to \infty$.

For quotients of k-th records from F_2 we have $H_2(x) = -\lambda/x$ for x < 0 and by Lemma 4 we see that $F_{n(U_{n,r}^{(k)}-1)}(x) = 1$ for $x \ge 0$ while for $-n \le x < 0$

$$F_{n(U_{n,r}^{(k)}-1)}(x) = \left(1+\frac{x}{n}\right)^{n+r-1} \sum_{j=0}^{r-1} \frac{(n+r-1)!}{j! \, n^j (n-j-1)!} \left(\frac{n\,|x|}{n+x}\right)^j \to e^x \sum_{j=0}^{r-1} \frac{|x|^j}{j!}, \quad n\to\infty,$$

or $n(U_{n,r}^{(k)}-1) \stackrel{D}{\to} N\Gamma(r, 1), n \to \infty$.

Example 4. Consider the Pareto distribution function given by

$$F(x) = \begin{cases} 1 - 1/x^{\alpha} & \text{for } x \ge 1, \\ 0 & \text{for } x < 1. \end{cases}$$

Then

$$\frac{\overline{F}(u+x)}{\overline{F}(u)} = \left(\frac{u}{u+x}\right)^{\alpha}$$

and

$$\left(\frac{\overline{F}(u+x/k)}{\overline{F}(u)}\right)^k = \left(1 + \frac{x}{ku}\right)^{-\alpha k} \to e^{-(\alpha x)/u}, \quad k \to \infty.$$

Therefore, since $Y_n^{(k)} \stackrel{D}{\to} 1$, $k \to \infty$, we have

$$\begin{split} F_{kA_{n,r}^{(k)}}(x) &= 1 - \sum_{i=0}^{r-1} \frac{1}{i!} \int_{S} \left(-\log \left(\frac{\overline{F}(u+x/k)}{\overline{F}(u)} \right)^{k} \right)^{i} \left(\frac{\overline{F}(u+x/k)}{\overline{F}(u)} \right)^{k} dF_{Y_{n}^{(k)}}(u) \\ &\to 1 - \sum_{i=0}^{r-1} \frac{(\alpha x)^{i}}{i!} e^{-\alpha x}, \quad k \to \infty, \end{split}$$

or equivalently $k(Y_{n+r}^{(k)} - Y_n^{(k)}) \xrightarrow{D} \Gamma(r, \alpha), k \to \infty$.

Similarly it can be shown that for k-th lower records from the negative Pareto distribution NPareto (α) with pdf $f(x) = \alpha |x|^{-\alpha-1} I_{(-\infty,-1)}(x)$, where $\alpha > 0$, we have

$$k(Z_n^{(k)}-Z_{n+r}^{(k)}) \stackrel{D}{\to} \Gamma(r,\alpha)$$
 as $k\to\infty$.

Moreover, consider inverse Pareto distribution InvPareto (α, σ) and negative inverse Pareto distribution NInvPareto (α, σ) given by distribution

functions

$$F_1(x) = (x/\sigma)^{\alpha}, \qquad x \in (0, \sigma),$$

$$F_2(x) = 1 - (-x/\sigma)^{\alpha}, \qquad x \in (-\sigma, 0),$$

respectively. Let $\alpha=1$. Then using Theorems 2 and 4 it can be shown that $k\Delta_{n,r}^{(k)}$ from F_1 as well as $kD_{n,r}^{(k)}$ from F_2 both converge, as $k\to\infty$, to $\Gamma(r, 1/\sigma)$ distribution.

EXAMPLE 5. We know that the limit distribution of differences $kD_{n,1}^{(k)}$ of k-th lower records from Gumbel distribution is not a proper distribution (cf. [2]); it may be considered as the distribution concentrated at ∞ . This fact can also be shown for $kD_{n,r}^{(k)}$. In a similar way the sequence of differences $k\Delta_{n,r}^{(k)}$ of k-th upper records from the negative Gumbel distribution

$$F(x) = 1 - \exp(-e^x), \quad x \in \mathbb{R},$$

converge to the distribution concentrated at ∞ .

The limit properties of $k\Delta_{n,r}^{(k)}$, $kD_{n,r}^{(k)}$, $n(U_{n,r}^{(k)}-1)$ and $n(T_{n,r}^{(k)}-1)$ for the distributions of the above examples are shown in the Table.

14010				
F	$k\Delta_{n,r}^{(k)}$	$kD_{n,r}^{(k)}$	$n(U_{n,r}^{(k)}-1)$	$n\left(T_{n,r}^{(k)}-1\right)$
	$k o \infty$		$n \to \infty$	
$Exp(\lambda)$ $NExp(\lambda)$ $Exp(pa/q)*NegExp(a)$ $InvExp$ $NInvExp$ $Pareto(\alpha)$ $NPareto(\alpha)$ $InvPareto(1, \sigma)$	$ \sim \Gamma(r, \lambda) $ $ \xrightarrow{D} \infty $ $ \xrightarrow{D} \Gamma(r, \alpha) $ $ \xrightarrow{D} 0 $ $ \xrightarrow{D} \Gamma(r, 1/\sigma) $	$ \begin{array}{c} \stackrel{D}{\rightarrow} \infty \\ \sim \Gamma(r, \lambda) \\ \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} 0 \\ \stackrel{D}{\rightarrow} \Gamma(r, \alpha) \\ \stackrel{D}{\rightarrow} \infty \end{array} $	$ \begin{array}{c} \stackrel{D}{\rightarrow} \Gamma(r, 1) \\ \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} \Gamma(r, 1) \\ \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} N\Gamma(r, 1) \\ \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} 0 \\ \stackrel{D}{\rightarrow} 0 \end{array} $	$ \begin{array}{c} \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} N\Gamma(r, 1) \\ \stackrel{D}{\rightarrow} N\Gamma(r, 1) \\ \stackrel{D}{\rightarrow} \Gamma(r, 1) \\ \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} 0 \\ \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} \infty $
NInvPareto (1, σ) NGumbel Gumbel	$ \begin{array}{c} \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} \infty \end{array} $	$\begin{array}{c} \stackrel{D}{\rightarrow} \Gamma(r, 1/\sigma) \\ \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} \infty \end{array}$	$ \begin{array}{c} \stackrel{D}{\rightarrow} \infty \\ \stackrel{D}{\rightarrow} 0 \\ \stackrel{D}{\rightarrow} \Gamma(r, 1) \end{array} $	$ \begin{array}{c} \stackrel{D}{\rightarrow} 0 \\ \stackrel{D}{\rightarrow} N\Gamma(r, 1) \\ \stackrel{D}{\rightarrow} 0 \end{array} $

Table

7. DISCUSSION

In Sections 4 and 5 we studied limit distributions of k-th record values following the approach of Gajek [4] and its extension from [2]. It leads to theorems yielding gamma distributions as limit distributions for large classes

of sequences of distribution functions. In particular, from Theorems 1, 3, 5 and 7 we are able to derive easily limit distributions of differences and quotients of non-adjacent k-th record values. In this section we note that Theorems 2, 4, 6 and 8 (being consequences of Theorems 1, 3, 5 and 7) can be also obtained by arguments based on some distribution properties of record values.

Let $\{Y_n^{(k)}, n \ge 1\}$ be the sequence of k-th record values of the sequence $\{X_n, n \ge 1\}$ of i.i.d. random variables with the df F and the pdf f. Moreover, let $\{\overline{Y}_n^{(k)}, n \ge 1\}$ be the sequence of k-th record values of the sequence $\{\overline{X}_n, n \ge 1\}$ of i.i.d. random variables with the df G and the pdf g. Define the function

$$H_G(x) = F^{-1}(G(x)), \quad x \in \mathbb{R},$$

where F^{-1} is the pseudo-inverse of F. We use the fact that the sequences $\{Y_n^{(k)}, n \ge 1\}$ and $\{H_G(\overline{Y}_n^{(k)}), n \ge 1\}$ have the same finite-dimensional distributions. In particular, for $n \ge 1$, $k \ge 1$

$$Y_n^{(k)} \stackrel{d}{=} H_G(\overline{Y}_n^{(k)}),$$

where $\stackrel{d}{=}$ denotes equality in distribution. Therefore

$$(7.1) Y_{n+r}^{(k)} - Y_n^{(k)} \stackrel{d}{=} H_G(\overline{Y}_{n+r}^{(k)}) - H_G(\overline{Y}_n^{(k)}) = H_G'(\theta_{n,r}^{(k)})(\overline{Y}_{n+r}^{(k)} - \overline{Y}_n^{(k)}),$$

by the mean value theorem, where

$$\overline{Y}_n^{(k)} \leqslant \theta_{n,r}^{(k)} \leqslant \overline{Y}_{n+r}^{(k)}.$$

Note that

(7.3)
$$H'_{G}(x) = (F^{-1})'(G(x))g(x) = \frac{g(x)}{f(H_{G}(x))}.$$

Now the statement of Theorem 2 is a consequence of the following arguments. Let $G(x) = 1 - e^{-x}$, $x \ge 0$. By (7.1) we have

$$k(Y_{n+r}^{(k)} - Y_n^{(k)}) \stackrel{d}{=} H_G'(\theta_{n,r}^{(k)}) k(\bar{Y}_{n+r}^{(k)} - \bar{Y}_n^{(k)}).$$

But $k(\overline{Y}_{n+r}^{(k)} - \overline{Y}_n^{(k)})$ has the gamma $\Gamma(r, 1)$ distribution and by (7.2) we obtain $\theta_{n,r}^{(k)} \stackrel{P}{\to} 0$ as $k \to \infty$, and then

$$H'_G(\theta_{n,r}^{(k)}) \stackrel{P}{\to} \lambda^{-1}, \quad k \to \infty,$$

where

$$\lambda = \lim_{x \to F^{-1}(0)} f(x),$$

which is the same as λ given in (4.3). Therefore

$$k(Y_{n+r}^{(k)}-Y_n^{(k)}) \xrightarrow{D} \Gamma(r,\lambda), \quad k \to \infty.$$

Remark 4. Theorem 4 can be proved in the same way, but with $G(x) = e^x$, $x \le 0$, which is a negative exponential distribution function.

Similarly, Theorem 6 can be established as follows. Assume that $G(x) = 1 - \exp(-e^x)$, $x \in \mathbb{R}$, is a negative Gumbel distribution function. By (7.1) we have

$$n\bigg(\frac{Y_{n+r}^{(k)}}{Y_{n}^{(k)}}-1\bigg) = \frac{n\left(Y_{n+r}^{(k)}-Y_{n}^{(k)}\right)}{Y_{n}^{(k)}} = \frac{H_{G}'\left(\theta_{n,r}^{(k)}\right)}{H_{G}\left(Y_{n}^{(k)}\right)}n\left(\overline{Y}_{n+r}^{(k)}-\overline{Y}_{n}^{(k)}\right).$$

From Lemma 1 we see that $n(\overline{Y}_{n+r}^{(k)} - \overline{Y}_n^{(k)})$ has the gamma $\Gamma(r, 1)$ distribution and by (7.2) we obtain $\theta_{n,r}^{(k)} \stackrel{P}{\to} 0$ as $n \to \infty$, which implies

$$\frac{H'_G(\theta_{n,r}^{(k)})}{H_G(Y_n^{(k)})} \xrightarrow{P} \frac{1}{\mu}, \quad n \to \infty,$$

where

$$\mu = \lim_{x \to \infty} \frac{H_G(x)}{H'_G(x)} = -\lim_{x \to F^{-1}(1)} \frac{xf(x)}{\overline{F}(x) \log \overline{F}(x)},$$

which is the same as μ given in (5.3). Note that $\mu \ge 0$ if $F^{-1}(1) > 0$ and $\mu \le 0$ if $F^{-1}(1) \le 0$. Therefore

$$n\left(\frac{Y_{n+r}^{(k)}}{Y_n^{(k)}}-1\right) \overset{D}{\to} \begin{cases} \Gamma\left(r,\,\mu\right) & \text{if } F^{-1}\left(1\right)>0,\\ N\Gamma\left(r,\,-\mu\right) & \text{if } F^{-1}\left(1\right)\leqslant0, \end{cases} n\to\infty.$$

Remark 5. Theorem 8 can be proved in the same way, but with $G(x) = \exp(-e^{-x})$, $x \in \mathbb{R}$, which is a Gumbel distribution function.

REFERENCES

- [1] B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, Records, Wiley, New York 1998,
- [2] M. Bieniek and D. Szynal, Limiting distributions of differences and quotients of successive k-th upper and lower record values, Probab. Math. Statist. 20 (2000), pp. 189-202.
- [3] W. Dziubdziela and B. Kopociński, Limiting properties of the k-th record values, Zastos. Mat. 15 (1976), pp. 187-190.
- [4] L. Gajek, Limiting properties of difference between the successive k-th record values, Probab. Math. Statist. 5 (1985), pp. 221-224.
- [5] Z. Grudzień, Charakteryzacja rozkładów w terminach statystyk rekordowych oraz rozkłady i momenty statystyk porządkowych i rekordowych z prób o losowej liczebności, Ph.D. Thesis, Maria Curie-Skłodowska University, Lublin 1982.
- [6] L. Kubik, Sur un problème de M. D. Dugué, Comment. Math. Prace Mat. 13 (1969), pp. 1-2.

Institute of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
E-mail: mbieniek@golem.umcs.lublin.pl

Received on 18.7.2002