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Abstract. The concept of operator stability on finite-dimensional
vector spaces V was generalized in the past into several directions. In
particular, operator-semistable and self-decomposable laws and self-
-similar processes were investigated and the underlying vector space
V may be replaced by a simply connected nilpotent Lie group G. This
motivates investigations of certain linear subgroups of GL(V} and
Aut(G), respectively, the decomposability group of a full probability p
and its compact normal subgroup, the invariance group.

Using some basic properties of algebraic groups, the structure of
normalizers and centralizers of compact matrix groups is analyzed and
applied to the above-mentioned set-up, proving the existence and de-
scribing the shape of exponents and of commuting exponents of (opera-
tor-) semistable laws.

Further applications are mentioned, in particular for operator
self-decomposable laws and self-similar processes.
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1. INTRODUCTION

A generalization of the concept of stable laws on R leads to operator
stability [24] and operator semistability [ 14] on finite-dimensional vector spaces.
For recent surveys see e.g. [16] and [21]. It turns out that a natural framework
for these investigations are simply connected nilpotent Lie groups [9].

A continuous convolution semigroup u, on a group G (or on a vector
space) is called (strictly) stable if there exists a continuous one-parameter group
(a(®)>0 = Aut(G) such that the self-similarity property a(t)(us) = pter» s = 0,
t > 0, is fulfilled. Recalling that Aut(G) may be considered as a closed subgroup
of GL(R, d), a(t) has a representation a(f) ~ ¥ = exp((logt)- E) for some endo-
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morphism E. In fact, E is a derivation, E € Der(G). The endomorphism E is
called an exponent of u,. It can be shown for full u, that commuting exponents
exist, i.e. exponents E with (tF) centralizing the invariance group of u,. The
semigroup p, is called semistable if for some ae Aut(G) and o > 0 (x # 1) the
weaker condition a(u,) = p,, s 2 0, is fulfilled. A semistable exponent of u, is
a derivation E e Der(G) fulfilling the relation «f = a. For vector spaces, the
existence of semistable exponents is proved by Chorny [6], for more profound
investigations and for applications see [21]; for groups see [9]. In fact, here we
shall use a more restrictive definition (cf. 2.3) assuming in addition that t®
normalizes the invariance group Inv(u) for all ¢ > 0. (For the probabilistic
background see e.g. the above-mentioned surveys [16] and [21] for vector
spaces, and [9] for groups.) .

The shape of the sets of semistable exponents and the existence of com-
muting semistable exponents have not been sufficiently investigated until now.

In [8] the existence of commuting normalizations was proved, so to say,
a discrete version of commuting semistable exponents: For a compact sub-
group K of an almost connected Lie group H and aeN(K, H) there exist
a natural number r and k€ K such that a" « centralizes K. The proof relies on
the structure of compact Lie groups, in fact, the essential result is the finiteness
of N(K, H)/K,*C(K, H). In [23] these “finiteness results” are partially exten-
ded into different directions for reductive subgroups of almost connected Lie
groups.

Using a few basic facts of the theory of algebraic groups we are able to
prove the existence of semistable exponents (for some power a”, respectively aF)
in the normalizer N (K, H), and then, by a general splitting theorem due to
K.H. Hofmann, the existence of commuting exponents follows, thus completing
and improving partially the results of [8] if the groups H under consideration
are assumed to be algebraic, a condition which is fulfilled in all applications we
have in mind.

The paper is organized as follows: As mentioned, motivated by probabilis-
tic problems, we are first led to particular investigations of the structure of
normalizers and centralizers of compact — hence algebraic — Lie groups. In
particular, we investigate for ae N (K, H) the embeddability into a continuous
one-parameter group belonging to the normalizer and the centralizer of K,
respectively. This is the content of Section 1. In Section 2 we apply these
results to prove the existence of (commuting) semistable exponents of con-
volution semigroups of probabilities on a vector space or on a group and
describe the shape of the set of (commuting) semistable exponents, and
in Sections 3 and 4 we sketch some further applications of Section 1: canon-
ical representations of semistable Lévy measures, (semi-)stable hemi-groups,
operator self-similar processes and — in Section 4 — operator self-decom-
posable laws.
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1. SOME BASIC RESULTS CONCERNING ALGEBRAIC SUBGROUPS OF GL(R, d)

Let I' be a subgroup of GL(R, d); the complexification is denoted by
I'® = GL(C, d). We shall assume throughout that I'C is an algebraic subgroup
of GL(C, d). Any xeI' = GL(R, d) defines uniquely an element XelI€ <
GL(C, d).

Conversely, let o denote the automorphism of GL (C, d) defined by com-
plex conjugation. Then ye GL(C, d) is real, i.e., y = % for some x e GL (R, d) iff
o(y) = y. For a subgroup H = GL(C, d) let Hg = {y: o(y) = y} denote the
subgroup of real elements. In particular, I' = (I'“)g. -

For xel" and XerI* let {x) and <{X) denote the subgroups generated by
x and X, respectively.

Let & = R or C. For a subset M = GL (X", d) let M* denote the closure
in the Zariski topology, for a subgroup M let M° denote the irreducible (ie.,
Zariski-connected) component containing the unit e, and let M, denote the
connected component (with respect to the given group topology).

Throughout we use the notation C* for the set of non-zero complex
numbers. R* and I'’* are defined analogously. Spec(a) will denote the spectrum
of a vector space endomorphism a.

We shall only make use of a few basic properties of algebraic groups. The
reader is referred e.g. to [22], [5] and [13]. To make the paper more selfcon-
tained and accessible for the reader who is not familiar with algebraic groups
we repeat some of the basic constructions. In particular, we make use of the
following facts:

o Intersections of algebraic (i.e. Zariski-closed) subgroups of GL (X", d)
are algebraic.

e The closure A” of an Abelian subgroup A is an Abelian algebraic group.
(This follows immediately by [4], 2.4, Proposition.)

e The normalizers and centralizers of algebraic subgroups of GL (¢, d)
are algebraic. (Cf. [22], Chapter I, 8.2, Corollary, or [3], 2.4c, d.)

e The Zariski topology is Noetherian; hence for an algebraic group H we
obtain [H:H"] < oo. (Cf. [13], 7.3, Proposition.)

o Compact real Lie groups are algebraic groups. (Cf. [22], Chapter 3, §4,
No. 4, Theorem 5.)

e Recall the (additive and multiplicative) Jordan decomposition: For an
element xe End (C, d) let x,, x, and, for xe GL(C, d), x, denote the semisim-
ple, nilpotent and unipotent parts, respectively. x, depends on the spectral de-
composition of x; hence there exist polynomials P, and P, with P,(z)+P,(z) = z
for ze C such that x;, = P,(x), x, = P,(x), and, in particular, x; x, = x, x,; respec-
tively, X%, = X, X; = X, x, = (e+x; ' x,). (Cf. e.g. [5], p. 80, Proposition 4.2.)
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If x is real, the spectral decomposition is symmetric with respect to com-
plex conjugation; therefore, the polynomials P, and hence also P, belong to
R[x].

For an algebraic subgroup H < GL(C, d) we have: If xe H, then x;, and
hence x, belong to H. (Cf. [22], Chapter 3, No. 3, Theorem 6.) This applies in
particular to H = I'® and the polynomial representation yields: if x is real, ie.
xel, then x,, x,er.

1.1. LeMMA. Let xe GL(R, d) be semisimple with Spec(x) = {«, a}, Ja # 0,
and with the corresponding eigenspace decomposition C' = W=V @V, X =
o' Idy+a&-Idy. (That is, if u=wuy+i-u,€V, then X(u)=o-u, and
X)) = X(uy—i-uy) = &-u.) Define 7

(s, t):=s-a'ldy+t-a-Idy for s,teC*.
Then X(s, t) is real iff s=t.

Note. {%(s, t)} is the Zariski closure of (X) if this group is Zariski-con-
nected. (Cf. [22], Chapter 3, §2, Theorem 3.)

Proof. X(s, t) is real if it is a fixed point with respect to complex con-
jugation ¢. Fix u=u+i-u,eV, 4 =u,—i-u,€V (u; #0). Then

X(s,)=s5-o-Idy+t-a-Idg = a(i(s, t))
iff
X, ) =50 Idp+t o ldy<s-aut+t-a-u=5da u+i-au
<(@s—1)au=(E—1)ai.
Since u =u;+i-u, and u, # 0, this is equivalent to (s—1t) - (a—&) =0 and,
consequently, to s =1, as asserted. m

1.2. LemMA. Let xeGL (R, d), Xe GL(C, d) as before. Let x = x, be uni-
potent. Then X(s) is real iff seR.

Note. In this case {%(s):= exp(s-logx,): seC} is the Zariski closure of
(%>. (Cf. [22], Chapter 3, §2, No. 2, Theorem 1.

Proof. Since e—% is nilpotent, it follows that b:=log % = — Y+ k™' -(e—%)*
is a polynomial (with real coefficients) of e—%eEnd(C, d). Hence

Ek
a(f(s))=zﬁ-5"

(since o (b) = b). Therefore we infer immediately that % (s) is real iff s = §, i.e. iff
sER. m

1.3. LemMA. Let xe GL(R, d) be semisimple with Spec(x) = {a}, «eR.
Then X(s) is real iff seR”.
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Note. Here the Zariski closure is given by {X(s):=s-a'1d: seC*}. (Cf.
[22], Chapter 3, §2, Theorem 3.) The proof of Lemma 1.3 is obvious.

Since the projections of the eigenspaces are polynomials, combining Lem-
mas 1.1-1.3 we obtain

1.4. PROPOSITION. Let xe GL (R, d) with complexification X. Let I' := {(x)*
and I' := (X)* denote the Zariski closures (over R, respectively C) of the sub-
groups generated by x and X, respectively. Then I (and I'C) are Abelian (as
mentioned above) and algebraic. Furthermore, we have [I':T'y] < oo. That is,
I' is an almost connected real (Abelian) Lie group. B

Proof. 1. Since I'C is algebraic, it follows that, as mentioned above,
[I¢: (I')°] < oo. Therefore we may assume without loss of generality that I'
is irreducible (i.e. Zariski-connected).

2. Consequently, I'® is a torus, and I'C = (C, +)®ZD(C*, ) (cf. [22],
Chapter 3, §2, No. 5, Theorem 8, Corollary).

More precisely, let x = x;-x, be the Jordan decomposition. Put b:=

.logx,. Then

Spec(x) = Spec(x) = {o;: jel,}u{a;, a;: jel,}

with a;e R*, jel,, and Ja; > 0, jel,. Let ¥; and l_/, denote the corresponding
cigenspaces. (V; = V; if jel,.) Put = (to, t;, S, St), where t,€C, t;eC*, jel,,
S, speC™, kel,. Define

f(fb) .= €Xp (to b) * (2116‘)(tj' oy Idp})(‘BZIz@(SJ' o Idy‘l‘S}'&j' Id;_lj)).

Then the Zariski closure {X)* is given by {%(¥): fe(C, +)@Z®(C*, -)}. Ap-
plying Lemmas 1.1-1.3 we observe that X (f) is real iff toeR, t;e R* for jel,,
and s; = 5, € C”™ for ke I,; and, furthermore, X(f)e I, iff, in addition, ;- a; > 0
for jel,. Thercfore, we obtain immediately [I': I'y] = 2" for some reZ,. In
fact, we have xeTl', iff o; > 0 for iel,. Consequently, xeI yields x* eI,.
Thus, by the reduction step 1, the assertions follow. m

1.5. CorOLLARY. (a) With the notation of 1.4, there exist peN, p|[I": I'y],
and a continuous one-parameter group (y () S I'o such that x* = y(1).

Indeed, we have x?el’,. Since I'y is a connected Abelian Lie group, the
exponential mapping exp is surjective.

(b) In fact, the number p may be determined more precisely: If I'C is not
irreducible, then as an Abelian agebraic group it is a quasi-torus, i.e. a direct
product of a finite group F and the torus (I'©)°. Thus, as immediately seen,
[I¢: (I')°] =: q is the order of the maximal finite subgroup F of I' reflecting
the symmetry properties of Spec(x). Indeed, put y:= x4, {f;, jels} = Spec(y).
Then p¥ # % for all i # j and all ke N. Hence (7(f)) is a torus, i.e. an irreducible
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subgroup. Thus step 2 of the proof of Proposition 1.4 applies to yield p = 2"+ ¢,
or p = q if all real eigenvalues f; are positive.

(c) The unipotent part y(t), is uniquely determined by b = log x,,, hence by
x and also by x?, and so are the logarithms of the semisimple parts (o;)" - Idy, of
x? for real a;, ie. for jel;.

Remark. Proposition 1.4 is of course well known. In fact, if I'C is ir-
reducible, then this group is connected (as a Lie group), and, as mentioned in
[4], p. 5, for the real group I we have [I':I'q] < co. That is, I' is an almost
connected Lie group. Here however we preferred to have — for particular
Abelian groups — a direct constructive proof which can be verified nearly
without knowledge of algebraic groups, and which allows to calculate the
number p = p(x) explicitly (see 1.5). Note that Chorny’s proof of the existence
of semistable exponents (see [6]) is based on the fact that GL (R, d) has two
connected components; hence p <2 for I' = GL(R, d).

In the following let H = GL(R, d) be algebraic and let K be a compact
subgroup of H. Let N(K) and C(K),
N(K, H):=N(K)nH, C(K,H):=C(K)nH,
denote the normalizer and the centralizer of K, respectively.
K is algebraic (over R) (cf. [22], Chapter 3, §4, No. 4, Theorem 5). There-
fore N(K) and C(K), and hence also N (K, H) and C(K, H) are algebraic

subgroups of GL (R, d) and of H, respectively (cf. [22], Chapter I, 8.2, Corol-
lary, or [3], 2.4c, d). Consequently, we observe for ae N (K, H) that

(1.1) a) < <a)* = N(K, H).

Remark. Note that the group H endowed with the Zariski topology is
not a topological group. Hence the above-mentioned properties of its sub-
groups are not obvious.

Using the previous preparatory results we obtain:

1.6. PrRoOPOSITION. Let aeN (K, H). There exist pe N depending on a and
a continuous one-parameter group (y (t)),eR c N(X, H) such that y(1) = a®.

For the proof apply 14 and 1.5 to the algebraic Abelian group
{@)* = GL(C, d), respectively to <{a)* = GL (R, d). Using (1.1) we see that y(t)
(defined in 1.5) belongs to (N(K, H))o.

Applying a splitting theorem of K.H. Hofmann we obtain, e.g. as in [9],
1.8.8, 2.8.8, or [8], Remark 1.9, the following

1.7. TueoreM. Let H = GL (R, d) be algebraic, let K = H be a compact
subgroup and ac N (K, H). Assume that {a) is not relatively compact in H (hence
in GL (R, d)). Then there exist pe N (depending on a) and continuous one-param-
eter groups (y.())er S C(K, H) and (x(0))er S K such that y.(1) = a?-x(1)7*
and y(®) = y.(0)-x(), teR.
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Proof. According to 1.6 there exists a continuous one-parameter group
(y(t))er = N(K, H) such that y(1) = a?. Since {a) is not relatively compact,
(y(t): teR) is not relatively compact; hence {y(z): te R} nK = {e}. Hence the
splitting theorem (cf. [10], Proposition 9.4, or [11], Lemma 1.25; see also [8],
1.7, for a new proof) applies and yields the existence of a centralizing one-
-parameter group (Vc(t)er S C(K, H) and (x(t)r S K such that y(f) =
y.(t)-x(t) for teR. That is, we obtain a direct splitting

(y(@): teR) K = (y.(1): teR)QK.
Thus the assertion follows. =

Remark. Note that the discrete version mentioned in the Introduction,
i.e. the existence of commuting normalizations (see [8]), is slightly different: In
[8] the finite number r depends on the structure of the compact subgroup
K and its normalizer, whereas p in Theorem 1.7 depends on g, cf. Corollary 1.5.

2, APPLICATION TO SEMISTABLE CONVOLUTION SEMIGROUPS

As in [8], a probabilistic background of the previous considerations may
be described as follows: Let G denote a simply connected step-r nilpotent Lie
group of dimension d. (If r =0, G is a vector space.) Let & denote the Lie
algebra (& ~ R? as vector spaces).

#*(G) denotes the set of probability measures on G, endowed with con-
volution * and with topology of weak convergence.

i = (4 t = 0) denotes a continuous convolution semigroup, ie. y, € .41 (G),
t =0, t—y, is weakly continuous, and p, % iy = ly4s, t, s = 0.

Aut(G) denotes the group of Lie group automorphisms. Note that
Aut(G) ~ Aut(®) (the group of Lie algebra automorphisms), since

Aut(G)sar>a°€Aut(®) with a°:=exp 'oaocexp.

Therefore, Aut(G) is (isomorphic to) an algebraic subgroup of GL(R, d).
A multiplicatively parametrized one-parameter group in Aut (&) is a continuous
map RXat—a()eAut(G) such that a(t)a(s)=a(t's) for t,s > 0. (Then
s b(s) := a(e) fulfils b(t+5) = b(t) b(s) for all ¢, se R.) In Sections 2 and 3 we
assume throughout one-parameter groups to be multiplicatively parametrized.
The differentials a°(¢) are continuous operator semigroups in Aut(®); hence
a°(t) = t¥ =:exp((log?)- E) for some derivation EeDer(®) < End(R, d).

2.1. DEFINITION. (a) A continuous convolution semigroup g, is called stable
if there exists a continuous one-parameter group (a(?))>o S Aut(G) such that
a()(uy) = y;, t > 0; equivalently,

(21) a(t) (o) = Hyss t>0,5>0.
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(b) u. is semistable if there exist ae Aut(G) and ae(0, 1) such that
(2.2) a(i) = s, s20.

(c) For stable convolution semigroups p, with corresponding groups
(@ (®))>0, a° () = t%, we call E an exponent of p,. Let EXP (1) = EXP < Der (6)
denote the set of exponents.

(d) Let Dec(u):= {acAut(G); 3 acRX: a(u) = pys, s = 0} and Inv(u.)
:={a: a(us) = Y5, s > 0} denote the decomposability group and the invariance
group, respectively. The mapping B

¢: Dec(p)—>RY, o(a):=«
is called the canonical homomorphism. Define for fixed acRX:
Dec, (1) := {aeDec(u): @(a)e{a*: keZ}} =@ {od*: keZ}.

Remark. If r =0, ie. if G is a vector space (= ®), then stable (respec-
tively, semistable) semigroups-defined as above are called strictly operator stable
(respectively, operator semistable). (For more details cf. e.g. [16], [21]; respec-
tively, [9], Chapter I). Furthermore, in this case y, is uniquely determined by
a single measure u := u;. (For vector spaces this is folklore, for the group case
see [9], 2.6.11, 2.6.11*%) '

2.2, On vector spaces a probability measure is usually called “full” if it is
not concentrated on a proper affine subspace. Here we shall call this property
“S-full” and use a slightly different notation:

w1 is called full if it is not concentrated on a proper connected subgroup (i.e.
on a proper linear subspace if G is a vector space). Equivalently, u is full iff
Inv(u):= {a: a(p) = p} is compact.

In fact, for simply connected nilpotent Lie groups, in particular for vector
spaces, we have Inv(u) = Inv(y,) for any t > 0. (See e.g. [16] and [21] for
vector spaces; respectively, [9], §2.5, II, 2.5.13, for the group case; and the
literature mentioned therein.)

Fullness has a strong impact on the structure of the decomposability
group: In particular, let p, be full and let aeDec,(u,), x€(0, 1). Then a is
contractive, i.e. a"(x) — e as n — oo for all xe G. Equivalently, g(a°) < 1, where
¢ denotes the spectral radius. (Cf. e.g. [16] and [21] for vector spaces, or [9],
1.3.9, 2.1.9, 2.3.11d.) Hence, in particular, <{a) is not relatively compact for any
aeDec(u.)\Inv(y), and consequently

(23) {ayInv () = {¢}.

u. is stable if im(p) = RY; u. is semistable if im(¢) # {1} (and hence
im(p) 2 {o*: keZ} for some 0 <a < 1). (Cf. e.g. [9], §1.5, §2.5.)
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The stable case. For full (operator-) stable y, the structure of EXP (u,)
is well known (cf. e.g. [16], [21], [9] and the literature mentioned therein):

24) EXP(u.,) = Eo+invo

for some fixed exponent E,, where inv denotes the Lie algebra of the compact

group Inv(u.).
Furthermore, there exist commuting exponents, i.e. E,€ EXP (u,) such that

(t%: t > 0) = C(Inv(n,), Aut(G)).
Let EXP,(u.) denote the set of commuting exponents. Then
2.5 EXP,(u,) = E.+inv,

for some fixed E e EXP,(u.), where ino, denotes the Lie algebra of the centre
Cent (Inv (.)).

The semistable case. Our aim is to obtain similar results for the
semistable case, extending and improving partially the discrete versions of com-
muting normalizations obtained in [8], Theorem 3.9, see also [9], §1.11:

For all aeDec(p,) with ¢ (a) = « # 1, there exist re N, depending on the
compact group Inv(u), and xelnv(y,) such that a"-xeC(Inv(y,), Dec(p,)).

2.3. DerFINITION. (a) Let y, be full and semistable. A derivation E € Der (®)
is called a semistable exponent of u,, for short: EeSEXP (u) if

(i) a(t), defined by a°(z) = ¥, belongs to N (Inv(u.), Aut(G)) for ¢ > 0, and

(i) a()(us) = ps, for some a # 1 and for all s > 0.

That is, a(),»0 (=~ a° () = t¥) = N(Inv (1), Aut(G)) and a(®) (~ oF) e Dec(u)
with ¢ (a () = o. ‘

Let SEXP,(u,):= {E€SEXP(u.), a°(t) = t* and ¢(a(®)) = o} for «# 1.
Note that in contrast to (stable) exponents it is not assumed that
(a(®))i>0 = Dec(u,). On the other hand, in contrast to previous investigations,
here we assume in addition in condition (i) that a(t) normalizes Inv (u,) for all
t>0.

(b) A semistable exponent E is called a commuting exponent if the
corresponding automorphism group (a(f)(=tF)) belongs to the centralizer
C(Inv(x.), N(Inv(n.))). Then we write E = E,.

Let SEXP,(u.) denote the set of commuting semistable exponents, and, if
a is fixed, SEXP, ,(u.) := SEXP, (1) SEXP, (1.).

Concerning the existence of (commuting) semistable exponents we first
state the following:

2.4. THEOREM. Let p, be full and semistable and let e R¥\{1} with im (p) =
{o*, keZ}.
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(a) For some pe N depending on a we have SEXP,»(u,) # @. That is, if we
put B := oP, then there exists a one-parameter group (a(t)) = N(Inv(g.), Aut(G))
such that a(B)eDec(u,) with ¢(a(p)) = B.

(b) Furthermore, SEXP, ,, # @. That is, there exists a one-parameter group
(3. ®)>0 = N(Inv(,), Aut(G)), as in (a), commuting elementwise with Inv(u,).

Proof. We apply the results of Section 1, in particular 1.6 and 1.7, to the
groups H = Aut(G) and K = Inv(y,), respectively to the corresponding sub-
groups of Aut(®) = GL(R, d). Reparametrizing y(*) in 1.6, we put f:= o,
a(t) := y(logg(t)) and obtain a continuous multiplicatively parametrized group.
Thus (a) follows by 1.6.

Now, Hofmann’s splitting theorem mentioned in 1.7 yields (again by repa-
rametrization) the existence of (a.(r)) = C(Inv(s.), N(Inv (u_))) such that
a.(t) = a(t) k() for t > 0, with (zc (t)) = Inv (p,). Consequently (b) follows. m

Next we investigate the shape of SEXP, and SEXP, ,. (For the structure of
the Lie algebras of N (K, H) and C(K, H) sce [8], Corollary B.) To simplify the
notation we shall identify Aut(G) and Aut (®) as well as Der (G) and Der (®):
let EeDer (®). Then t* means an element t* = exp((logt) E)e Aut(®), and, by
abuse of language, we also write ¥ for the corresponding element in Aut(G)
(since ar—a° is a Lie group isomorphism). Hence, with this notation, multi-
plicative one-parameter groups (a(t));»o S Aut(G) have the representation
a(t) =t%, t > 0, for EcDer(G).

In the following, E and E, will denote elements of SEXP,(y) and
SEXP, ,(u.), respectively, and T and T, elements of inv and ino,. Obviously,
afInv(u,) < Dec, (u.). Hence, in particular, oF t¥ € Dec, (1) for all t > 0. On the
other hand, we observe that the following proposition holds.

2.5. PROPOSITION. We have of*TeDec,(u.), hence E+inv = SEXP,(u.).
Proof. Let t > 0. We have

tE+ T _ hm (t(lln)E t(l/n)T)n = lim (t(lln)E t(l/n)T) (t—(lln)E t(2;‘n)E . tE t(l/n)T)

n->w
= lim {,a/m= (t(lln)T) et -1mE (t(ll")T) tE{1mT

where iy denotes the inner automorphism iy: Y+ XY X ~ 1. Therefore, for t = «
and s > 0 we obtain

af*+T (ﬂs) = lim (ia(lln)E (06(1/")7) gt -ymE (OC(lln)T) af Ot(lln)T) (/Ls) = Ugss

since tTelInv(p,) and t*eN(Inv(g,)) for ¢ > 0. Hence E+ T e SEXP,(u.), as
asserted. =

2.6. PROPOSITION. We have

(2.6) SEXP, (1.) = SEXP, , () +inv.
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Proof. According to Theorem 2.4 it follows that (with a(f) = %, a.(f) = t%,
k(t)=1t") for any exponent EeSEXP,(u) there exist E,eSEXP,,(u) and
Teino such that tf = t5t~7, t > 0. Since tF centralizes Inv(y,), we conclude
that t%¢~T = tE~T, Thus the part “<” follows.

Conversely, let E,e SEXP, ,(p,) and Teinvo. Then, since (t5) and (s7) com-
mute, we have

ch+T(ﬂs) = (aEc aT) (ﬂs) = o (ﬂs) = HUs-q-

Consequently, E.+inv = SEXP,(u,) follows. =

2.7. PROPOSITION. Let E = E + T be as in 2.6. Then (tf) and (s%) coinmute.

Proof We have st tf = sftFe*T  which (as in the proof of Proposi-
tion 2.6) equals s ¢EtT = (st)f=¢”. Since E, is a commuting exponent, we have
(st)tT = t7 (ts)% = tEste. m

Therefore, by analogy with (2.5) we obtain
2.8. THEOREM. We have
2.7 SEXP, , (#.) = E.+inv,

Jor a particular commuting exponent E.eSEXP,,(u.).

Proof. Let E,., F.eSEXP,,(u). According to 2.6, we have E.—F, =:
Teinv. Since F, is commuting, ttT = tF*T = tf<, On the other hand, E, is
commuting. Hence for any xeInv(u) we have t¥<x = xtf, Thus t*tTx =
ktFetT = tFexct?. Therefore, xtT = t"x for t > 0, and hence Teinv, follows. =

Now we have the means to improve Proposition 2.5 and to obtain the
analogue of (2.4):

2.9. THEOREM. We have

(2.8) SEXP, (u) = E+inv

for a particular exponent EecSEXP,(1.).
Proof. According to 2.6 and 2.7 we have

SEXP,(u) = SEXP,,(u)+ino and SEXP,,(u) = E,+ino,,

whence SEXP,(u,) = E,+ino.+ino = E,+ino for any commuting exponent
E e SEXP, ,(p.). Therefore, for E, Fe SEXP,(u,) we have E—E, =: Teinv and
F—E, = Seinv. Thus E—F eino follows. =

2.10. Remark. Affine normalizations. As mentioned above, stability prop-
erties of probabilities on vector spaces are usually described in terms of affine
transformations instead of linear transformations. (See e.g. [16] and [21] for
a survey of the literature, see also [9].) Since the groups we have in mind will in
general be non-Abelian, we preferred to simplify the notation and to restrict the

4 — PAMS 23.1
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considerations to the case of normalization by automorphisms. But it is not
hard to extend the considerations above to the more general set-up.

For example, Dec(y,) has to be replaced then by {aeAut(G): 3o >0,
a function t+ b,e G such that a(u,) = . * &, = &, * Uy}, and fullness has to
be replaced by S-fullness, equivalently, by compactness of the symmetry group
Sym (r.) = {ac Aut(G): IbeG: a(y) = px&}. (See e.g. the discussion in [8].)

It is natural to assume that the shift terms ¢, commute with g, i.e., px & =
&, % 4. This is trivially fulfilled for probabilities on vector spaces. But also in the
group case — under the S-fullness assumption — this is not a serious restric-
tion. As the convergence of types theorem easily shows, it is equivalent to the
assumption that beCent(G).

The applications mentioned in Section 2 generalize almost verbatim to the
case of affine normalizations. We omit the details.

3. SOME FURTHER APPLICATIONS AND ILLUSTRATIONS

A. Canonical representations of semistable Lévy measures. Let y, denote
a full (a, a)-semistable continuous convolution semigroup with Lévy measure

n= %it% t ! HelGrieys

an unbounded non-negative measure which is bounded outside any neighbour-
hood of e and fulfils the semistability relation

G.1) -y = a(n).

Note that a is contractive since y, is full.

A Borel set L is called a cross-section with respect to the action of the
discrete group (a*: ke Z) if G\{e} = | ),_, @*(L) (disjoint union). Define 7 := L.
Then we obtain the representation

=2y a*a'(2).
keZ

Without loss of generality we may assume that a = of for some exponent
EeSEXP,(u,) (with the notation described above). Our aim is to prove the
existence of a “natural” cross-section L which is independent of the particular
choice of the exponent E. The proof follows by a sequence of steps 3.1-3.3

which are of independent interest.
We consider first the case G = V a finite-dimensional vector space. Let p,
be (a, o)-semistable with compact invariance group Inv (u). Fix Ee SEXP, (1.).

3.1. PROPOSITION. There exists a Euclidean norm ||-|| on V satisfying:
(a) O(V)=2Inv(w), whence {tV: Ueino, t >0} < O(V);
(b) t—>|[tEx|| is strictly increasing for all x # 0;
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(¢) the sphere K := {x: ||x|| = 1} is a (compact) cross-section for the action
of the continuous group (t%);s,.

Proof. Since Inv(y,) is a compact subgroup of GL(¥V), we may assume
without loss of generality that Inv(u,) consists of isometries. Hence (a) follows.

For (b) and (c) see e.g. the construction in [16], 3.4.3, [21], 6.1.15, or [9],
1.1.15-1.1.17. =

3.2. Prorosirion. Let K, E, and ||-|| be as in 3.1. Then for any F e SEXP, (1)
we have:

@) IFx]| = |ItF &l for all t >0, keV.

(b) In particular, K is a cross-section for the action of the continuous group
(t") for any exponent F € SEXP, and t ||t¥ || is strictly increasing for all k # 0
and all E, FeSEXP,.

Proof. 1. Assume first that EF = FE. Then we observe that ||tE«]| =
l(tE~F)¢F x| = ||¢F «|| since E— F einv according to Proposition 2.9, and hence
tE~F is isometric.

2. Let FeSEXP,(u.) and let E, be a commuting exponent, E e SEXP, , (1,).
Applying step 1 to both (E, E,) and (E,, F), we obtain |[tE«x|| = [|tEx|| = ||t ]|
for all t > 0, ke V. Consequently we get the assertion. m

3.3. PrROPOSITION. Let a and K be as above. For EeSEXP,(u.) define
E.={ffx: a<t <1, keK}.

Then
(@) IF is a cross-section for the action of the discrete group (a*: ke Z) and
(b) IF is independent of the particular choice of the exponent E, ie. I = If

- =:L for all E, FeSEXP,(u).

Proof. Obviously, &*(If) = *F = {ffx: keK, **! <t < «*}. Hence, by
Proposition 3.1(b), V> = V\{0} = | J o*% (L) is a disjoint union. Let F e SEXP, (1)
and assume again first that EF = FE. Then

I = (=@ L),

Assume that o*E(IF)n I # &. Hence for some «, x, €K and o**! <5 < o,
e <t<1 we have

(3.2) s¥ 1, = t¥k, and hence x; = 2 (t/s)F k.

Considering norms on both sides, by Proposition 3.1(b) and the relation
tE"Fe@(V) we obtain s=t and hence k=0. Furthermore, we have
tf ks = tF (" Ex)e IF since t'Fxe K. Consequently, I < IF follows, and, by
symmetry, IF = IF. In general, the assertion immediately follows when con-
sidering again (E, E) and (E_, F). =
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Putting things together we obtain:

3.4. THEOREM. Let p, be a full (a, ®)-semistable continuous convolution semi-
group on a vector space or on a simply connected nilpotent Lie group G with Lévy
measure 1. Assume without loss of generality that a = of for some exponent
EcSEXP,(u.).

(@) There exists a cross-section L for the discrete action (a* = o*),_, which
is independent of the particular choice of E. In fact, L = {t*x: a <t < 1,keK},
where K is a compact cross-section with respect to (t£) for all exponents
EeSEXP, (1.). -

(b) Let 7 =#n|,. Then

(3.3) =y a *&E().

keZ
This representation is independent of the particular choice of E. Conversely, let
T be a bounded positive measure concentrated on L. Then n defined by (3.3) is an
(a, a)-semistable Lévy measure.

Proof. For vector spaces the assertions are proved in 3.1-3.3.

Let G be a simply connected nilpotent Lie group with Lie algebra &. We
apply the “translation procedure” developed in [9], Chapter II, especially 2.1, -
I ff. Therefore, the exponential map exp: ® — G is a topological isomorphism.
n°:=exp~!(y) is an (a°, «)-semistable Lévy measure on the tangent space ®.
Let K°, I, ©°, n° denote the corresponding objects on the tangent space. Ac-
cording to step 1 the assertions (a) and (b) hold for K°, I?, °, #° on G. Ap-
plying the exponential map exp yields the corresponding assertions for
K,L,7,n on the group G. m V

Remark. Let p, be a full stable continuous convolution semigroup on
a vector space ¥V with Lévy measure #. Furthermore, let E and K denote an
exponent and a compact cross-section for (t5), o, respectively. Then # admits
a desintegration 5 = |_n.do (), where 1, is a (¢tF)-stable Lévy measure concen-
trated on the orbit (rEIfc: t > 0). In fact, we have #, = f(o,w) t™ % g dt. (Cf. eg.
[9], 1.4.5, [21], 7.2.5) If K is chosen independently of the particular exponent
E, the existence of commuting exponents shows that the mixing measure ¢ is
also independent of E. (Cf. e.g. [9], 1.4.11, 1.4.16 and 1.8.13 for vector spaces ¥,
and 2.8.12 for groups G.)

In view of our previous considerations, for full (a, a)-semi-stable u, we
obtain an analogous desintegration of the measure 7, and hence of the Lévy
measure 7 = | e do® (i) with Lévy measures 7, concentrated on the orbits
(t®x) and with semistable exponent E. (Cf. e.g. [9], 1.8.14-1.8.17 for ¥, and
2.8.16 for G).

Furthermore, K may be chosen independently of the exponent, and com-
muting exponents exist. But it is still an open problem whether the mixing
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measure is independent of the exponent also in the semistable case. In fact, the
desintegration formulas differ in an essential point: For fixed x € K in the stable
case, as mentioned above,

= | t 2 g=dt
(0,0)
is — up to normalization — uniquely determined by E and x, whereas in the

semistable case the set of orbital Lévy measures is — again up to normalization —
isomorphic to .#* ([, 1)) in view of the representation

n*

1 —
M=, 0 “a*(fex.do(t)) for some ¢ = ofeM* ([, 1))

keZ
(Cf. [9], 1.8.15, 1.8.16, or [21], 7.1.14 for vector spaces V; a group version can
be found in [9], 2.8.16.)

B. Semistable convolution hemigroups. Continuous convolution semi-
groups in .#* (G) are distributions of stationary independent increment processes
(Lévy processes) taking values in a group G. If stationarity is not assumed, the
distributions of the corresponding additive processes are convolution hemi-
groups:

35. DerNITION. A family ()0 <s<: S A (G) is called a continuous con-
volution hemigroup if pss=2¢,, s=0, pg,* pe,=ts,, 0<s<t<r, and if
(s, ) ps, is continuous. We always assume that u,, # ¢, for xe@G, for all
s<t Put #:={u, 0<s<t}.

As for convolution semigroups we define

Dec(#):= {ac Aut(G); Ju > 0: a(is;) = Yos, for all s <t}
and
Inv(#) := {ac Aut(G): a(u,,) = y,, for all s<t},
and define the canonical homomorphism : Dec(#) = R by y(a) = a iff
a(Us,) = Uas,oe fOr all s <t

Remark. Hemigroups # are defined mostly for the time parameters
s < t belonging to an interval, e.g. to (0, 1]. But if  is not trivial, i.e. if there
exists a < 1 with (@) = o, then s# may be canonically extended to 0 < s < ¢,
s, teRY, defining

Pakes g = a*(s;) for 0 <s<t<1 and keZ.

We call o full if p, is full for all s <t In this case, Inv(u,,), and hence
Inv(#):= ﬂsqlnv (#4s,) are compact subgroups. A convolution hemigroup
H = (us,) is called semistable if Dec (#)\Inv () # @, and # is called stable if
there exists a continuous one-parameter group (a (t)):>0 = Dec(o#) such that
y(a()) =t,¢t>0. In this case a°(t) = t* for some EcDer(®) — we adopt
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again the notation a(t) =t — and E is called an exponent of (the stable
hemigroup) 5. By analogy with convolution semigroups we use the notation
EXP(s#):={E: E is an exponent of #}.

For the structure of the decomposability group Dec(#) see e.g. [7], for
vector spaces cf. [1] and [2]. If 5 is full, we observe that Inv(#°) = ker () is
a compact normal subgroup of Dec(5#). Therefore, in particular, as in the case
of convolution semigroups, for stable hemigroups we obtain

3.4 EXP(s#) = E+ino

for a particular exponent E (inv denotes again the Lie algebra of Inv(#)).
Furthermore, there exist commuting exponents E., i.e. E.e EXP (3#), such that
(t*) = C(Inv(s#), Dec(s)). Let EXP,(#) denote the set of commuting ex-
ponents.

In the following theorem, E is called again a semistable (hemigroup) ex-
ponent, and SEXP, (5#) will denote the set of semistable exponents for ff:= of.
Moreover, commuting exponents E e SEXP,(s#) are called commuting semi-
stable exponents.

3.6. THEOREM. Let 3¢ be full and semistable, ae Dec(#) with  (a) = a.

(8) There exist peN and a one-parameter group (a(t) =t%)so S
N(Inv(5#), Aut(G)) such that a(o®) = «PE = gP.

(b) There exist commuting semistable exponents E.e SEXPg () such that

(t*) = C(Inv(s¢), Aut(G))  with oPEe = gPe Dec(#) and  (aPE) = oP.

(c) Furthermore, the structures of SEXPg () and SEXP, () obtained for
convolution semigroups in Propositions 2.5 and 2.6 generalize to the hemigroup
case.

The proof of Theorem 3.6 is an almost verbatim repetition of that of
Theorem 24. =

We shall continue the investigations of stable hemigroups in Section 4.

C. Semi-self-similar processes. As mentioned above, stable continuous con-
volution semigroups correspond to stable G-valued stationary independent in-
crement processes. If this condition is not fulfilled, we obtain (stationary) self-
-similar processes, i.e. G-valued stationary stochastic processes (X;),> o fulfilling
the self-similarity condition (equality of distributions of finite-dimensional mar-
ginals): '

(3.5 at)(X)Z X,, for s>0, and for all ¢t > 0.

In fact, G is C®-isomorphic to the tangent space ® ~ R? and now — as indepen-
dence of increments is not supposed — the algebraic structure of the state space is
not involved. Hence it is sufficient to define self-similarity for R*-valued proces-
ses. All processes are assumed to be continuous in distribution.
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3.7. DEFINITION. (a) A process X, = (X,),»o taking values in R? is called
a strictly operator self-similar process if X, =0 a.e,, and if for a one-parameter
group (a(t) = 5)»o = GL (R for all t > 0 we have t*(X) = 2 X,., s > 0 (equali-
ty of finite-dimensional marginals). E is called an exponent of X, and EXP(X)
denotes the set of exponents.

(b) Let X, be a process in R%. Then the decomposability and invariance
groups are defined as follows:

Dec(X.):= {acGL(R?Y): a(X,) £ X, for some « >0 and all ¢ >0},

Inv(X,):= {aeGL(R%): a(X) £ X}, -
and the map
¢: Dec(X,)>RY, ¢(a):=a,

is called again the canonical homomorphism.
(¢) X, is called a strictly operator semi-self-similar process if

Dec(X )\Inv(X,) # 9.

As before we obtain:

3.8. ProrosITION. Let ¢ (a) = o for ac Dec(X,). Then for some peN there
exists a “semi-exponent” E e End (R) such that a® = oPE and (t%),» o = N (Inv(X))).
Furthermore, there exist commuting exponents E,, i.e. exponents E, such that (t)
and Inv(X) commute elementwise.

For investigations of operator self-similar processes the reader is referred
e.g. to [12] or to more recently published papers [19], [20], [18] and the
literature mentioned therein.

4. COMMUTING EXPONENTS OF SELF-DECOMPOSABLE LAWS

~In the following we shall restrict our considerations to finite-dimensional
vector spaces G = V, since self-decomposability on groups is not yet sufficiently
investigated. For the vector space case see, in particular, [16], Chapter 3; for
groups see e.g. [9], §2.14.
pe A1 (G) is called an operator self-decomposable measure if there exists
a one-parameter group (a(f) = exp(—t-E))r S GL(R, d) — here and in the
sequel we use an additive parametrization — such that for all ¢ > 0:

4.1) p=a@)@xv)

for some measure v(t)e.#*(V), called a cofactor. In this case, we see immedia-
tely that the cofactors define a stable hemigroup. In fact, the hemigroup

4.2) H = {psi=a)(v(t—9), 0<s<t}
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has the stability property
(43) . . a(r)(“s.t) = Hstri+r for 0<s<t, r=0.

Hence by reparametrization A,,:= f—jogm) -0z 0 < # < v <1, we obtain
a hemigroup which is stable with respect to (b(t):= a(—log(t)) = t%),>,. We
shall always assume that a(-) is contractive; equivalently, R(x) > 0 for
aeSpec(E). For these exponents we observe immediately that

(4.4) . t]im Hos = fi. B

Conversely, let # be a stable hemigroup (as in Section 3) such that (4.4) holds.
Then p is an operator self-decomposable measure. But note that the hemigroup
M is not uniquely determined by the limit measure p.

We assume that the measures u,, and p are S-full. Hence the following
objects are compact subgroups:

I, :=Inv(u,,), Ko (5f) :=Inv(#) = nIs,ta K, (#):= ﬂ Iy,,

s<t o<t
K (o) := Inv(y).

Hence we define EcEnd(R, d) to be an exponent of the self-decomposable law
u if (4.1) holds with a(t) = exp(—t- E), and let EXP, (1) denote the set of those
exponents.

Note that, according to 3.2, there exist exponents of the hemigroup # com-
muting with K, (). However, the question if there exist exponents in EXP, (1)
commuting with Inv (u) (= K, (##)) is not answered by the results of Section 3.

First we make the following observations:

(45) Ir,r+t = a(r)IO,ta(—r)
and {{),, o} is relatively compact in GL (V) with

4.6) LIM Iy, < Inv(y),
t—* o0

where LIM denotes the set of accumulation points.
In fact, (4.5) is an obvious consequence of (4.3), and (4.6) follows immediate-
ly by the convergence of types theorem. Hence in particular we observe that

4.7 Ko () € K, (#) = K, (H#).

4.1. PrROPOSITION. K () = K, ().
Proof. Let be K (s#). Then

Bo+r = por*a(r) (o) = b(lo+r) = b(ko,) *ba (") (o,e) = Ho,»* ba(r) (uo,0)-
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The cofactors are infinitely divisible, so the mapping g+ uq, * ¢ is injective for
any t. Therefore we conclude that p,,., = a(r)(to,) = ba(r) (o) = b (i r+1),
whence bel,, ., follows for all r, >0, ie. beK,(#). =

4.2. Remark. Let u be a self-decomposable measure with exponent
EeEXP,(u) and corresponding stable hemigroup # = #F = {u,,+,=
a(s)(to,), s, t = 0} with a(s) = e~*F and cofactors o, (= uf;, depending on E)
fulfilling the condition p = lim,,_,, o, For belnv(y) let us put E?:= bEb™ 1.
Hence

@(s):=bals)b™, A= {u:=b(sg) = @ ()b (o,

Then #” is a stable hemigroup with exponent EP fulfilling also the condition
limt»—»oo #%,t = P' .

4.3. PROPOSITION. Assume that p is an operator self-decomposable measure
with commuting exponent E., i.e. (exp(—t-E,) =:a.(t));>o centralizing Inv (u),
and with corresponding hemigroup #, = {yS,}. Then

4.3) Ko (#) = K1 () = K5 (#7) = Inv ().

Proof. Let belnv(u). Then p = a.(r) (u) * t,» = b (1) = ba.(r) (1) * b (15.,),
which, by assumption, equals a,(r) b (¢) * b(u5,,) = a.(r) (1) % b (u5,). Consequent-
ly, again as in the proof of Proposition 4.1, belnv(us,) follows. m

44. Remark. The considerations should be compared with Lemma 4
and Theorem 5 of [17]. Namely, Jurek [15] and Luczak [17] proved, by
different methods, the existence of commuting exponents E e EXP, (1) of S-full
operator self-decomposable measure y, and in particular in [17] it is shown
that there exist exponents such that exp(—t-E,) is contractive, and hence
Ko, — U

This result is similar to the investigations in our Sections 2 and 3. How-
ever, it cannot be proved by those methods: Inv (i) need not to be normalized
by exp(—¢-E) for Ec EXP,(u). (In contrast, exp(—t - E) normalizes Inv (#°F))
Thus, it is an open problem to find a proof depending only on the underlying
group structures.

We illustrate the investigations by two examples:
4.5. EXAMPLE. Space-time processes (cf. e.g. [9], §2.14, 111, for more de-

tails) Let # = {u,,: s <t} be a stable hemigroup with exponent E and
a()=e*E,t20. Let H:= VxGL(V) (a non-Abelian Lie group). Define

My = {AQ¢e,: Ae M (V), acGL(V)} = 4 (H).
Convolution on H yields, for B;:= 1,®s,, i=1, 2,

Bix By = (A1 % a1 (1,))Q¢4y0,,
where * and * denote convolutions on H and G, respectively. Then it follows that
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(A 1= po®é&aq: t = 0) is a continuous convolution semigroup in .4, < .4* (H).
As immediately seen, f:= g,®¢, commutes with 4, ie.

4.9) Bxi=Axfp iff belnv(uy,) and ba(t) = a(t)b.

Hence, let E be a commuting exponent of the hemigroup s with a(t) =
exp(—t- E), and corresponding space-time semigroup (4,). Then

(4.10) Inv(#) = {b: for B =e,®e, €My, f*i = A *p for all t}.

Furthermore, assume that p is an operator self-decomposable and full measure
with commuting exponent E e EXP, (1) and corresponding hemigroup #, = {u, ,}
and such that u$, — p. Then, by (4.8), for the corresponding space- -time semi-
group (4f) we obtain
4.11) Inv(s£) =Inv(p)
= {b: for B:=¢,®¢,, Bxi;=A*p for all t>0}.

4.6. EXaAMPLE. Self-decomposable Gaussian laws (for details see e.g. [16],

3.3.6 ff). Let u:= N, ; be the standard Gaussian distribution (with covariance

operator I). Let y denote a symmetric Gaussian law with covariance opera-
tor S. Then the set of exponents is given by

EXP,(y) = {E€End(V): ESE* > 0 (positive semidefinite)}.
Furthermore, the decomposability semigroup is given by
D(y):={a: y =a(y)*v(a) for a cofactor v(a)} = {a: aSa* < I},

and we have Inv(y) = {a: aSa* = §}. In particular, for y=p and S=1 we
obtain Inv(u) = O(V), the group of orthogonal transformations, and
D(w) = {a: aa* < I}.
Let E€cEXP,(u). Then pu= e "E(u)*po, yields
exp(—3(KI—e""Fe™F)y, W) = fo.. (y)-

Hence po,= Noaq with A@):=I—e"Ee™"E, or po,=B()(y) with
B(t) = A(t)Y2. If e~ *E is contractive, then A (t) - I as t — oo. Hence yo, — p. It
follows that g, = B(t)(u) yields
Inv (o) = Io, = B@®Inv(w B~ for t>0.

Thus, if for example we consider E = E* with one-dimensional eigenspaces and
if d = dim (V) = 2k+1, we obtain:

o I, =B{O(WV)B®)™.

o LIM,. Io, = O(V)(=Inv ().

e I, # Iy, s #t; in fact, Iy, NI, = 4, the finite subgroup of O (V) with
diagonal entries -+ 1.
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e Inv(s#) = (1o, = 4, a proper (finite) subgroup of O (V) = Inv(y).

e For semistable convolution semi-groups the invariance groups Inv (x,)
coincide for all ¢ > 0. (See 2.2; as this example shows, this is not true for stable
hemi-groups.)

o Commuting exponents. We have: (e""¥) = C(Inv(u), GL (V) iff po, =
No,sy1 for some real function f, ie., iff I—e "Ee™"F = f()*-I; hence iff
E = c-I for some positive c. In this case, obviously, the invariance groups I,
I, K;(5#), i=0,1, 2,3, coincide (in accordance with Proposition 4.3).
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