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Abstract. The concept of operator stability on finitedimensional 
vector spaces V was generalized in the past into several directions. In 
particular, operator-semistable and self-decomposable laws and self- 
-similar processes were investigated and the underlying vector space 
V may be replaced by a simply connected nilpotent Lie group G. This 
motivates investigations of certain linear subgroups of GL(V) and 
Aut(G), respectively, the decomposability group of a full probability p 
and its compact normal subgroup, the invariance group. 

Using some basic properties of algebraic groups, the structure of 
normalizers and centralizers of compact matrix groups is analyzed and 
applied to the above-mentioned set-up, proving the existence and de- 
scribing the shape of exponents and of commuting exponents of (opera- 
tor-) semistable laws. 

Further applications are mentioned, in particular for operator 
self-decomposable laws and self-similar processes. 
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1. INTRODUCTION 

A generalization of the concept of stable laws on R leads to operator 
stability [24] and operator semistability El41 on finite-dimensional vector spaces. 
For recent surveys see e.g. [la and [Zl]. It turns out that a natural framework 
for these investigations are simpIy connected nilpotent Lie groups [9]. 

A continuous convolution semigroup p, on a group G (or on a vector 
space) is called (strictly) stable if there exists a continuous one-parameter group 
(~(t)) ) ) , , , ,  G Aut(G) such that the self-similarity property a ( t ) b s )  = ps.,, s 2 0,  
t  > 0, is fulfilled. Recalling that Aut (G) may be considered as a closed subgroup 
of GL (R, d), a ( t )  has a representation a ( t )  x P = exp ((log t )  . E) for some endo- 
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morphism E. In fact, E is a derivation, E€Der(G). The endomorphism E is 
called an exponent of p,. It can be shown for full p, that commuting exponents 
exist, i.e. exponents E with (P) centralizing the invariance group of p.. The 
semigroup p, is called semistable if for some U E  Aut (G) and a > 0 ( E  # 1) the 
weaker condition a(p,) = p,.,, s 3 0, is fulfilled. A semistable exponent of p, is 
a derivation E€Der(G) fulfilling the relation aE = a. For vector spaces, the 
existence of semistable exponents is proved by Chorny 161, for more profound 
investigations and for applications see [2l]; for groups see [9]. In fact, here we 
shall use a more restrictive definition (cf. 2.3) assuming in addition that tE 
normalizes the invariance group Invh,) for all t > 0. (For the -probabilistic 
background see e.g. the above-mentioned surveys [16] and [21] for vector 
spaces, and [9] for groups.) 

The shape of the sets of semistable exponents and the existence of com- 
muting semistable exponents have not been sufficiently investigated until now. 

In [XI the existence of commuting normalizarions was proved, so to say, 
a discrete version of commuting semistable exponents: For a compact sub- 
group K of an almost connected Lie group H and a€N(K,  PI) there exist 
a natural number r and rc E K such that a' K centralizes K. The proof relies on 
the structure of compact Lie groups, in fact, the essential result is the finiteness 
of N (K, PP)IK,, C (K, N). In [23] these "finiteness results" are partially exten- 
ded into different directions for reductive subgroups of almost connected Lie 
groups. 

Using a few basic facts of the theory of algebraic groups we are able to 
prove the existence of semistable exponents (for some power aP, respectively aP) 
in the normalizer N(K, H), and then, by a general splitting theorem due to 
K.H. Hofmann, the existence of commuting exponents follows, thus completing 
and improving partially the results of [8] if the groups R under consideration 
are assumed to be algebraic, a condition which is fulfilled in all applications we 
have in mind. 

The paper is organized as follows: As mentioned, motivated by probabiIis- 
tic problems, we are first led to particular investigations of the structure of 
normalizers and centralizers of compact - hence algebraic - Lie groups. In 
particular, we investigate for  EN (K, H) the embeddability into a continuous 
one-parameter group belonging to the normalizer and the centralizer of K, 
respectively. This is the content of Section 1. In Section 2 we apply these 
results to prove the existence of (commuting) semistable exponents of con- 
volution semigroups of probabilities on a vector space or on a group and 
describe the shape of the set of (commuting) semistable exponents, and 
in Sections 3 and 4 we sketch some further applications of Section 1: canon- 
ical representations of semistable LCvy measures, (semi-)stable hemi-groups, 
operator self-similar processes and - in Section 4 - operator self-decom- 
posable laws. 
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1. SOME BASIC RESULTS CONCERNING ALGEBRAIC SUBGROUPS OF GL(R, 6)  

Let I' be a subgroup of GL(R, d); the complexification is denoted by 
TC E GL(C, d). We shall assume throughout that TC is an algebraic subgroup 
of GL (C, 6). Any x E T E GL (R,  6) defines uniquely an element R G rC _c 

GL(C, 4. 
Conversely, let a denote the automorphisrn of GL(C, d) defined by corn- 

plex conjugation. Then y E GL (C, d )  is real, i.e., y = x" for some x E GL (R, 6) ifF 
a 01) = y. For a subgroup H E GL (C, d )  let H R  = {y: u ( y )  = y }  denote the 
subgroup of real elements. In particular, r = (rc),. - 

For x E I' and X" €TC let {x) and (2) denote the subgroups generated by 
x and 2, respectively. 

Let X = R or C. For a subset M E GL(X,  d) let Mz denote the closure 
in the Zariski topology, for a subgroup M let M0 denote the irreducible (i.e., 
Zariski-connected) component containing the unit a, and let M ,  denote the 
connected component (with respect to the given group topology). 

Throughout we use the notation Cx for the set of non-zero complex 
numbers. R x  and r " are defined anaIogously. Spec(a) wiU denote the spectrum 
of a vector space endomorphism a. 

We shall only make use of a few basic properties of algebraic groups. The 
reader is referred e.g. to [22], [S]  and [13]. To make the paper more selfcon- 
tained and accessible for the reader who is not familiar with algebraic groups 
we repeat some of the basic constructions. In particular, we make use of the 
following facts: 

s Intersections of algebraic (i.e. Zariski-closed) subgroups of GL(X, d )  
are algebraic. 

o The closure A" of an Abelian subgroup A is an Abelian algebraic group. 
(This follows immediately by [4], 2.4, Proposition.) 

o The normalizers and centralizers of algebraic subgroups of GL(X,  d) 
are algebraic. (Cf. [22], Chapter I, 8.2, Corollary, or [3], 2.4c, d.) 

r The Zariski topology is Noetherian; hence for an algebraic group H we 
obtain [H:HO] < a. (Cf. [13], 7.3, Proposition.) 

e Compact real Lie groups are algebraic groups. (Cf. [22], Chapter 3, $4, 
No. 4, Theorem 5.) 

c Recall the (additive and multiplicative) Jordan decomposition: For an 
element x E End (C, d) let x,, x, and, for x E GL (C, d), xu denote the semisim- 
ple, nilpotent and unipotent parts, respectively. x, depends on the spectral de- 
composition of x; hence there exist polynomials P, and P, with Ps (z) + P, (2) = z 
for z E C such that x, = Ps(x), x, = P,  (x), and, in particular, x, x, = x, x,; respec- 
tively, x, x, = xu x, = x, xu = (e +x; x,). (Cf. e.g. [5], p. 80, Proposition 4.2.) 



If x is real, the spectral decomposition is symmetric with respect to com- 
plex conjugation; therefore, the polynomials P,, and hence also P ,  belong to 
R 1x1- 

For an algebraic subgroup H G GL (C, d) we have: If x E H,  then x,, and 
hence xu belong to H. (Cf, [22], Chapter 3, No. 3, Theorem 6.) This applies in 
particular to H = rC and the polynomial representation yields: if x is real, i.e. 
x E r, then x,, xu E r. 

1.1. L m  Let XEGL(R, d) be semisimple with Spec(x) = {a, i), 3 a  # 0, 
and with :the corresponding eigenspace decomposition Cd = W=-V Q 2 = 
o!.Idy+cl.Idy. (That is, if u = u l + i * u z ~ k :  then Z(u)=a.u, and 
Z( i i )  = 2(ul -i.u,) = 2 .u . )  Define 

2(s, c) :=  s . ~ . I d , + t - & - I d ~  for s, t € C X .  

Then 2(3, t )  is real zr s = t .  

Note. {Z(s, t)) is the Zariski closure of ( 2 )  if this group is Zariski-con- 
nected. (Cf. [221, Chapter 3, $2, Theorem 3.) 

Proof. 2 (s, t )  is real if it is a fixed point with respect to complex con- 
jugation c. Fix u = u l + i + u 2 ~ V y  f i = u l - i . u 2 ~ P  (u2 #O). Then 

2(s, t) = s-u-Idy+t-&.Idg = a ( f  (s, t)) 

Since u = ul + i . u2 and u2 # 0, this is equivalent to (s- 5 )  -(a -6) = 0 and, 
consequently, to s = t, as asserted. H 

1.2. LEMMA. Let x E GL (R, d), ZE GL (C, d )  as bejore. Let x = x, be uni- 
potent. Then Z(s) is real ifl S E R .  

Note. In this case (x"(s) : = exp (s .log xu): s E C) is the Zariski closure of 
(2). (Cf. [22], Chapter 3, $2, No. 2, Theorem 1.) 

Proof. She-Zisnilpotent,itfollowsthatb:=log~= -CTk- ' . (e - f lk  
is a polynomial (with real coefficients) of e-x"~End(C, d). Hence 

(since a(& = 5). Therefore we infer immediately that Z(s) is real iff s = 5, i.e. iff 
SER. 

8.3. LEMMA. Let x€GL(R,  d) be semisimple with Spec(x) = (a), ~ E R .  
Then Z(s) is real ~ f f  s E R x  . 
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No t e. Here the Zariski closure is given by {Jc" (s) : = s . a! - Id: s E C x  }. (Cf. 
[22], Chapter 3, $2, Theorem 3.) The proof of Lemma 1.3 is obvious. 

Since the projections of the eigenspaces are polynomials, combining Lem- 
mas 1.1-1.3 we obtain 

1.4. PROPOS~ON. Let x E G L  (R ,  d)  with complexiJication 2. Let r : = (x)' 
and TC := (2)" denote the Zariski closures (over R, respectively &3 of the sub- 
grdups generated by x and 2, respectively. Then r (and r3 are Abelian (as 
mentioned above) and algebraic. Furthermore, we have [r : ro] < co - . That is, 
I- is an almDst connected real (Abelian) Lie group. 

Proof. 1. Since rC is aIgebraic, it follows that, as mentioned above, 
[P: (r9'1 < m.  Therefore we may assume without loss of generality that TC 
is irreducible (i.e. Zariski-connected), 

2. Consequently, TC is a torus, and = (C, +)OZ@(Cx, .) (6. [22], 
Chapter 3, $2, No. 5, Theorem 8, CorolIary). 

More precisely, let x = x, - x ,  be the Jordan decomposition. Put b : = 
logx,. Then 

with aj E R , 3 E 11, and 3aj  > 0, j E 12. Let 6 and 6 denote the corresponding 
eigenspaces. ( y  = if j~l,.) Put F= (to, tj, sky si), where to EC, t j € C X ,  j~ 11, 
sk, & € C X ,  k € 1 2 .  Define 

Then the Zariski closure (2)" is given by (2(F): TE (C, +)OE@(Cx , -)I. Ap- 
plying Lemmas 1.1-1.3 we observe that 2 (0 is real iff to E R, t j  E R for j E 11, 
and s; = & E CX for k E 12; and, furthermore, 2 (0 E r, 8, in addition, tj. aj > 0 
for j~ I 1 .  Therefore, we obtain immediately [r: r,] = F for some r E Z+ . In 
fact, we have x E ro iff ai > 0 for i E I1 .  Consequently, x E T yields x2' E r, . 
Thus, by the reduction step 1, the assertions follow. H 

15. COROLLARY. (a) With the notation of 1.4, there exist p E N, p 1 [r: To] ,  
and a continuous one-parameter group ( y  (t)),,R E T o  such that xP = y (1). 

Indeed, we have x P ~ r 0 .  Since To is a connected Abelian Lie group, the 
exponential mapping exp is surjective. 

(b) In fact, the number p may be determined more precisely: If rC is not 
irreducible, then as an Abelian agebraic group it is a quasi-torus, i.e. a direct 
product of a finite group F and the torus (p)'. Thus, as immediately seen, 
[P: (p)'] =: q is the order of the maximal finite subgroup F of r reflecting 
the symmetry properties of Spec (x). Indeed, put y : = x4, {bj, j E 13) = Spec (y). 
Then fl! # fij for all i # j and all k E N. Hence (j? (0) is a torus, i.e. an irreducible 



subgroup. Thus step 2 of the proof of Proposition 1.4 applies to yield p = 2'. q,  
or p = q if all real eigenvalues pi are positive. 

(c) The unipotent part y(t), is uniquely determined by b = log xu, hence by 
x and also by xP, and so are the logarithms of the semisimple parts (aj)P. Idv, of 
xP for real aj,  i.e. for j~ I , .  

R e  mark. Proposition 1.4 is of course well known. In fact, if rC is ir- 
reducible, then this group is connected (as a Lie group), and, as mentioned in 
143, p. 5, for the real group r we have [r:r,] < co. That is, r is an almost 
connected Lie group. Here however we preferred to have - for particular 
Abelian groups - a direct constructive proof which can be verified nearly 
without knowledge of algebraic groups, and which allows to calculate the 
number p = p ( x )  explicitly (see 1.5). Note that Chorny's proof of the existence 
of semistable exponents (see [ 6 ] )  is based on the fact that GL(R, d) has two 
connected components; hence p 4 2 for r = GL(W, d). 

In the following let H G GL(R, d) be algebraic and let K be a compact 
subgroup of H. k t  N(K) and C ( K ) ,  

N(K,  If) := N(K)nH, C ( K ,  R) :=  C(K)nH, 

denote the norrnulizer and the centralizer of K, respectively. 
K is algebraic (over W) (cf. [22], Chapter 3, $4, No. 4, Theorem 5). There- 

fore N(K) and C(K), and hence also N(K, H) and C ( K ,  If) are algebraic 
subgroups of GL(R, d) and of H, respectively (cf. [22], Chapter I, 8.2, Corol- 
lary, or [3], 2.4c, d). Consequently, we observe for a E N  (K, H) that 

(1.1) (a) E (a)' G N(K, H). 

Remark. Note that the group El endowed with the Zariski topology is 
not a topological group. Hence the above-mentioned properties of its sub- 
groups are not obvious. 

Using the previous preparatory results we obtain: 

1.6. PROPOSITION. Let a E N(K, H). There exist p E N  depending on a and 
a continuous one-parameter group (y(t)),,R G N(K, H )  such that y(1) = aP. 

For the proof apply 1.4 and 1.5 to the algebraic Abelian group 
(a")" E GL (C, d), respectively to {a)' G GL (R, d). Using (1.1) we see that y (t) 
(defined in 1.5) belongs to (N(K, H)),. 

Applying a splitting theorem of K.H. Hofmann we obtain, e.g. as in [9], 
1.8.8, 2.8.8, or [8], Remark 1.9, the following 

1.7. THEOREM. Let H r GL (R, d) be algebraic, let K G H be a compact 
subgroup and a E N  (K, M). Assume that {a) is not relatively compact in H (hence 
in GL (if, d)). Then there exist p E N (depending on a) and continuous one-pararn- 
eter groups (ye (t)),R G C (K, H) and (u (t))tER E K such that y, (1) = aP - K (I)-' 
and y(t) = y,(t).rc(t), ~ E R .  
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Proof.  According to 1.6 there exists a continuous one-parameter group 
(y (t))r,, c N (K, PT) such that y (I )  = aP. Since { a )  is not relatively compact, 
( y  (t): t~ R) is not relatively compact; hence ( y  (t): t ER) n K = (el. Hence the 
splitting theorem (cf. [lo], Proposition 9.4, or [llj, Lemma 1.25; see also [a], 
1.7, for a new proof) applies and yields the existence of a centralizing one- 
-parameter group (y,(t)),, G C ( K ,  H )  and (K (t))tER E K such that y (t) = 
y,( t )*~(t)  for t ER. That is, we obtain a direct splitting 

Thus the assertion follows. 

Remark. Note that the discrete version mentioned in the Introduction, 
i.e. the existence of commuting normalizations (see [S]), is slightly different: In 
[8] the finite number r depends on the structure of the compact subgroup 
K and its normalizer, whereas p in Theorem 1.7 depends on a, cf. Corollary 1.5. 

2. APPLICATION TO SEMISTABLE CQNVQLWTION SEMIGROUPS 

As in [8], a probabilistic background of the previous considerations may 
be described as follows: Let G denote a simply connected step-r nilpotent Lie 
group of dimension d. (If r = 0, G is a vector space.) Let 8 denote the Lie 
algebra ( 8  w Rd as vector spaces). 

A1 (6) denotes the set of probability measures on 6, endowed with con- 
volution * and with topology of weak convergence. 

p. = &: t 2 0) denotes a continuous convolution semigroup, i.e. & E  d1 (G), 
t >, 0, t ~ k  is weakly continuous, and k*ps = =+s, t, s 2 0. 

Aut(G) denotes the group of Lie group automorphisms. Note that 
Aut(G) w Aut(8) (the group of Lie algebra automorphisms), since 

A u t ( 6 ) 3 a ~ a " ~ A u t { Q )  with a':= exp-'oaoexp. 

Therefore, Aut(G) is (isomorphic to) an algebraic subgroup of GL(R, d). 
A muItiplicatively parametrized one-parameter group in Aut (G) is a continuous 
map R : 3 t ~ a ( t ) ~ A u t ( G )  such that a(t)a(s) = a(t.s) for t, s > 0. (Then 
s ~ b ( s )  := a(eS)fulfils b(t+s) = b(t)b(s)for all t ,  s€R.)In Sections 2and 3 we 
assume throughout one-parameter groups to be multiplicatively parametrized. 
The differentials aO(t) are continuous operator semigroups in Aut (6); hence 
a" (t) = tE = : exp ((log t) . E) for some derivation E E Der (6) G End (R,  d). 

21. DEFINITION. (a) A continuous convolution semigroup p, is called stable 
if there exists a continuous one-parameter group (~(t)),,, c_ Aut(G) such that 
a (t) (pi) = p,, t > 0; equivalently, 



(b) p. is semistable if there exist a~ Aut (G) and a ~ ( 0 ,  1) such that 

(c) For stable convolution semigroups p, with corresponding groups 
(a (t)),, o, a" (t) = tE, we call E an exponent of p,. Let EXP (pa) = EXP c Der (6) 
denote the set of exponents. 

(d) Let Declp.) := (a~Aut(G) ;  3 ~ E R : :  a(p,J = p,.,, s 2 0) and Inv(p.) 
:= (a: a(pJ = ,us, s 2 0) denote the decomposabiIity group and - the invariance 
group, respectively. The mapping 

is called the canonical homonaorphism. Define for fixed u E R;I : 

Remark .  If r = 0, i.e. if G is a vector space ( w 8), then stable (respec- 
tively, semistable) semigroups.defmed as above are called strictly operator stable 
(respectively, operator semistable). (For more details cf. e.g. [16], [21]; respec- 
tively, [9], Chapter I). Furthermore, in this case p, is uniquely determined by 
a single measure p : = pl  . (For vector spaces this is folklore, for the group case 
see [9], 2.6.11, 2.6.11*.) 

2.2. On vector spaces a probability measure is usually called "full" if it is 
not concentrated on a proper aflne subspace. Here we shall call this property 
"S-full" and use a slightly different notation: 

p is called full if it is not concentrated on a proper connected subgroup (i.e. 
on a proper linear subspace if 4; is a vector space). Equivalently, p is full iff 
Inv Q : = (a: a (p) = p) is compact. 

In fact, for simply connected nilpotent Lie groups, in particular for vector 
spaces, we have Inv(p,) = Pnv(,u,) for any t > 0. (See e.g. [I61 and [21] for 
vector spaces; respectively, [9], $2.5, 11, 2.5.13, for the group case; and the 
literature mentioned therein.) 

Fullness has a strong impact on the structure of the decomposability 
group: In particular, let p, be full and let U E  Dec, (p.), M E  (0, 1). Then a is 
contractive, i.e. an (x) + e as a -, GO for all x E 6. Equivalently, Q (a0) < 1, where 
Q denotes the spectral radius. (Cf. e.g. [I61 and [21] for vector spaces, or [9], 
1.3.9, 2.1.9, 2.3.11d.) Hence, in particular, (a) is not relatively compact for any 
a E Dec (p,)\Inv (p.), and consequently 

K is stable if im(q) = R:; p. is semistable if im(q) # (1) (and hence 
im (cp) 2 {ak: k E Z) for some 0 < a < 1). (Cf. e.g. [9], 8 1.5, § 2.5.) 
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The  s t ab l e  case. For full (operator-) stable p, the structure of EXP (p.) 
is well known (cf. e.g. [16], [21], [9 ]  and the literature mentioned therein): 

for some fixed exponent Eo,  where  in^ denotes the Lie algebra of the compact 
group Inv (p.). 

Furthermore, there exist commuting exponents, i.e. E, E EXP (p , )  such that 

(Po: t > 0) c C(Inv(p-), Aut(d;)). - 

Let EXP,(p.) denote the set of commuting exponents. Then 

for some fixed E, E EXP, (p.), where inn, denotes the Lie algebra of the centre 
Cent (Inv (p,)). 

T h e  semis tab le  case. Our aim is to obtain similar results for the 
semistable case, extending and improving partially the discrete versions of corn- 
muting normalizations obtained in [$], Theorem 3.9, see also [9], 51.11: 

For all a E Dec (po) with rp (a) = u # 1, there exist r E N ,  depending on the 
compact group Inv (p,), and u E Inv (p.) such that a" - rc E C (Inv (p,), Dec (p,)). 

2.3. DEFINITION. (a) Let ji. be full and semistable. A derivation E E Der (8) 
is called a semistable exponent of p,, for short: E€SEXP(p,) if 

(i) a(t), defined by a" (t) = tE, belongs to N(Inv(p,), Aut (G)) for t > 0, and 
(ii) a(a)(p,) = p,, for some a # 1 and for all s 2 0. 
That is, a (th30 (x aro (t) = 4 E N(1nv (p.), Aut (Gj) and a (a) ( x  a 3  E Dec fj.t.) 

with rp(a(a)) = a. 
Let SEXP,(p,) : = ( E  E SEXP (p-), a" (t) = and q (a (E)) = a) for cl # 1. 

Note that in contrast to (stable) exponents it is not assumed that 
(a(t)),,, G Deck.). On the other hand, in contrast to previous investigations, 
here we assume in addition in condition (i) that a(t) normalizes Inv(p,) for all 
t > 0. 

(b) A semistable exponent E is called a commuting exponent if the 
corresponding automorphism group (a ( t )  (z t3) belongs to the centralizer 
C ( ~ n v  (p..). N (I& (p.))). Then we write E = E,. 

Let SEXP, (p.) denote the set of commuting semistable exponents, and, if 
E is fixed, SEXP,,, (p.) : = SEXP, (p.) n SEXP, (p.). 

Concerning the existence of (commuting) semistable exponents we first 
state the following: 

2.4. THEOREM. Let p, be full and semistable and Eet a E R: \{l) with im (cp) z 
{ak, ~ E Z } .  
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(a) For some p E N depending on a we have SEXP,, (p.) # 8. That is, if we 
pert p : = up, than there exists a one-parameter group (a (t)) G N (Inv (y.), Aut (G)) 
such that a@) E Dec (y,) with rp (a (#I)) = f l .  

(b) Furthermore, SEXPc,,p # 0. That is, there exists a one-parameter group 
(a,(t)),,,, E N(Inv(p.), Aut (G)), as in (a), commuting elementwise with Inv(,u,). 

Proof. We apply the results of Section 1, in particular 1.6 and 1.7, to the 
groups H = Aut (C) and K = Inv(p,), respectively to the corresponding sub- 
groups of Aut(Q) E GL(R, d). Reparametrizing yc) in 1.6, we put P :  = olP, 
a (t) : = y(loga (t)) and obtain a continuous multiplicatively parametrized group. 
Thus (a) follows by 1.6. 

Now, Hofmann's splitting theorem mentioned in 1.7 yields (again by repa- 
rametrization) the existence of (a, (t)) c C (Inv (p.), N (Inv (y,))) such that 
a, (t) = a It). K ( t )  for t > 0, with (rc (t)) c: Inv b,). Consequently (b) follows. 

Next we investigate the shape of SEXP, and SEXP,,. (For the structure of 
the Lie algebras of N(K, H) and C (K, H) see [8], Corollary B.) To simplify the 
notation we shall identify Aut (6) and Aut (6) as well as Der (G) and Der (6): 
let E E Der (6). Then P means an element tE = exp ((log t) E) E Aut (E), and, by 
abuse of language, we also write tE for the corresponding element in Aut (G) 
(since a w a o  is a Lie group isomorphism). Hence, with this notation, multi- 
plicative one-parameter groups (a (t))t,o E Aut (C) have the representation 
a (t) = tE, t > 0, for E E Der (G). 

In the following, E and E, will denote elements of SEXP,(p,) and 
SEXP,, b,), respectively, and T and T, elements of inv and inu, . Obviously, 
olE Inv b,) G Dec, b.). Hence, in particular, aE tT t~ Dec, (p.) for alI t >, 0. On the 
other hand, we observe that the following proposition holds. 

25. PROPOSITZON. We hue  aE' E Dec, (p,), hence E + inv c SEXP, (p,). 

Proof. Let t > 0. We have 

= lim it[ltnl~ (t('/'lT). . . it(l - ltn)E (t(lln)T) tE t(lln)T, 

where ix denotes the inner automorphism i,: Y w XYX- l. Therefore, for t = a 
and s 2 0 we obtain 

uE+ (ps) = lim (i,cl,n,E (ol(l/n)T) . . . 1/,,E (ol('/"'T) aE (ps) = pa.,, 

since tT E Inv (y,) and tE E N (Inv (p,)) for t > 0. Hence E + T E SEXP, (p.), as 
asserted. 

2.6. PROPOSITION. We have 

(2.6) SEXP, b.) = SEXP,,, (p.) + inu. 
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P r o  o f, According to Theorem 2.4 it follows that (with a (t) = P , a, ( t )  = PC, 
K ( t )  = tT) for any exponent E E SEXP, (p.) there exist E, E SEXP,, ( K )  and 
T ~ i n n  such that P = t E ~ t - ~ ,  t > 0. Since tEc centralizes Inv (p,), we conclude 
that tEc t - T  = tEc-T.  Thus the part " c" follows. 

Conversely, let E,E SEXP,, (p.) and T E im. Then, since (tEc) and (sT) com- 
mute, we have 

&"(pJ = (ME= ruT) ( p )  = aEc (,us) = pS.,. 

Consequently, Ec + ino E SEXP, (A) folows. - 

2.7. ~ k m r n o ~ .  Let E = E,+ T be ns in 2.6. Then ($1 und (sEc) commute. 

P r o  of. We have sEc tE = S ~ ~ E C + ~ ,  which (as in the proof of Proposi- 
tion 2.6) equals sEc tEctT = (st)Ec tT .  Since is a commuting exponent, we have 

tT = tT ( t~)"" = tE sE,. E4 

Therefore, by analogy with (2.5) we obtain 

2.8. THEOREM. We have 

for a particular commuting exponent E, E SEXP,, ,  (p,). 

P r o  of. Let E,, F ,  E SEXP,,, (p.). According to 2.6, we have E, - Fc = : 
T ~ i n u .  Since Fc is commuting, f i t T  = tFc+T = $. On the other hand, Ec is 
commuting. Hence for any rc~Inv(p,) we have Pclc = k-tEc. Thus tPctTk- = 
I C ~ ~ C  tT = F c ~ t T .  Therefore, lctT = tTlc for t > 0, and hence T ~ i n v ,  follows. 

Now we have the means to improve Proposition 2.5 and to obtain the 
analogue of (2.4): 

2.9. THEOREM. We have 

(2.8) SEXP, (p,) = E +inn 

for a particular exponent E E SEXP, (,urn). 

Proof.  According to 2.6 and 2.7 we have 

SEXP, (p.) = SEXP,, (p.) +  in^ and SEXPc,a (pa) = Ec + inu,, 

whence SEXP, (p.) = E, + inv, + inv = Ec + inn for any commuting exponent 
Ec E SEXP,,, (p.). Therefore, for E, F E SEXP, (p,) we have E - E, = : T E inu and 
F - E, = S E  in^. Thus E -  F E inv follows. EJ 

2.10. Remark.  Afine normalizations. As mentioned above, stability prop- 
erties of probabilities on vector spaces are usually described in terms of affine 
transformations instead of linear transformations. (See e.g. [16] and [21] for 
a survey of the literature, see also 191.) Since the groups we have in mind will in 
general be non-Abelian, we preferred to simplify the notation and to restrict the 

4 - PAMS 23.1 
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considerations to the case of normalization by automorphisms. But it is not 
hard to extend the considerations above to the more general set-up. 

For example, DecIp,) has to be replaced then by {a~Aut(Q;): 3cr > 0, 
a function t w b, E C such that a(p,) = pa., + E,, = eb, A pa.,], and fullness has to 
be replaced by S-fullness, equivalently, by compactness of the symmetry group 
Sym ('ji,) = (a E Aut (): 3b E G: a (p) = I~ E~). (See e.g. the discussion in 181.) 

It is natural to assume that the shift terms E~ commute with p, i.e., pa E, = 

cb a p. This is trivially fulfilled for probabilities on vector spaces. But also in the 
group case - under the S-fullness assumption - this is not a serious restric- 
tion. As'the convergence of types theorem easily shows, it is eqiiivalent to the 
assumption that b E Cent (G). 

The applications mentioned in Section 2 generalize almost verbatim to the 
case of affine normalizations. We omit the details. 

3. SOME FURTI-ER APPLICATIONS AND ILLUSTRATrONS 

A. Canonical representations of semistable Ikvy  measures. Let p, denote 
a full (a, a)-semistable continuous convolution semigroup with Lkvy measure 

an unbounded non-negative measure which is bounded outside any neighbour- 
hood of e and fulfils the semistability relation 

Note that a is contractive since p. is full. 
A Bore1 set L is called a cross-section with respect to the action of the 

discrete group (ak: k E Z) if G\{e) = U,, d (L) (disjoint union). Define z : = qlL. 
Then we obtain the representation 

Without loss of generality we may assume that a = & for some exponent 
E ESEXP,(~,)  (with the notation described above). Our aim is to prove the 
existence of a "natural" cross-section L which is independent of the particular 
choice of the exponent E. The proof follows by a sequence of steps 3.1-3.3 
which are of independent interest. 

We consider first the case G = T.: a finite-dimensional vector space. Let ,u, 
be (a, a)-semistable with compact invariance group Inv (p). Fix E E SEXP, (p,). 

3.1. PROPOSITION. There exists a Euclidean norm II.II on V satisfying: 
(a) O (V) 2 Inv (p.), whence (tu: U E  in^, t > 0) G 0 (V); 
(b) t H lltE ~ l l  is strictly increasing for all K # 0; 
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(c) the sphere K : = (x: llxll = l} is a (compact) cross-section for the action 
of the continuous group (tE),,*. 

P r o  of. Since Inv (p.) is a compact subgroup of GL (V), we may assume 
without loss of generality that Inv (p.) consists of isometrics. Hence (a) follows. 

For (b) and (c) see e.g. the construction in [16], 3.4.3, [21], 6.1.15, or [9], 
1.1.1S1.1.17. a 

3.2. P R O P ~ ~ ~ O N .  Let K, E, and 1 )  -1)  be as in 3.1. Then for m y  F E SEXP, b,) 
we have: - 

(a) IltE'~cll = IltFrcll for all t > 0, I C E  V .  
(b) In particular, K is Q cross-section for the action ofthe continuous group 

( t 4  fop. any exponent F E SEXP, and t c, lltF 1 ~ 1 1  is strictly increasing for aEE rc # 0 
and all E ,  F E  SEXP,. 

Proof, 1. Assume first that EF = FE. Then we observe that I[tE rc[j = 

Il(P-F) P k-11 = ]ItF ull since E - I ;  E inn according to Proposition 2.9, and hence 
tEeF is isometric. 

2. Let F E SEXP,(p.) and let E, be a commuting exponent, E, E SEXP,,(p.). 
Applying step 1 to both ( E ,  E,) and (E,, F), we obtain J ( t E ~ I l  = IltEclcll = lltF~ll 
for all t > 0, K E  K Consequently we get the assertion. H 

3.3. PROPOSITION. Let a and K be as above. For EfSEXP,(p,) define 

Then 
(a) I? is a cross-section for the action of the discrete group (ak: k E 2) and 
(b) LE is independent of the particular choice of the exponent E, i.e. LE = LP 

= : L for all E ,  F E SEXP, (p.). 

Proof. ObviousIy, ak(I?) = o?R'E = (P IC:  K E K ,  dfl  6 t < 2). Hence, by 
Proposition 3.l(b), V x  = q ( 0 )  = U ak'E(Ly is a disjoint union. Let F€SEXP,Cu,) 
and assume again first that EF = FE. Then 

LF = u (ak'E (LE) n E) .  

Assume that ~ ~ ' ~ ( I ? ) n l ?  # O .  Hence for some u, u1 EK and u k + l  6 s < uk, 
a < t < 1 we have 

(3.2) SF K I  = tE u, and hence ul = P-F (t/s)' u. 

Considering norms on both sides, by Proposition 3.I@) and the relation 
t E - " ~ B ( V )  we obtain s = t, and hence k = 0. Furthermore, we have 
i? u1 = t? (p-E u) E I? since tF-E JC E K .  Consequently, I? E I? follows, and, by 
symmetry, I? = I!. In general, the assertion immediately follows when con- 
sidering again (El E,) and (E,, F). H 



Putting things together we obtain: 

3A. THEOREM. Let p, be afull (a, or)-semistable continuous convolution semi- 
group on a vector space or on n simply connected nilpotent Lie group G with Ikvy 
measure g. Assume without loss of generality that a = ctE for some exponent 
E E SEXP, (p.) . 

(a) There exists a cross-section L for the discrete action (ak = c t k - ~ , ,  which 
is independeat of the particular choice o f E .  In fact, L = ( P K :  c l <  t < 1, K E K), 
where K is a compact cross-section with respect to (tE) for all exponents 
E E SEXPa (p,). - 

(b) Let z = ?I,. Then 

This representation is independent of the particular choice of E, Conversely, let 
z be a bounded positive measure concentrated on L. Then q defined by (3.3) is an 
(a, a)-semistable U v y  masure. 

Proof.  For vector spaces the assertions are proved in 3.1-3.3. 
Let 6; be a simply connected nilpotent Lie group with Lie algebra 8. We 

apply the "translation procedure" developed in [9],  Chapter 11, especially 2.1, 
I ff. Therefore, the exponential map exp: @i + G is a topological isomorphism. 
go := exp-'(q) is an (a", +semistable Livy measure on the tangent space 6. 
Let KO, E ,  z", q0 denote the corresponding objects on the tangent space. Ac- 
cording to step 1 the assertions (a) and (b) hold for KO, E ,  zO, q0 on G. Ap- 
plying the exponential map exp yields the corresponding assertions for 
K, L,  T, q on the group 6. H 

Remark.  Let be a full stable continuous convolution semigroup on 
a vector space V with Lkvy measure q .  Furthermore, let E and K denote an 
exponent and a compact cross-section for respectively. Then g admits 
a desintegration q = j q, da (K), where g, is a (tE)-stable Lkvy measure concen- 
trated on the orbit (t u: t > 0). In fact, we have q, = J(,,,, t - ' . ~ ~ , d t .  (Cf e.g. 
[9 ] ,  1.4.5, [21], 7.2.5.) If K is chosen independently of the particular exponent 
E, the existence of commuting exponents shows that the mixing measure a is 
also independent of E. (Cf. e.g. [9], 1.4.1 1, 1.4.16 and 1.8.13 for vector spaces K 
and 2.8.12 for groups G.) 

In view of our previous considerations, for full (a, a)-semi-stable y, we 
obtain an analogous desintegration of the measure z, and hence of the Livy 
measure q = S,qfd#(~) with LCvy measures q, concentrated on the orbits 
(PK)  and with semistable exponent E. (Cf. e.g. [9], 1.8.14-1.8.17 for K and 
2.8.16 for 6). 

Furthermore, K may be chosen independently of the exponent, and com- 
muting exponents exist. But it is still an open problem whether the mixing 
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measure is independent of the exponent also in the semistable case. In fact, the 
desintegration formulas daer  in an essential point: For fixed rc E K in the stable 
case, as mentioned above, 

is - up to normalization - uniquely determined by E and K, whereas in the 
semistable case the set of orbital LCvy measures is - again up to normahation - 
isomorphic to &'([a, 1)) in view of the representation 

1 - 
tlK = a - k  (1 e , ~ ,  dq (t)) for some Q = E A' ([u ,  1)). 

kEZ a 

(Cf. [9], 1.8.15, 1.8.16, or [21], 7.1.14 for vector spaces a grdup version can 
be found in [9], 2.8.16.) 

B. SePnistablle convolution hmigroups. Continuous convolution semi- 
groups in A' (6;) are distributions of stationary independent increment processes 
(Ltvy processes) taking values in a group G. If stationarity is not assumed, the 
distributions of the corresponding additive processes are convolution hemi- 
groups: 

3.5. DEFINITION. A family (pS,*), ,,<, s M1 {G) is called a continuous con- 
volution hemigroup if p,,, = s > 0, k,t a k ,  = p,,,, 0 < s $ t  < r ,  and if 
(s, t) H ps,t is continuous. We always assume that ~ 1 , ,  # E~ for x E G, for all 
s < t. Put x := (ps,,: 0 < s $ t). 

As for convolution semigroups we define 

Dec ( Z )  : = {a E Aut (G); 3a > 0: a (p8,J = pes,,, for a11 s < t) 

and 

Inv ( X )  : = (a E Aut (G): a (p,,J = A,, for all s d t) , 

and define the canonical homomorphism $: Dec(Z) + R: by $(a) = o: iff ! 
a bs,,) = pns,,, for all s G t. 1 

Remark .  Hemigroups X' are defined mostly for the time parameters 1 I 
s d t belonging to an interval, e.g. to (0, 11. But if rl, is not trivial, i.e. if there 
exists a < f with $(a) = a, then X may be canonically extended to 0 < s < t, 
s, ~ER:, defining 

fiprk.S,a~.t : = ak (lLS,,) for 0 < S $ t < 1 and k E Z .  

We call Z full if p,,, is full for all s < t. In this case, Inv(p,,,), and hence 
Inv(X') : = ns,,InvbS,J are compact subgroups. A convolution hemigroup 
&' = OL,,J is called semistable if Dec (X)\Inv (X') # 0, and X is called stable if 1 
there exists a continuous one-parameter group (a(t)),,, E Dec(Z) such that 
i,h (a (t)) = t ,  t > 0. In this case a" (t) = P for some E E Der (6) - we adopt 

I 
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again the notation a(t) = tE - and E is caIled an exponent of (the stable 
hernigroup) S. By analogy with convolution semigroups we use the notation 
EXP(X') : = (E: E is an exponent of X) .  

For the structure of the decomposability group Dec(H) see e.g. [7], for 
vector spaces cf. El] and [2]. If X is full, we observe that Inv(2)  = ker ($) is 
a compact normal subgroup of Dec (2). Therefore, in particular, as in the case 
of convolution semigroups, for stable hemigroups we obtain 

13-41 EXP (Sf) = E +in0 

for a particular exponent E (ino denotes again the Lie algebra-of Inv(2)) .  
Furthermore, there exist commuting exponents E,, i.e. E, E EXP (S), such that 
(e) G C (lnv [&'I, Dec (EP)). Let EXP, (Af) denote the set of commuting ex- 
ponents. 

In the following theorem, E is called again a semistable (hemigroup) ex- 
ponent, and SEXPp (#) will denote the set of semistable exponents for : = orP. 
Moreover, commuting exponents E, E SEXP,, ( i f )  are called commuting semi- 
stable exponents. 

3.6. ~ M M .  Let 2 be full and semistable, a E Dee(#) with $(a) = a. 
(a) There exist p~ N and a one-parameter group (a (t) = p),,, E 

N (Inv(&'), Aut (G)) such that a(&') = cFE = aP. 
(b) There exist commuting semistable exponents E,E SEXPa (X) such that 

(tEc) G C (Inv (S), Aut (G)) with olP'"' = aP E Dec ( 2 )  and $ (EP'~C) = clP. 

(c) Furthermore, the structures of SEXPp (#) and SEXP,,# (2) obtained for 
convolution semigroups in Propositions 2.5 and 2.6 generalize to the hemigroup 
case. 

The proof of Theorem 3.6 is an almost verbatim repetition of that of 
Theorem 2.4. s 

We shall continue the investigations of stable hemigroups in Section 4. 

C. Semi-self-similar processes. As mentioned above, stable continuous con- 
volution semigroups correspond to stable G-valued stationary independent in- 
crement processes. If this condition is not fultiUed, we obtain (stationary) self- 
-similar processes, i.e. G-valued stationary stochastic processes (XJs2, fulfilling 
the self-similarity condition (equality of distributions of Jinite-dimensional mar- 
ginab): 

(3.5) a )  (X)  X for s 2 0, and for all t > 0. 

In fact, G is Cm-isomorphic to the tangent space 0 - Rd, and now - as indepen- 
dence of increments is not supposed - the algebraic structure of the state space is 
not involved. Hence it is sufficient to define self-similarity for Rd-valued proces- 
ses, All processes are assumed to be continuous in distribution. 
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3.7. DEFINITION. (a) A process X, = (X,k, ,  taking values in Rd is called 
a strictly operator self-similar process if X, = 0 a.e., and if for a one-parameter 
group (a(t) = tEb,o G GL(Rd) for all t > 0 we have tE(XJ 9 X,.,, s 2 0 (equoli- 
ty offinite-dimensional marginah). E is called an exponent of X., and EXP (X.) 
denotes the set of exponents. 

(b) Let X, be a process in Rd. Then the decomposability and invariance 
groups are defined as follows: 

Dec (X. )  : = (a E GL (Rd): a (XJ 2 X,., for some ct > 0 and all t 2 01, 
- 

Inv (X.) : = (a s GL (Rd): a (X*) 22 X,}, 
1 

and the map 

cp: Dec(X.)+W:, cp(a):= a, 

is called again the canonical homomorphism. 
(c) X, is called a strictly operator semi-seEf-similar process if 

Dec (X,)\Inv (X,) # 0. 

i As before we obtain: 

3.8. PROPOSITION. Let cp (a) = a for a E Dec (XJ. Then for some p E N thme 
exists a "semi-exponent" E E End(Rd) such that aP = olp'E and (fit> E N (Inv (X.)). 
Furthermore, there exist commuting exponents E,, i.e, exponents E, such that (tEc) 
and Inv (X,) commute elementwise. 

I For investigations of operator self-similar processes the reader is referred 
e.g. to [I21 or to more recently published papers [19], [20], [I81 and the 
literature mentioned therein. 

4. COMMUTING EXPONENTS OF SELF-DECOMPOSABLE LAWS 

In the following we shall restrict our considerations to finite-dimensional 
vector spaces G = since self-decomposability on groups is not yet sufficiently 
investigated. For the vector space case see, in particular, [16], Chapter 3; for 
groups see e.g. [9], $2.14. 

PEA' (G) is called an operator self-decomposabIe measure if there exists 
a one-parameter group (a (t) = exp (- t - E)),,, G GL (R ,  d) - here and in the 
sequel we use an additive parametrization - such that for all t 2 0: 

for some measure v (t) E A1 (V), called a cofactor. In this case, we see immedia- 
tely that the cofactors define a stable hemigroup. In fact, the hemigroup 



has the stability property 

(4.3) a(r)(pB8,) = lus+,,+, for O < s 4 t ,  r 2 0. 

Hence by reparametrization A , ,  : = p-~,,( ,,,-,,, (,,, 0 c u < v < 1, we obtain 
a hemigroup which is stable with respect to (b (t)  : = a (-log (t)) = P)*, o. We 
shall always assume that a ( ) is contractive; equivalently, % (a) > 0 for 
a E Spec (E). For these exponents we observe immediately that 

Conversely, let &' be a stable hemigroup (as in Section 3) such that (4-4) holds. 
Then p is an operator self-decomposable measure. But note that the hemigroup 
2 is not uniquely determined by the limit measure p. 

We assume that the measures IL,,~ and p are S-full. Hence the following 
objects are compact subgroups: 

K 2  (2) : = Inv (p). 

Hence we define E E End(& d) to be an exponent of the self-decomposable law 
p if (4.1) holds with a(t)  = exp (- t . E), and let EXP, (p) denote the set of those 
exponents. 

Note that, according to 3.2, there exist exponents of the hemigroup % com- 
muting with KO ( X ) .  However, the question if there exist exponents in EXP,(p) 
cornmuting with Inv (p) (= K ,  ( X ) )  is not answered by the results of Section 3. 

First we make the following observations: 

and (Ut , ,  I,,,) is relatively compact in GL(V) with 

LIM Io,t s Inv (p), 
t - tm 

where LIM denotes the set of accumulation points. 
In fact, (4.5) is an obvious consequence of (4.3), and (4.6) follows immediate- 

ly by the convergence of types theorem. Hence in particular we observe that 

All. FROPOSITION. KO (Z) = K1 ( X ) .  

Proof. Let b E K ,  ( X ) .  Then 
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The cofactors are intinitely divisible, so the mapping Q H p,,, * Q is injective for 
any t. Therefore we conclude that ,ur,,,, = a(r) (pop,) = ba (r) (port) = b br,,+,), 
whence b E I , , , ,  follows for all r, t 2 0, i.e, b E K, (g). 

4.2. Remark .  Let p be a self-decomposable measure with exponent 
E E EXP, (p) and corresponding stable hemigroup JP = X E  = {ps,t+s = 

a(s)(&,,*), s, t 2 0) with a(s) = e-S'E and cofactors p0,,(= pf,*, depending on E) 
fulfilling the condition p = lim,,, po,,. For b ~ I n v  (p) let us put Eb : = bEb-' . 
Hence 

abis):=ba(s)b-l, ~ b : = ( p ~ , t : = b ( p s , t ) = u b ( s ) b @ o , t - J j .  

Then Xb is a stable hemigroup with exponent Eb fulfilling also the condition 
lim,,, A,t = P. 

4.3. PROPOSITION. Assume that p is an operator sev-decomposabb measure 
with commuting exponent E,, i.e. (exp (- t . Ec) = : a, (t)), a, centralizing Inv (p), 
and with corresponding hemigroup Sc = (p;,,). Then 

(4.8) KO (Xc) = Kl (XC) = K, (g) = Inv (p). 
P r o  of. Let b E Inv I$). Then p = a, (r) (p) * pt,, = b (p) = ba, (r) (p) * b ( P ; , ~ ) ,  

which, by assumption, equals ~ z ,  (r) b (p) * b (pb,,) = ac (r) (p) 8 b ( f iL , r ) .  Consequent- 
ly, again as in the proof of Proposition 4.1, b~Inv(pb,J follows. H 

4.4. Remark .  The considerations should be compared with Lemma 4 
and Theorem 5 of [17]. Namely, Jurek [I51 and Luczak [17] proved, by 
different methods, the existence of commuting exponents E, E EXP, (p) of S-full 
operator self-decomposable measure p, and in particular in [I71 it is shown 
that there exist exponents such that exp(-t.Ec) is contractive, and hence 
A,* + P -  

This result is similar to the investigations in our Sections 2 and 3. How- 
ever, it cannot be proved by those methods: Inv (p) need not to be normalized 
by exp (- t - E) for E E EXP, b). (In contrast, exp (- t - E) normalizes Inv (&YE).) 
Thus, it is an open problem to find a proof depending only on the underIying 
group structures. 

We illustrate the investigations by two examples: 

4.5. EXAMPLE. Space-time processes (cf. e.g. [9], $2.14, 111, for more de- 
tails.) Let 2' = ips,,: s < t) be a stable hemigroup with exponent E and 
a (t) = e-lmE, t 2 0. Let H : = V >a GL (V) (a non-Abelian Lie group). Define 

Convolution on H yields, for pi : = R,@E,,, i = 1, 2, 

where a and * denote convolutions on H and G, respectively. Then it follows that 



(4 : = pO,t@~,(,l: t 2 0) is a continuous convolution semigroup in A?, G A' (H). 
As immediately seen, : = E ~ @ E ~  commutes with 4, i.e. 

(4.9) / 3 * & = A , * B  iff b~Inv(p,,,) and ba(t)=a[t)b. 

Hence, let E be a commuting exponent of the hemigroup Af' with a(t) = 

exp ( - t E), and corresponding space-time semigroup (A,). Then 

(4.10) Inv(%)={b: for / ~ = E ~ @ E ~ E A * ,  j . l * ; l t = r l t * / ?  for all t). 

Furthermore, assume that p is an operator self-decomposable and-full measure 
with comhting exponent E,E EXP, lu) and corresponding hemigroup = {p i s t }  
and such that ptSt + p. Then, by (4.8), for the corresponding space-time semi- 
group (A3 we obtain 

(4.1 1) Inv (SE) = Inv (4 

4.6. EXAMPLE. Self-decomposable Gaussian laws (for details see e.g. [16], 
3.3.6 ff.). Let p : = No,, be the standard Gaussian distribution (with covariance 
operator I). Let y denote a symmetric Gaussian law with covariance opera- 
tor S. Then the set of exponents is given by 

EXP, (y )  = ( E  E End (V): ESE * > 0 (positive semidefinite)). 

Furthermore, the decomposability semigroup is given by 

D(y):= {a: y = a(y)*v(a) for a cofactor v(a)) = {a: aSa* GI), 

and we have Inv(y) = (a: aSa* = S). In particular, for y = p and S = I we 
obtain Invk) = 6(V), the group of orthogonal transformations, and 
D(p) = {a: aa* G I). 

Let E E EXP, k). Then p = e-''E (p) * po,t yields 

exp(-$(((I -e-t'Ee-t'E')y, y)))  = Po,t (y). 

Hence p0,' = with A (t) : = i- e-t'E e-t'E', or po,, = B(t) (p) with 
B(t) = A(t)'I2. If e-t.E is contractive, then A(t)  + I as t + c ~ .  Hence p,,, + p. It 
follows that po,, = B (t) (ji) yields 

I n ~ ( p ~ , ~ ) = I ~ , ~ = B ( t ) I n v ( p ) B ( t ) - ~  for t > 0 .  

Thus, if for example we consider E = E* with one-dimensional eigenspaces and 
if d = dim (V) = 2k + 1, we obtain: 

lo,, = B(t)@(V)B(t)-l. 

LIM,, , I O ,  = 6 (V) ( = h v  (PI). 

# Io,,, s # t; in fact, io,tnIo,s = A, the finite subgroup of O (I/) with 
diagonal entries + 1. 
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r Inv(&') = n lo,, = A, a proper (finite) subgroup of 0(v = Inv(p). 

e For semistable convolution semi-groups the invariance groups Inv &) 
coincide for a l l  t > 0. (See 2.2; as this example shows, this is not true for stable 
hmi-groups.) 

e Commuting exponents. We have: (e-t'E) G C (Inv (p), GL (V)) iff p,,, = 
No,J(t).I for some real function f, i.e., iff 1 -e-t 'E e-*'E' = f (t)' I; hence iff 
E = c . I  for some positive c. In this case, obviously, the invariance groups I,,,, 
I,,,, Ki(&'), i = 0, 1,2,  3, coincide (in accordance with Proposition 4.3). 

- 
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