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Abstract. We establish new almost sure properties for powers of 
weighted martingale transbrms. It allows us to deduce usefuI asymp- 
totic results for cumulative prediction and estimation errors associated 
with linear regression models. We also provide two examples 01 ap- 
plications on the linear and functional autoregressive models. 

Notation. For any square matrix A, A' denotes the transpose of 
A, tr(A) is the trace of A, and det [A) denotes the determinant of A. 
In addition, A,,,, A and A-A are the minimum and the maximum 
eigenvalues of A, respectively. 
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1. INTRODUCTION 

Consider the Iinear regression model given, for all n 2 1, by 

(1.1) X ~ + I =  ~f@n+cn+i ,  
where 8 in Rd is the unknown parameter and X,, @,, E, are the scalar obser- 
vation, the regression vector, and the scalar driven noise of the system, respec- 
tively. In the sequel, we shall assume that (E,) is a martingale difference sequence 
adapted to a filtration F with F = (Fn)n3,,, where 9, is the a-algebra of the 
events occurring up to time n. Our purpose is to estabIish asymptotic proper- 
ties for cumulative prediction and estimation errors associated with the linear 
regression model (1.1). We shall also illustrate our results on the linear autore- 
gressive model given, for all n 3 1, by 



and on the parametric functional autoregressive model given, for n 2 1, by 

For a reasonable sequence (on) of estimators of 6, we shall investigate the 
asymptotic performance of &:,djn as a predictor of X,,,. More precisely, we 
shall focus om attention on the prediction error X,+ - 6; @ n  and the estirna- 
tion error &-0, As well known (see e.g. 161) it is more appropriate to consider 
the cumulative prediction error defined, for p 2 1, by - 

and the estimation error defined, for p 2 1, by 

In the one-dimensional parameter case d = 1, under suitable moment con- 
ditions, asymptotic results on the cumulative prediction and estimation errors 
were established in [2], [4], [9] and [IS]. In all these papers, the asyrnp- 
totic properties were proved with the standard least squares (LS) estimator. 
Our goal is to extend these resuIts in the multidimensional parameter case 
a >  1. 

In the multidimensional framework, only in the particular case p = 1, the 
authors of [4], [15], [16], [12] and El71 have established asymptotic results 
with the standard LS estimator. The authors of [5], [lo], [ll] and [14] proved 
the strong consistency of the LS estimator for general linear autoregressive 
model and they studied the asymptotic behavior of the empirical estimator of 
the covariance associated with this model. In the case p > I, in order to over- 
come the difficulties inherent in the multivariate framework, we have chosen 
to make use of the weighted least squares (WLS) estimator 6, of 0, introduced 
in 131. 

The paper is organized as follows. Section 2 is devoted to new almost sure 
properties for powers of weighted martingales transforms. In Section 3, we 
propose some statistical applications to prediction and estimation for linear 
and functional autoregressive models. All technical proofs are collected in Ap- 
pendices A and B. 

2. ALMOST SURE PROPERTIES 

We first propose new almost sure properties for powers of weighted vec- 
torial martingales transforms. These properties are the keystone to understand 
the asymptotic behavior of cumulative prediction and estimation errors. For 
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a sequence of random vectors (a,) in Rd adapted to I;, we define the weighted 
martingale transform 

where M o  can be arbitrarily chosen. We also set 

- 
where S is 'a deterministic, symmetric and positive definite matrix. The weight- 
ing sequence (a,) is adapted to F, non-increasing, with 0 < ol, < 1. Moreover, it 
is chosen so that 

where the explosion coefficient f ,  (a) is given by 

THEOREM 1. Assunae that 

Then, for any p 3 1, we have 

a d  
m 

(2.6) (Wn S;J1 (a) M,- Mi S, (ol) M,)' < rn a.s. 
n= l 

Proof. The proof is straightforward when using the two elementary in- 
equalities given, for x > y > 0 and p > 1, by 

Let us put, for any integer p 2 1, 

a, (P) = (M:, s,=ll (a) M,)' - (M: S; (a) M~)' .  

By choosing x = M', S,--ll (ol) Ma and y = Mn S; l (a) M,, we deduce from (2.7) 
that 

(2.8) (a, (I))" an Ip) < pKP-l a, (1) with K = M f ,  S , = f l ( ~ )  Mn. 
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In addition, it has already been established in [3] and [4] that K is a.s. 
bounded and 

Consequently, (2.5) and (2.6) follow immediately from (2.8) and (2.9). H 

Re m a r k  1. In comparison with Theorem 2 of [2] in the scalar case, one 
can realize that our assumption (2.4) is really not restrictive. Thanks to our 
weighting sequence (a,), this assumption is restricted only to a finite conditional 
moment o f  order 2. 

Theorem 1 leads to useful information about the asymptotic properties of 
the cumulative prediction error C, (p), defined in (1.4). Indeed, from the Riccati 
formula we obtain 

S i l l  (a) = S i  (E) + mn ( 1  -h (a)) S;-l1 (a)  Qn @: S i j l  (a),  

which implies 

(2.10) Wn S,--', (a) M ,  - Mn S i  (a) M .  = a, ( 1  - f, (a)) (Mi  Si-l, (a) @,)'. 
Moreover, the recall WLS estimator dn of 8 is given, for all n 3 1, by 

where S, (a) is defined in (2.1). The asymptotic properties of the WLS estimator 
were established in [3] ,  [I] and 171. The choice of the weighting sequence is of 
course crucial, and two possible choices are given in Section 3. 

We clearly deduce from (1.1) and (2.11) that 

g,, -0 = s,--fl (a) M ,  with Mo = - S8. 

Hence, we infer from (2.6) and (2.10) that 
m 

(2.12) C mi (I -f, (m))' ( X n  + - 0; @,, - E~ + < co a . ~ .  
n = l  

It is often difticult to get asymptotic information on the explosion coefficient 
f,(a). In the models considered in this paper, fn(m) tends to zero a.s. Never- 
theless, at this point, we only need a lower bound strictly positive for the 
quantity 1 -f,(ol) to find that 

m 

(2.13) z ~ : ( X , + ~ - @ , @ ~ - E , + ~ ) ~ P  < co a.s. 
n=  1 

The proofs of the following corolIaries rely on (2.13). We still study more 
precisely the consequences of this result for Cn(p)  and G,(p) in the statistical 
applications. 
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3. STATISTICAL APPLICATIONS 

A possible application of Theorem 1 concerns the linear regression model 
given by (1.1). Our purpose is to investigate the asymptotic behavior of C,(p) 
and Gn(p), defined in (1.4) and (1.5). By the same arguments, we shall estimate 
the moments d order p of the driven noise (h). 

First of all, we have already mentioned that the choice of the weighting 
sequence (a,) is crucial. We shall now propose two different choices for (q). Let 

and write s, = tr (S,,), d, = det (S,), and d,(u) = det (Sn (or)). Since S, (a) < S,, we 
deduce from Corollary 7,7.4 of [8] that d,(a) < d,. Consequently, as 

it is not difficult to see using (2.3) that if S > e1 and 

dl ,  = 
1 

(log s , ) ~  + 

with y > 0, then the convergence (2.2) holds, as well as the other hypothesis on 
the weighting sequence. Let us mention that a,, = s i Y  for some y > 0 is another 
possible choice. One might observe that we can also replace s, by d ,  in (3.1). 
The different advantages of the choices of (a,) are discussed in [I]. In all the 
sequel, we shall make use of weighting sequence defined in (3.1). 

3.1. Moment estimation and prediction errors. For any p 2 1, a natural 
estimator of the moment of order p of the driven noise (E,) is given by 

One can observe that nr, (2p) = C, (p). The following corollary gives asymp- 
totic properties of T,(p). 

COROLLARY 1. Assume that s, increases as .  to inJinity and that 

lim sup f, (a) < 1 a.s. 
n+ + m 

Moreover, assume that one can 3rd p 2 2 mch that, for all n 2 1, 

5 - PAMS 23.1 



Then, as soon as u i l  = 0 (n) ass., r, (p) is a strongly consistent estimator of a Ip) 
and 

I n  addition, i f p  is euen and $for aII n 2 1, E [E:;! I P,] = 0 as., then, as soon as 
a i P  = O(n2) as., we can improve (3 .5 )  by  

1 (log s,)P(l+ y)t2 
I G U - - ~ E : l = o (  n k = l  ) n . a .  - 

The proof is given in Appendix A. 

Remark 2. Corollary 1 still holds if we replace (3.3) by 

Moreover, if we assume that ,Imi, S, (ol) increases a.s, to infinity, then the hypo- 
thesis (3.7) implies that f, (a) tends to zero a.s. One can notice that if s,, = 0 (n) 
a.s., then all the assumptions on E, in Corollary 1 are automatically satisfied for 
the weighting sequence defined in (3.1). 

We shall now deduce from Corollary 1 the asymptotic behavior of C,, (p). If 
one can find p 2 1 such that, for all n 2 1, E [E:$ ( Fn] = CT (2p) a.s., then we 
infer from (3.5) that C, (p)/n converges as. to cr (2p). Moreover, if (8,) has a finite 
conditional moment of order a > 2p, we infer from Chow's lemma (see e.g. [4], 
p. 22) that for c such that 2pa-I < c < 1 

Consequently, if for all n 2 1 ,  E [&if; 1 Sn] = 0 as. and olTP = O (nZc), we find 
from (3.6) together with (3.8) that 

3.2. Estimation errors. We shall now focus our attention on the cumulative 
estimation error G,(p), defined in (1.5). We first need the following corollary. 

COROLLARY 2. Assum that one can find p 2 2 such that (3.4) holds. Then 

Moreover, assume that one can find an invertible matrix L such that 

lim n - S, = L a.s. 
n++m 
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Then we also have 

The proof is given in Appendix B. 

The convergence (3.10) together with an Abel transform implies that 

(3.12) 
1 

lim -S,(ol) = L as. 
n- + m nu, 

- 
Hence the &plosion coefficient fn(ol) tends to zero as. In addition, since the 
application trace is linear, s, increases a.s. to infinity. Finally, we infer from 
(3.11) together with Kronecker's lemma that 

G, ( p )  = o ((log snfP+ 1)11 +?I) a.s. 

3.3. Appllimtioas. We now illustrate our results on the linear and functional 
autoregressive models given by (1.2) and (1.3). In both situations, we shall only 
consider the stable case. 

3.3.1. Linear autoregressive models. The linear autoregressive model (1.2) is 
a particular case of (1.1) with Bt = (dl, . . ., 0,) and @; = (X,,, . . ., Xn-d+l). We 
shall focus on the stable case, that is, Q (C)  < 1, where e (C) denotes the spectral 
radius of the companion matrix C, associated with (1.2), 

In the sequel, for all n 2 1, E ISm] = g2 a.s. Let us set 

COROLLARY 3. Assume that (E,) is either a sequence of independent 
and identically distributed variables or a martingale dierence sequence with 
finite conditional moment of order greater than 2. In addition, assume that 
one can find p 2 2 such that (3.4) holds. Then rn(p) is a strongly consistent 



estimator of t~b) and 

(log n)l + I , ,  - 1 '  = 0 ( ) as. 
nk= 1 

Furthermore, we have 

and (3.11) also holds with 

Finally, if p is even and iffor all n 2 1, E [E:,: 1 SV] = 0 as., then (3.6) is true 
after replacing logs,, by logn. 

Proof.  If (8,) are independent and identically distributed, then the con- 
vergence result (3.10) is true with L given by (3.14). More generaIIy, if (&,) is 
a martingale difference sequence with finite conditional moment of order great- 
er than 2, then (3.10) also holds with the same limit L (see e.g. [4 ]  and [ I l l ) .  
Moreover, one can easily check that L is invertible. Consequently, logs, is a.s. 
equivalent to logn and Corollaries 1 and 2 hold after replacing logs, by 
logn. 

Remark  3. Assume now that the linear autoregressive model (1.2) is 
unstable, that is, e (C)  = I. If (3.4) holds with p > 2, we can deduce from Propo- 
sition 4.4.24 of [4 j  that f, (a) converges a.s. to zero and logs, = O (log n) as. 
Therefore, Corollary 1 still holds if we replace logs, by log n .  

3.3.2. Functional autoregressive model. The functional autoregressive 
model (1.3) is also a particular case of the model (1.1) with @; = 

(fi (X,) ,  . . ., f, (Xn-*+ In order to remain in a stable framework, it is neces- 
sary to impose several restrictive conditions. More precisely, we shall assume 
that for all 1 < k < d and for all real x 

with a,, b,, ck, d, 2 0 and 

Moreover, we suppose that either one can find 1 < k < d such that dk > 0 or 
one can find 1 < k < d such that ck > 0, 

In this situation, and with the above standard assumptions on (r,), we can 
show after some straightforward calculations that n = O(sn) and s, = O(n) a.s. 
Next, to ensure that (3.3) still holds, we are led to introduce more assumptions 
on (&"I. 
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COROLLARY 4. Assume that (E,) is either a Gaussian white noise or a locally 
generalized Gaussian martingale sequence with a constant conditional uariance 
a', which m a n s  that, for all n 2 0 and for all t 2 0 ,  

(3. f 5 )  E [exp (t~,)  I Sn- < exp ((aZ t2)/2) a.s. 

Then, for any p 2 1 ,  r,(p) is a strongly consistent estimator of g ( p )  and 

1 " (log n)' + Y  
n - - 2 = (  n k =  1 ) a.s. 

In additim,-Yfp is even and iffor all re 2 1, E [E:;; 1 P,] = 0 u.s., then73.6) is true 
after replacing logs, by log n. 

Remark 4. We refer the reader to [13], p. 257, for the standard proper- 
ties of locally generalized Gaussian martingale sequences. 

Proof of C o r ol lar  y 4. It is not difficult to see that under the assump- 
tion (3.15) 

which leads to 

(3.1 7) sup lsklZ = 0 (log n) a.s. 
k < n  

Furthermore, we deduce from the stabiIization criteria 6.2.10 of [4] together 
with (3.17) that 

sup IX,J2 = O (log n) a.s. 
k<n 

It implies that 1j@, l l2  = 0 (log n) a.s. so that 1 1 @ , 1 1 2  = o (a; I) a.s. Consequently, 
since 

an ll@ntI2 

f.(or) A,,,, s,, (a) 
9 a n  ll@nl12, 

we find that fn (a) tends to zero a.s. and Corollary 1 holds after replacing log sn 
by logn. rn 

This appendix is concerned with the proof of Corollary 1 and Remark 2. 
The proof relies on Theorem 1. 

Proof of Corollary 1. For all n 2 1, let us set 
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It follows immediately from (2.13) together with (3.3) that, for any q 2 1, 

In addition, since s, increases a.s. to infinity, an tends a.s. to zero, Afterwards, 
we obtain by Kronecker's lemma (see e.g. [4], p. 19) that, for any q 2 1, 

By developing the expression of T,(p), we find that 

On the one hand, in the particular case I = p, by the Cauchy-Schwarz in- 
equality, we have 

so that 

On the other hand, in the case I < p, we decompose the right-hand side of (A.3) 
into a martingale term and a rest: 

where, for any qa 1, en+l(q)= ~ i + ~ - c , ( q )  and u n ( q ) = E [ ~ ~ + l l ~ l .  By the 
standard strong law of large numbers for martingales, for all 6 > 0 we have 

Consequently, 

In addition, we clearly obtain from (3.4) that 
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Therefore, if 1 is even, we deduce from (A.2) that 

Furthermore, if 1 is odd and 1 > 1, it follows from the Cauchy-Schwarz in- 
equality that 

( z- ni)' = 0 (( 2 TC:) ( n:'' - I))) = 0 (a;') as. 

Finally, it follows once again from the Cauchy-Schwarz inequality that 

which leads to 

Piecing together all these contributions, we infer from (A.3) and (A.4) that (3.5) 
holds. Hereafter. if p is even and if for all n 2 1, E [E:;: 1 Fn] = 0 a.s., we have 
immediately 

which clearly implies (3.6), and completes the proof of Corollary 1. PA 

Proof of Remark 2. We have already seen that, for all q >  1,  

Hence, in order to obtain the convergence (A.l), it is necessary to find a lower 
bound for 1-fn(a). We know from Proposition 4.2.12 of [4] that 

(A.6) 1 --f, (a) = (1  + gn (a))-', where gn (a)  = a, @: S ~ I  (a) @, . 

Then, since Ad, Sn- (a)  2 1, we obtain 

an (1 -h (a)) 2 + l14nl l ' ) -1  - 
Finally, (3.7) and (AS) imply (A.l), which is sufficient to prove Corollary 1. 



72 P. C inac  

APPENDIX B 

This appendix is concerned with the proof of CoroIIary 2. Recalling that 
8.-8 = ST?, (a) M,,, V. = M i  S-2, (a) Mn and that n,, = (0 - ony @,, we get 

n - 

P n 

= Cz z fk (a) a:" niq &P-4 

q = O  k = 1  - 
Accordin-g to the proof of Theorem 1, V,  is a.s. bounded. Consequently, 

n rn 

For all q 2 1, as f, (u) < 1 and a, 6 1,  we infer from (A.1) that 
41 

C fk (or) a!+ niq < co a.s. 
k = l  

By the convergence (2.2), (B.2) also holds in the particular case q = 0. Thus, the 
average convergence (3.9) follows from (B.1) and (B.2). For the second part of 
Corollary 2, let us set 

(B- 3) q, (a) = L(M: S;ll (a) Sn (a) S;J1 (a) M J .  
(a) 

We deduce from (2.3) and (3.9) that 

In addition, we infer from (3.12) that . 

where 6 = det (L) > 0. Using an Abel transform together with the decomposi- 
tion 

d, (or) = 6vn + S, (a), where v, = 
nd 

max ((log n)d(l + 7) , I) ' 
we find that 
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where 

Once again by an Abel transform, we have 

where 

Piecing together these two identities, we obtain 

(B.7) ' A n  = d t n  + rn + q n  (a) (4 (ff) - dvn - I) - q 1 (a) (do (a) - 601). 

On the one hand, we claim that the last terms in (B.7) are bounded. Indeed, 
according to (B.5) we get 

Moreover, going back to the expression of q,(a), we infer from (A.6) that 

which implies 

and, consequently, 

Besides, we have already seen from Remark 2 that f, (a) tends to zero a.s. 
Consequently, q, (a) dn (a) = o (1) a.s., which leads to 

qn (a) (d, (a) - dun- = o (1) a.s. 

On the other hand, we can also prove that r,, is bounded. As a matter of fact, we 
have 

The convergence (B.5) implies immediately that ,on tends to zero a.s. Thus, we 
deduce from (B.3) that 



Moreover, as d,, ,(a) is a.s, equivalent to d,(a), (A.1) ensures that 

Therefore, we need only to show that 

We have the decomposition - 

First, the last two terms on the right-hand side of (B.9) are bounded. Next, one 
can easily show that 

4- 1 (4 d n  - I (a1 on 
Q . - P . - I -  = f.(a)+- ( l - n l ) ( l - n }  with T,=-. 

dn (4 dn (4 vn- 1 

Using the elementary fact that the function x/(log~}~'Y is increasing for 
x el'?, we have, for n large enough, z, > 1. Therefore, we find that, for 
n large enough, 

Furthermore, since 

nd (log (n - l )Y(l  + y1 
T n  = 4 I f -  

(log n ) d f l  + 7) (n - l)d ( n l l ) i l  

and, for all x 4 1, (1 + x ) ~  4 1 + (2d - 1) X, Bre have 

Z d -  1 
(B. 1 1) T n - 1  4 - 

n-1  ' 

We have already seen that is a.s. equivalent to (log n)l+? as. Consequently, as 
+ m  

C 
1 

n=z  n (log n)'+" < 00, 

we deduce from (2.2), (B.lO) and ( B . l l )  that 
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which leads to (B.8). Then (B.4) and (B.7) imply that 

(B. 12) 

It is easy to prove that for n large enough 

which ensures that 

Therefore, we infer from (B.12) that 

which means that 

Finally, we infer from (B.5) together with (B.3) that 

which, by the convergence (3.12) with L invertible, completes the proof of 
Corollary 2. H 
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