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SNELL’S OPTIMIZATION PROBLEM FOR SEQUENCES
OF CONVEX COMPACT VALUED RANDOM SETS

BY

G. KRUPA* (LUBLIN)

Abstract. A random set analogue of the Snell problem is presen-
ted. In the original Snell’s problem one observes a sequence of random
variables (£,), say a gambler’s capital at successive games. If the gam-
bler leaves the game at a random time v, his expected capital at this
time is E¢,. The objective is to stop at time v (using information
available up to this moment) such that the expected gambler’s fortune
E&, is maximal.

Here a multivalued analogue of this problem will be studied.
Given a Banach space and a sequence of convex weakly or strongly
compact valued random sets (Z,) in that space, the existence of a stop-
ping time v such that EZ, is maximal is investigated.

2000 AMS Subject Classification: 60G40, 62L15, 28B20, 26E25,
54C60.

1. PRELIMINARIES

Let (2, o/, P) be a probability space and let (#,) be an increasing se-
quence of sub-g-algebras of & such that «/ is the smallest s-algebra contain-
ing the sequence (#,). For any ne N, let A, denote the family of all a.s. finite
stopping times greater than n.

Let X be a separable Banach space with the norm |-||. By B(0, r)
we denote the closed ball in X, centered at the origin with radius r. Let X*
denote the dual of X, and (-, -) the usual duality. The strong and weak topolo-
gies on X will be denoted by s and w, respectively. B* will denote the closed
unit ball in X*. For a set A = X, clco A will denote the closed convex hull of
the set 4. Let 2(X) be the family of all closed subsets of X, 2,..(X) and
Py (X) will denote the family of all w-compact and, respectively, s-compact
convex subsets of X.
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The support function of the set C in £ (X) will be defined in the following
way:
s(x*, C):=sup{x, x*).
xeC
A sequence (C,) scalarly converges to some set C if s(x*, C,) » s(x*, C) for
all x*e X*. Topology of convergence of support functions will be denoted by
T oeatar- The distance functional is a mapping d: X x 2(X) — R such that

d(x, C):=inf{|[x—c||: ceC}. -

The s-envelope of a set C is defined as C*:= {xeX: d(x, C) ¢}. Define the
Hausdorff distance between sets C and D as

0g(C, D):=inf{e >0: Cc D"', D < C?.
On the space of closed sets, g is a metric. For a nonempty set C, we set also

IICll = sup I,
xeC
which is the Hausdorff distance of C from {0}.

Let us now introduce a few topologies on the space of closed subsets of X.
Given topology 7 on X the lower t-limit of a sequence (C,) < X (denoted by
7-LiC,) is defined as the set of all xe X such that x = r-lim,, ,X,, where
xn € C,. The upper 1-limit of the sequence (C,) (denoted by 7-Ls C,) is the set of
all xe X such that x = 7-lim,_, , x;, where x; € C,, . We say that (C,) c Z(X)
Mosco converges to Ce2?(X) if

w-Ls, ., C, = C c s-Li,~ o C,.

The Mosco convergence is an extension of the notion of the convergence in the
Painlevé-Kuratowski sense (see [2]). Convergence with respect to the Haus-
dorff metric implies the Mosco convergence. In Euclidean spaces, the Mosco
convergence and the Painlevé—Kuratowski convergence coincide. The Mosco
convergence is not a topological notion. However, on the family of w-closed
subsets of X, one may consider the Mosco topology, whose subbase consists of
the families

{V-,Vis sopen} and {(K9*,K is w-compact convex},

where ¥V~ is the collection of all closed sets which have a nonempty intersec-
tion with the set ¥ and (K)* is the collection of all closed sets contained in the
complement of K (for details see [2], Chapter 5). This topology will be denoted
bY Tmosco- 11 @ slightly more general setting than the present one, a sequence of
w-closed sets Mosco converges to a w-closed set if and only if it converges to
that set in the Mosco topology ([2], Theorem 5.4.6).
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2, RANDOM SETS AND AUXILIARY RESULTS ON MULTIVALUED MARTINGALES

A multifunction is any mapping F: Q — 2%, A multifunction F is said to be
(Effros) measurable if the preimage F~ U = {weQ: F(w)nU # O} belongs to
& for any s-open set U < X. Only measurable multivalued functions with
closed values will be considered and the adjective will often be omitted. Measu-
rable multivalued functions will be called random sets. This notion of measura-
bility coincides with the usual measurability in the Borel sense when 2 (X) is
equipped with the Effros o-algebra generated by the families G~, where G are
s-open sets: -

&g will denote the family of real-valued integrable functions. Let
% by denote the space of all closed valued random sets F such. that ||F|| e #k.
Those functions will be called integrably bounded. ¥}, x, will denote the
subspace of Py (X)-valued random sets in &} ). A set # in Ly, is bounded
if the set {||F||: Fes#} is bounded in %4.

Let # < o be a sub-g-algebra of o/ and let £ (%) denote the family of
Bochner integrable %-measurable functions. Denote by

LH(B):={fe Ly (®): f(w)eF(v) ae}

the set of all Bochner integrable #-measurable selections of F. In particular, we
use the following shorthand notation: ¥} := £%(«) and £} := L} (s#). The
integral of a £ (X)-valued function is defined as

(FdP:={[ fdP: fe Z}}.
) )

The integral | FdP of F over a measurable subset 4 of Q is the integral of 1, F,
where 1, is the indicator function of the set 4. Note (Theorem 4.2 of [107)
that if (2, of, P) has no atom and Fe %%, then cl jQFdP is convex. If F is
a ?(X)-valued function with £} # @, then (by Theorem 5.1 of [10]) there
exists an almost surely unique #-measurable 2 (X)-valued function E (F|%)
satisfying

gflzmm)(g) =cl {E(ﬂ@) fe 3111},

where the closure is taken in #%. The function E(F|%) will be called the
conditional expectation of F with respect to the g-algebra 4. Corollary 1.6
of [10] yields that if Fe %5, x), then E(F|%)e L%, In particular,
EF:=E(F|)=cl L)F () dP (w). A similar result is true if F e %5, x, (see [5]).

We say that an adapted sequence of random sets (F,) is a submartingale if
for all neN, E(F,+1|%,) (@) > F,(w) as. It is a supermartingale if
E(Fy+1|%,)(w) c F,(w) as. for all neN. Finally, it is a martingale if it is
a submartingale and supermartingale.

The lemmas presented below are multivalued analogues of the well-known
results for real-valued martingales (see, for example, [11], Chapter II).




80 G. Krupa

The following definitions play an important role not only in the proofs of
this section but also in the proofs of main results. Let D* c X* be a symmetric
Mackey dense countable subset of the closed unit ball B¥ « X*, Let H* denote
the set of all rational combinations of elements from D*. This set is dense in
the Mackey topology. The existence of such a set follows from Lemma II1.32
of [3]

LemMma 2.1, Suppose (F,) is a 2 (X) supermartingale majorized by
a P o (X)-valued random set K. Then for any ne N and any stopping time ve A,,
(FyAn) is .a supermartingale which a.s. Mosco converges to F,. _

Proof. Since

E(FVAnlgn—l) = Z Fm 1[\v=m]+E(Fn|=%n—1) 1[v2n-]

m<n

< z Fm]-[v=m]+Fn—1 1[v?n] = FVA(II—I),
m<n
(F, . ) is a supermartingale. It is dominated by an integrably bounded w-com-
pact random set K. For any x* e H*, lim,, ,, s(x*, F, ,»(@)) = 5(x*, F,(w)) as.
Now we proceed as in the proof of Proposition 5.8 of [8]. Let D be a countable
dense subset of X. For any xeD,

d(x, Fynq) = sup ({x*, x)—s(x*, F,,,).

x*X*

Lemma V-2-9 of [11] yields that
) d(x, F,(w)) = lim d(x, F,,, () as.

for all xeD. Since (F,(w)) is contained in K (w), the sequence (d(-, F%(w))) is
equicontinuous. Therefore, (1) holds for all xe X. Lemma 5.5 of [8] yields that
(FyAn) as. Mosco converges to F, as n— 00. &

LEMMA 2.2. Let (F,) be a P . (X)-valued supermartingale majorized by an
integrably bounded P, .(X)-valued random set K. Then for any pair vy, v, of
stopping times

E(F,|%,)<cF,, as.

Proof. It is sufficient to show that F, > E(F,|4%,) on {0weQ: v(w) = n}.
The sequence (F, . ,) is a supermartingale which a.s. Mosco converges to F, (see
the proof of Lemma 2.1). Corollary 5.13 of [8] implies that

E(F,|#,) = F,.n as.
Thus E(F,| %, < F, as. on the event {weQ: v(w) =n}. m

LEMMA 2.3. For an integrable 2., (X)-valued random set F majorized by
a P o (X)-valued random set K, the martingale (E (F| ﬂ,,)) a.s. Mosco converges
to F.
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Proof For any x*e H*, (E (s(x*, F)| ﬂ,,)) is a supermartingale. By Prop-
osition I1-2-11 of [11], for all x* e H*,

lim E(s(x*, F)| %,)(w) = s(x*, F () as.

Thus (E(F | #,) (w)) a.s. scalarly converges to F (w). Noticing (as in the proof of
Lemma 2.1 or Proposition 5.8 of [8]) that (d (x, E(F| ﬁ,,))) constitutes a sub-
martingale for any x € D, and applying Lemma V-2-9 of [11] we can show that
(E(F|#,)(w)) as. Mosco converges to F(w). &

3. MAIN RESULTS

Let us first state the problem which is a set valued analogue of the original
Snell problem (see [4], [11]). We observe a sequence (finite or infinite) of
random sets (Z,) satisfying some additional conditions. Our objective is to stop
observation at a random time v, such that the expectation EZ,  is maximal (in
the sense of inclusion). The decision when to stop can be based only on what
we have seen up to this time. This stopping time is the solution to the Snell
problem.

3.1. The smallest envelope of a family of random sets. Before we present
solutions to the optimization problem we start with the following proposition
about the existence and some properties of the smallest essential closed convex
envelope of a family of random sets. It will play an important role in the sequel.

ProrosiTION 3.1. For every family % of random sets majorized by a w-
-compact convex valued random set K there exists an a.s. unique random set
G: Q> P (X) such that

(i) F(w) c G(w) as. for all Fe¥,

(i) if H is a convex valued random set majorizing all F €9 a.s., then H ma-
jorizes G as.

The random set G will be denoted by essclco 9. Moreover, there exists
a sequence (F,) = 9 such that

essclco¥ =clco | F, as.

n=1

If the family % is directed, the sequence (F,) can be chosen to be increasing and

essclcoY = Tyg-lim F, as. and essclco¥ = Typos,-1im F, a.s.

n—>a n— o

Moreover, if the random set K is s-compact valued, then

essclco¥ = J,,~-lim F, as.

n—o0

6 — PAMS 231
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Let us remark here that (i) and (ii) have appeared in [13], where the
existence of the essential supremum has been studied.

3.1.1. Proof of Proposition 3.1. Let  denote the class of all count-
able subfamilies of 4. For every & €3 define

Fz(w):=clco | ) F(w).

Fe¥#
Consider now the set
@ F:=clco || EFy.
Fel

The closed convex hull of the union on the left-hand side 'is attained in the
sense that there exists a family % such that F = EFz. Indeed, (2) yields that for
each x*eH* there exists a sequence (%:') such that

3) lim Es(x*, Fgx) = s(x*, F).

n—+oo

Let #:= ), U . Fr. Obviously, #€J. Thus

Es(x*, Fsx) < Es(x*, Fg) = s(x*, EFg) < s(x*, | ) EFz)= s(x*, F).
Fel
By (3), the above inequality yields that for all x*e H*, s(x*, EFz) = s(x*, F).
Thus, applying Lemma II1.34 of [3], we obtain F = EFs.
It will be shown that the set G := Fj satisfies the assertions of the proposi-
tion. Take any Fe%. The set Fz corresponding to the countable family
F = % U{F} equals clco(FguUF). Thus, recalling (2), we get

F=EFpcE(FpuF)cPF.

Therefore G = Fg = clco(FzUF) as. This establishes the first claim.

If H majorizes % then, almost surely, F (w) c H (w) for all Fe%. Thus for
almost all weQ, G(w) = Fg(w) =clco Ures F (@) c H (w).

Arrange now % in a sequence (%,). Then

@ essclco % (w) = G(w) =clco | ) Fe(w) as.

n=1
If the family ¥ is directed upwards (i.e. for all Fy, F,e ¥ there exists F;€%
such that F, UF, c F4 as.), then it is possible to construct an a.s. increasing
sequence (Fp) =% such that

I Moseo- IM F () = essclco ¥ (w) as.
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Indeed, put F, = F5, and for F,,, take a random set dominating clco(F,UFg,, ).
Then | J._, Fs, (@) © Fy(w) as. Thus

clco () Fu(®) © Taposco-lim F () = esscl co & (w).
n=1 L

This follows from the fact that the random sets (F}) are convex valued and that
for an increasing sequence (C,), such that cl({J ., C,) is w-closed, ¢l ({ )~ ,C) =
I Mosco-lim,,, o, C, (see [2], Exercise 5.4.3(c)). If a sequence of random sets is
bounded by a w-compact random set, then the Mosco convergence implies the
scalar convergence. Thus Je,,-lim,-,  F, () = ess ¢l co% () a.s. In fact, since
F,(w)cessclcoF (w) as. for all neN, Proposition 11’ of [12] assures the
equivalence of the scalar and Mosco convergence of the sequence (F,(w)) to
ess clco% (w).

Suppose now that the random set K is £ (X)-valued. Since the Mosco
convergence of sets majorized by a £, (X)-valued sets implies convergence in
the scalar topology, the first part of the proof implies that for all x*e X*

%) lim s(x*, F, (@) = s(x*, G(w)) as.

Proceeding as in the proof of Lemma 3.2 of [1] it can be shown that the above
convergence is uniform with respect to all x* e B*, This proves the convergence
in the Hausdorff distance. =

3.2. Finite horizen. The following theorem concerns finding an optimal
stopping time for a finite sequence of random sets.

THEOREM 3.2. Let (Z,)o<n<, be a sequence of w-compact convex valued
random sets. Suppose that sup [o||Z, ()|l dP (w) is finite and that the families
(E(Z,| B0)vea, are upwards directed (with respect to inclusion) for all
n=0,...,p. Then the sequence (X,)o<n<p defined by a backward induction

© X Z, Jor m =0,
P leleo(ZyomVE(Xp-m+1| Byp-m) for O<m<p

is the smallest integrably bounded supermartingale dominating the sequence (Z,).
Moreover, the stopping time

vo:=min{neN: 0<n<p, X,=2,}
is the solution to the Snell problem associated with (Z,).

The assumption that (E(Z, | #,))c4, is upwards directed for any neN is
not required in the original Snell’s result. In the set valued Snell’s problem the
usual relation < in R is replaced by inclusion in some families of subsets of X.
However, these families are not totally ordered by inclusion and the above-
-mentioned condition seems unavoidable.
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3.21.Proof of Theorem 3.2. Since Z, = X, and (X, , ,} is a martingale,
Xo=EX,,|%,) = E(Z,,| %8,). On the other hand, by the definition of (X,) and
the stopping time v,, for every stopping time v, X2 E(X,| %) 2 E(Z,| %,).
Thus v, is an optimal stopping time and
X, =essclco E(Z,|%,).

veAdp

Similarly, we can show that for 0 <n<p

X,=essclcoE(Z,|%,).

vedn
Thus v, is the desired stopping time. =

3.3. Infinite horizon. We begin here with the presentation of all results. The
proofs are postponed till the end of this section.

THEOREM 3.3. Let (Z,) be a sequence, adapted to (%,), of closed convex
random sets majorized by a P (X)-valued integrably bounded random set
K and such that, for any neN, the family (E(Z,| B,))vea, is upwards directed.
Then the random sets

X,=essclcoE(Z,| %4,

ved,

form an adapted sequence of integrably bounded random sets such that, for all
neN,

7 X, = dco(Z,UE (X, 1| 4y)-

The sequence X, is the smallest (with respect to inclusions) supermartingale domi-
nating the sequence (Z,). Finally,

) EX,=clco ) EZ,.
vedyn
The next theorem gives the optimal stopping time for the multivalued
Snell problem.

THEOREM 3.4. Let (Z,) be a sequence of w-compact valued convex valued
random sets satisfying the following conditions:

(i) (Z,) is majorized by a 2. (X)-valued integrably bounded random set K ;

(ii) for any neN, the family (E(Z,| #B4))veq, is upwards directed.

In order that clco Uve A EZy s attained it is necessary and sufficient that
the stopping time v, defined in terms of the supermartingale (X,) by

. {inf{neN: X, () = Z,(w)},
vol@):=1_ if Xo(@\Z, (@) O for all neN
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is a.s. finite. When this condition is satisfied, EZ,,, = clco | _ 1o EZ, and v, is the
smallest finite stopping time satisfying this equation. Moreover, if K is 24 (X)-
-valued, then, for all ¢ >0,

Vo(w) =inf{neN: X,(w) < Z,(w)+B(0, &)}

always defines an a.s. finite stopping time such that

) EZ,cEZ, +B(0, ¢).
vedo
The stoppin'-g time v is said to be optimal when it is a.s. finite. The stopping times
v, are called g-optimal.

The following corollary gives conditions which assure finiteness of the
optimal stopping time v, defined in Theorem 3.4.

COROLLARY 3.5. Let (Z,) be a sequence of P.y.(X)-valued random sets
such that

(i) (Z,) is majorized by a 2. (X)-valued integrably bounded random set K,

(i) the set (E (Z‘,|.93,,))‘,E,1" is upwards directed for any neN,

(ili) there exists a set C such that w-Ls, ., , Z,(w) = C a.s.; moreover, there
exists a subsequence (Z,) such that C<Z,, as.

Then the clco | _ A EZ, is attained.

ExaMmpLE 3.6. Consider a Euclidean space R%. Let (f);=1,._4 be a collec-
tion of real-valued increasing bounded functions. Let (£,) be ii.d. random varia-
bles with positive mean. For any ne N define

Zy:={(x1, ... x)eR: x| <|filrt X &), i=1,...,d}.
k=1

According to Corollary 3.5 there exists a finite stopping time v, such that
EZ, =clco | | EZ,.
vedo
The following corollary shows how the solution of the infinite horizon
problem can be approximated by the solutions of the finite horizon problems.

COROLLARY 3.7. Let (Z,) be as in Theorem 3.3. For any peN, let
(XB)o<n<p is the smallest supermartingale dominating the sequence (Z,) (defined
as in (6)). For all weQ and neN define

X:) ((D) = '9—Mosco' hm Xﬁ (CO)
p—®©
Then X (w) = essclco,. a8 E(Z,|%#,), where AB is the set of all bounded stop-

ping times in A,. Moreover, the supermartingale (X,) defined in Theorem 3.3
coincides with (X?). ‘
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3.3.1. Proofs
Proof of Theorem 3.3. The random sets X, are #,-measurable and

9 Z,(w)=X,(w)<E(K|%,)(0) as,

so the sequence (X,) is bounded in £}, (x). For a fixed ne N, Proposition 3.1
yields the existence of a sequence (vy) such that

rg.l»[c:bst:n'liln E(ka | gn) (CD) = Xn (CIJ) a.s.
k— w0

It will be shown that (X,) is a supermartingale dominating a.s- the sequence
(Z,). Since (E(Z,, | #,)(w)) converges a.s. in the Mosco topology, the applica-
tion of Fatou’s lemma ([9], Theorem 2.3) yields that for almost all weQ

E(X,| B.-1)(0) = E(F, Mosco"}i{g E(Z,,| %:)|B,-1) (@)
= S-k}:iw E(E(Z,,| %) | By-1) (@) = s-kl:fm E(Z,,|By-1)(@) = X, -1 ().
Thus (X,) is a supermartingale dominating a.s. the sequence (Z,). Therefore,
dco(Z, (@)U E(Xns 1| B) @)  Xa(0) as.
Let us now establish the opposite inclusion. For all wefé and all ve 4,,
Z,(0) = Z4(@) =1 @)+ Zyw o4 /(@) Ly (@).
Since E(Z,,n+1)| Br+1)(@) € X1 (0) as., we get, as. for all ved,,
EZ,| B:)0) = Z,(0) 1py=m (@) + E(Zyy o+ 1)| #0) (@) 11> m ()
< Zy(@) lpy=m(@)+EX 41 | ,) (@) 11> ) =l CO(Zn(CU)UE(XnH | 8,) (a)))
Thus, recalling the definition of (X,) and Proposition 3.1, we obtain
X, (@) ccleo(Z,(@)VE(Xyi1| %) (@) as.
Invoking again Fatou’s lemma ([9], Theorem 2.3), we get

Eessclco E(Z,|#,) = E(Tyosco-lim E(Z,, | #,) = s- Li EZ, cclco | ) EZ,.
k= w k=

vedn veAdAn

On the other hand, for all ve A, we have

EZ,cEessclcoE(Z,| %,).
An

Hence (8) follows.
Suppose that (X7) is another supermartingale dominating the sequence
(Z,). Lemma 2.2 yields that for any veA,

EZ,|#B,)cEX,|B,)< X, as.
Thus X, c X, as. by Proposition 3.1. &
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Proof of Theorem 3.4. The proof of Theorem 3.4 will follow from
a few lemmas. In these lemmas we assume the settings of Theorem 3.4.

~ Lemma 3.8. For every stopping time v dominated by v, the stopped sequence
(X, An) is a martingale. When v is a.s. finite as well, it follows that EX, > EX,.

Proof. On the event {we®: vo(w)>n} and on the smaller event
{weQ: v(w)>n} we have X,>Z, as. Theorem 3.3 (see (7)) implies that
X,=EX,+1|%,) on these events. Thus

E(sz\(n+1_)|gn) = Xv 1[v$.n]+E(Xn+1 |g?n) 1[v>n] = Xv 1[v$n]+Xn 1[v§n] = Xw\n-

Thus the sequence (X,,,) is a martingale. Lemma 2.1 yields X, =
T rosco- My o X, 1 a.8. Since (X, ,,) is bounded by an integrably bounded
w-compact valued random set K, the Mosco convergence implies convergence
in the scalar topology. Application of Fatou’s lemma and properties of support
functions and Lemma 3.2 (b) of [7] yicld

limsup s(x*, EX,,,) < Elimsups(x*, X,,,) < Es(x*, w-Ls X, .,) = Es(x*, X,).

n=+oo n—rw

Thus, by Lemma 1.1 of [9] we obtain
w-Ls EX,,,c EX,.

n—ro0

Since (X,,,) is a martingale, we get the result. =
Lemma 3.8 implies that if the stopping time v, is finite then, since
Z,(w)=X,(w) as,
EZ, =EX, o EX,.
Proposition 3.3 yields EXo =clcol ), , EZ,, thus
EZ, =cco | ) EZ,.

vedo

This yields optimality of v,.
In order to show that v, is the smallest optimal stopping time we will use
the following lemma.

LEMMA 3.9. For every finite stopping time v, we have
(10) X, =essclcoE(Z,|4%,,),
vedy,
where A, is the set of all a.s. finite stopping times not less than v,. Consequently,

EX, =clco | ) EZ,.

vedy,



88 G. Krupa

Proof. Since v;€4,,, the set A,, is nonempty. Let X,,, denote the
essclco in (10). For every stopping time ve A,, the random variable vv n is
a stopping time in A, and v = v v n on the event {weQ: v, (w) = n}. On this
event we have

E(Z,,IQ“) = E(Zvl'%n) = E(Zvvnlgan)an = le-

Therefore X,,, = X,, a.s. Conversely, if V' is a stopping time belonging to 4,,
then the stopping time v' v v;e€4,, and v =V v v, on {weQ: v, (w) =n}. On
this event we have

E@Zy|B)=EZyu|B) =EZyon|B,) < Xy, as.

Thus one the above-mentioned event X, < X,,, a.s. Therefore X,, = X, as.

The family {E(Z,|%,), ve 4,} is directed upwards. Indeed, on the event
{weQ: n(w) =n} the set (E(Z,|%,)) is upwards directed, ie. for v;, v,€4,
there exists v™ such that

E(Z,,|®)UE(Z,,|B,) < E(Z,m|&,).
Thus we can set v=3 . lp-qv™, so that E(Z,|%,)VE(Z,|%,) <
E(Z,|%,) as.

Suppose that v* is an optimal finite stopping time, ie. clco (), o B2y =
= EZ,.. The preceding lemma yields

EX,.=clco | EZ,<cclco | EZ, c EZ,..
vedys vedo
On the other hand, by the definition of X,., X,.>Z, as. Therefore
EX, o EZ,. Hence EX,, = EZ,, as. Now the definition of v, implies that
vo < v* and v, is finite a.s.

In order to show finiteness and e-optimality of the stopping times v,, we
will use the following lemma:

LemMMA 3.10. The following relation holds:

w- Ls .X,,(w) =w-Ls Z,(w) as.

n— oo n—o

Proof. For every stopping time veA,, (and in A4, for any n > m)

Z,(w) cclco D Z;(w) as.

i=m

Therefore

X,=essclcoE(Z,|%,) < E(|) Z:| %.).

vedn i=m

For any x* e H*, me N, the sequences (E (s(x*, Use,, Z)! 32,,)) are martingales.
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Theorem II-2-11 of [117] implies that these martingales converge a.s. and in I!
to s(x*, U:":MZE). Thus, by Lemma 3.2 of [7] and Fatou’s lemma, a.s. for all
x*e H*,

s(x*, w- Ls X,(®)) < limsup s(x*, X, (w))

n—>w

< lim E(s(x*, O Zi)l.%,,)(a)) = s(x*, D Z;(w)).

n— oo

Therefore
w-Ls X, (@) < |J Zi(w) as.

Letting m — oo and using the fact that for almost all weQ the sequence
s 3] . .
(clco| ;- Zi(w)) is decreasing, we get almost surely

w-Ls X, (0) c ﬁ clco GZ,-(cu).

m=1 i=m
Applying Proposition 3.10 of [6] we conclude that

w-Ls X, (0) =« w-Ls Z,(w) as.

n—w
The opposite inequality is obvious. m

Now we come back to the proof of Theorem 3.4. Consider the stopping
time v, defined in the statement of Theorem 3.4. Since v, < v,, Lemma 3.8
implies that the sequence (X, \ ,)neny 1S an integrable martingale. Moreover, by
the convergence theorem for martingales ([8], Proposition 5.8), there exists
a Py(X)-valued random set X such that X, = Fyesco-liM, - X, a.5. on the
event {weQ: v, = co}. However, almost everywhere on this event we have

(11) on (X4 (), Z,(0) > .

Fix an w in the subset of Q, where (11) is valid. For every ne N it is possible to
choose x,€X,(0w)\Z,(®) such that

(12) d(Xy, Z,(@)) > /2.
Since (Z,(w)) is majorized by the s-compact set K (w), there exists a subse-

quence (x,,) which s-converges to some xe€ X, (w). According to Lemma 3.10,
we have

0r (X o (@), w- Ls Z,(w)) = 0.

n—> o

Thus there exists a sequence (z,,) such that z, € Z,, (o) for all keN and x =
= w-limy _, ,, z,,. Again, since this sequence is bounded by an s-compact set,
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one can choose a subsequence (z,,,) such that x = s-lim_, ,, z,,,. This, together
with the fact that x = s-limy, ,, x,,, and (12), yields {w€Q: v, = o0} = &. Thus
v, is a.s. finite. Moreover, X, (w) = Z, (w)+B(0, ¢) a.s. Theorem 3.3 and Lem-
ma 3.8 imply now that

cleco | ) EZ, = EX, < EX, c EZ,+B(0,¢). ®
vedo
Proof of Corollary 3.5. As was done in Lemma 3.8 one can show that
(Xyonn) is a martingale. It is majorized by an integrably bounded w-compact
valued random set. Proposition 5.8 of [8] yields the existence of a random set
X, such that

Trtosco- iM X (w) = X (w) as. on {weQ: vy(w) = 0}.
Since w-Ls,.Z,(@w)=C as., Lemma 3.10 yields X_ (w)=C as. on
{weQ: vo(w) = c0}. Recalling that (X,,,,) is a martingale, we obtain
X, (@) < E(C|4%,) = C as. on this set. Since Z,,_(0) = X, (w) as. for all keN,
Z, (w)=C as. on {weQ: vo(w) = 00}. Then Z, (w) = X,,(w) as. on the
above set. This contradicts the definition of vy, at least when
{weQ: vo(w) = w0} # . Thus vo < 0 as. =

Proof of Corollary 3.7. Observe first that for all weQ, XZ(w)c
X2*1(w) for n =0, ..., p. Thus, taking into account that X? are majorized by
a w-compact valued random set, we infer that X;° (®) := Fyesco-lim, o X5 (@)
is well defined. As in the proof Theorem 3.3 one can show that (X°) is the
smallest supermartingale dominating the sequence (Z,). Moreover,

X (w)=essclcoE(Z,|#,)(w) for all weQ.
vedB
Obviously, the supermartingale (X) is dominated by the supermartingale (X,)
defined in Theorem 3.3. However, since both supermartingales are majorized

by a w-compact set, the Fatou lemma ([9], Theorem 2.3) implies that for any
neN and almost all weQ

E(Z‘,I‘@")(CU) < S-k}:i'o E(Zv/\klgan)(m) = X:o (CU)

for every ve A,. Thus also (X,) is a.s. dominated by (X°). &
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