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Abstract. A random set analogue of the Snell problem is presen- 
ted. In the original Snell's problem one observes a sequence of random 
variables (t,), say a gambler's capital at successive games. If the gam- 
bler leaves the game at a random time v ,  his expected capital at this 
time is ES,.  The objective is to stop at time v (using information 
available up to this moment) such that the expected gambler's fortune 
E t ,  is maximal. 

Here a m u l t i v a l d  analogue of this problem will be studied. 
Given a Bmach space and a sequence of convex weakly or strongly 
compact valued random sets (23 in that space, the existence of a stop- 
ping time v such that EZ, is maximal is investigated. 

2000 AMS Subject Classification: 60G40, 62L15, 28B20, 26E25, 
54c60. 

Let (S2, d, P) be a probability space and let (3,) be an increasing se- 
quence of sub-a-algebras of d such that d is the smallest a-algebra contain- 
ing the sequence (an). For any  EN, let A, denote the family of all a.s. finite 
stopping times greater than n. 

Let X be a separable Banach space with the norm ] I-(I .  By B(0 ,  r) 
we denote the closed ball in X, centered at the origin with radius r. Let X* 
denote the dual of X, and (., -) the usual duality. The strong and weak topolo- 
gies on X will be denoted by s and w, respectiveIy. B* will denote the closed 
unit ball in X*. For a set A c X, cl co A will denote the closed convex hull of 
the set A. Let 9 (X) be the family of all closed subsets of X, 9,, (X) and 
gSkc ( X )  will denote the family of all w-compact and, respectively, s-compact 
convex subsets of X. 

* Department of Mathematics and Nature, The Catholic University of Lublin. 



78 G. Krupa 

The support function of the set C in PIX) will be defined in the following 
way: 

s(x*, C):= sup{x, x*). 
xd: 

A sequence [Cn) scalarly converges to some set C if s (x*, C,,) + s(x*, C) for 
all x* G X*. Topology of convergence of support functions will be denoted by 
Fs,,,,,. The distance functional is a mapping d: X x 9 (X) 4 R such that 

The &-envelope of a set C is defined as C\= { x E X :  d(x, C) < E ) .  Define the 
Hausdorf distance between sets C and D as 

On the space of closed sets, e,  is a metric. For a nonempty set C, we set also 

which is the Mausdorff distance of C from (0). 
Let us now introduce a few topologies on the space of closed subsets of X. 

Given topology z on X the lower z-limit of a sequence (C,) c X (denoted by 
z-LiC,) is defined as the set of all X E X  such that x = z-lim,,,~,, where 
X,E C,,. The upper z-limit of the sequence (C,) (denoted by 2-Ls C,) is the set of 
all x E X  such that x = z-lirn,, , xk, where x, E C,,. We say that (C,) c 9 (X) 
Mosco converges to C €9 (X) if 

The Mosco convergence is an extension of the notion of the convergence in the 
Painlevt-Kuratowski sense (see [2]). Convergence with respect to the Haus- 
dof l  metric implies the Mosco convergence. In Euclidean spaces, the Mosco 
convergence and the Painlev&Kuratowski convergence coincide. The Mosco 
convergence is not a topological notion. However, on the family of w-closed 
subsets of X, one may consider the Mosco topology, whose subbase consists of 
the families 

(V- , V is s-open) and ((Kc)', K is w-compact convex), 

where V -  is the collection of all closed sets which have a nonempty intersec- 
tion with the set V and (K9' is the collection of all closed sets contained in the 
complement of K (for details see [2], Chapter 5). This topology will be denoted 
by FM,,,,. In a slightly more genera1 setting than the present one, a sequence of 
w-closed sets Mosco converges to a w-closed set if and only if it converges to 
that set in the Mosco topology ([2], Theorem 5.4.6). 
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2. RANDOM SETS AND AUXILIARY RESULTS ON MULTIVALUED MARTINGALES 

A mult$unction is any mapping F: GI + 2'. A multifunction P is said to be 
(Eflos)  measurable if the preirnage F -  Li = (w EL': F (w)nU # IZI) belongs to 
d for any s-open set U c X. Only measurable multivalued functions with 
closed values will be considered and the adjective wil l  often be omitted. Measu- 
rable multivalued functions will be called random sets. This notion of rneasura- 
bility coincides with the usual measurability in the Borel sense when BIX) is 
equipped with the Ekes a-algebra generated by the families G-, where G are 
s-open sets; - 

Af'L will denote the f d y  of real-valued integrable functions. Let 
9'$(,, denote the space of all closed valued random sets F such that IlFll E PA. 
Those functions will be called integrably bounded. $P&skE(X) will denote the 
subspace of P,,, (X)-valued random sets in 8&(x,. A set H in 9$(,, is bounded 
if the set (IIFII: F EX) is bounded in 9:. 

Let B c d be a sub-c-algebra of at and let 9i(i@) denote the family of 
Bochner integrable 9-measurable functions. Denote by 

the set of all Bochner integrable a-measurable selections of F. In particular, we 
use the following shorthand notation: 9; : = 9; (4 and 9; : = 9; (d). The 
integral of a S(X)-valued function is defined as 

The integral J , I ; ~ P  of F over a measurable subset A of i2 is the integral of 1, F, 
where 1, is the indicator function of the set A. Note (Theorem 4.2 of [lo]) 
that if (Q, at, P) has no atom and F EL?:, then cl j,FdP is convex. If F  is 
a B(X)-valued function with 2'; # O, then (by Theorem 5.1 of [lo]) there 
exists an almost surely unique W-measurable S (XI-valued function E (F 1 B) 
satisfying 

where the closure is taken in 2;. The function E (F I a) will be called the 
conditional expectation of F with respect to the cr-algebra B. Corollary 1.6 
of [lo] yields that if F  E 9&s,c(m, then E (F I i@) E 9~s,c(,, . In particular, 
EF : = E (F I d) = cl j, F (w) dP (a). A similar result is true if F E dia&,(,, (see [5]). 

We say that an adapted sequence of random sets (F,) is a subrnartingaIe if 
for all n E N, E (F,,  , 1 47,) (a) 3 Fn (a) a.s. It is a supermartingale if 
E (Fn+, 1 A?,)(o) c F,  (o) a.s. for all n EN. Finally, it is a martingale if it is 
a submartingale and supermartingale. 

The lemmas below are multivaIued analogues of the well-known 
results for real-valued martingales (see, for example, [Il l ,  Chapter 11). 



80 G. Krupa 

The following definitions play an important role not only in the proofs of 
this section but also in the proofs of main results. Let D* c X* be a symmetric 
Mackey dense countable subset of the closed unit ball B* c X*. Let H* denote 
the set of all rational combinations of elements from D*. This set is dense in 
the Mackey topology. The existence of such a set follows from Lemma 111.32 
of [3]. 

LEMMA 2.12 Suppose (Fn) is a 9 ( X )  supermartingule majorized by 
Q Pwkc (:)-valued random set K. Then for any n E N and any stopping time v E An, 
( F , , 3  is -a supermartingale which a.s. Mosco converges to F,. - 

Proof. Since 

(F,,,J is a supermartingale. It is dominated by an integrably bounded w-com- 
pact random set K. For any x* E H*, lim,,, s (x* , F ,  A . (w)) = s (x* ,  Fv (a)) a.s. 
Now we proceed as in the proof of Proposition 5.8 of [Cg. Let D be a countable 
dense subset of X. For any X E D ,  

Lemma V-2-9 of [I11 yields that 

(1) d ( X  , Fv (a)) = lim d (x ,  10, , (a)) a.s. 
n+ m 

for all x E D. Since (F,  (4) is contained in K (w), the sequence (d t, F: (w))) is 
equicontinuous. Therefore, (1) holds for all x E X .  Lemma 5.5 of [8] yields that 
(FvAn)  as. Mosco converges to F, as n + m. ra 

LEMMA 2.2. Let (F,) be a P,,, (X)-valued supermartingab rnajorized by an 
integrably bounded S,,(X)-valued random set K. Then for any pair v l ,  v2 of 
stopping times 

E (4, I 9%,) c FV, t2.s. 
Proof. It is suficient to show that Fn 2 E(F,  j B,J on { ~ E O :  v ( o )  2 n). 

The sequence (F, ,, ,) is a supermartingale which a.s. Mosco converges to P, (see 
the proof of Lernma 2.1). Corollary 5.13 of [8] implies that 

Thus E (F,  I 91n) c F, a.s, on the event (a E SZ: v (o) 2 n) .  H 

LEMMA 2.3. For an integrable SWk,(X)-valued random set F majorized by 
a BWk, (XI-valued random set K ,  the martingale ( E  (F I a,)) a.s. Mosco converges 
to F. 
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Pr o of. For any x* E H* , (E (s (x* , F) 1 l,)) is a supermartingale. By Prop- 
osition 11-2-11 of [Ill, for all x' EH*, 

lim E (s (x*, F) I gn) (w) = s (x* , F (w)) a.s. 
n+ m 

Thus ( E  (F 1 g,) (w)) as. scalarly converges to F (o). Noticing (as in the proof of 
Lemma 2.1 or Proposition 5.8 of [$I) that (d (x, E(F I a,))) constitutes a sub- 
martingale for any x ED, and applying Lemma V-2-9 of [I l] we can show that 
(E(F [ l,) (4 a.s. Mosco converges to F(o). sl - 

Let us first state the problem which is a set valued analogue of the original 
Snell problem (see [4], tll]). We observe a sequence (finite or infinite) of 
random sets (Z,) satisfying some additional conditions. Our objective is to stop 
observation at a random time vo such that the expectation EZ,, is maximal (in 
the sense of inclusion). The decision when to stop can be based only on what 
we have seen up to this time. This stopping time is the solution to the Snell 
problem. 

3.1. The smallest envelope of a family of random sets. Before we present 
solutions to the optimization problem we start with the following proposition 
about the existence and some properties of the smallest essential closed convex 
envelope of a family of random sets. It will play an important role in the sequel. 

PROPOSITION 3.1. For every family B of random sets majorized by a w- 
-campact convex valued random set K there exists an as.  unique random set 
G: 52 +gWk,(X) such that 

(i) F (o) c G(w) a.s. for all F E 3; 
(ii) if H is a convex valued random set majorizing all P E  B as., then H ma- 

jorizes G as.  
The random set G will be denoted by ess clco $?. Moreover, there exists 

a sequence (F,) c Q such that 
m 

ess cl co B = cl co U F ,  a.s. 
n = 1 

If the family % is directed, the sequence (F,) can be chosen to be increasing and 

ess c1 co Q = Fscalai lim F,  a.s. and ess cl co B = FMoSco- lim F,  a.s. 
n-c m 11' m 

Moreover, if the random set K is s-compact valued, then 

ess cl co 9 = YQH- lb F,  a.s. 
n-c m 
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Let us remark here that (i) and (ii) have appeared in [13], where the 
existence of the essential supremum has been studied. 

3.1.1. P r o  of of Proposi t ion  3.1. Let 3 denote the class of all count- 
able subfamilies of 93. For every SE J define 

Fs(o)  := clco U F ( w ) .  
F E ~  

Consider now the set 

(2) p : =  clco U EFs. 
5=3 

The closed convex hull of the union on the left-hand side is attained in the 
sense that there exists a family @ such that 8 = EFs.  Indeed, (2) yields that for 
each x* eH* there exists a sequence (9,"') such that 

lim Es (x* , FFz.) = s (x*, p).  
n+m 

Let @ : = Unm=, Up&,#:*. Obviously, # €3. Thus 

By (3), the above inequality yields that for all x* EH*, s (x*, EFg) = s (x*, 0. 
Thus, applying Lemma 111.34 of [3], we obtain = EFg. 

It will be shown that the set G : = F& satisfies the assertions of the proposi- 
tion. Take any FEB.  The set FF corresponding to the countable family 
9 = & u ( F )  equals cl co (Fg u F). Thus, recalling (2), we get 

Therefore G = Fg = clco(FguF) a.s. This establishes the first claim. 
If H majorizes B then, almost surely, F (w) c H (a) for all F E B. Thus for 

almost all w E 52, G (w )  = F$ (w) = cl co UFEs F (w) c H (a). 
Arrange now & in a sequence (Pn). Then 

m 

(4) ess cl co B (w) = G (w) = c1 co U FSn(o) a.s. 
n =  1 

If the family 3 is directed upwards (i.e, for all F1,  F 2 € 3  there exists F 3 € B  
such that F1 u F 2  c F g  a.~.), then it is possible to construct an a.s. increasing 
sequence (Fh) c B such that 

FMO,,,- lim F', (w) = ess cl co B (w) a.s. 
n +  m 
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Indeed, put Fb = F*, and for I", + , take a random set dominating cl w (Fk u F*,, , ,). 
 hen (JY, F ~ .  (D) c FN (w) as. ~ h u s  

03 

cl co U F, (w) c FMo,,,- lim FA (o) c ess cl co 9 (a). 
n= 1 n+ m 

This follows from the fact that the random sets (Pi )  are convex valued and that 
for an increasing sequence (Cfl), such that d (U:=, c,,) is w-closed, cl (Ur= c.) = 

YM,,,,-lim,,, Cn (see 121, Exercise 5.4.31~)). If a sequence of random sets is 
bounded by a w-compact random set, then the Mosco convergence implies the 
scalar conv&gence. Thus ~,,,lim,,, Fa (o) = ess cl GOB (w)  a.s. In fact, since 
FL(a) c ess cl coB(w) as. for all  EN, Proposition 11' of [I21 assures the 
equivalence of the scalar and Mosco convergence of the sequence (FL(w)) to 
ess cl co Q to). 

Suppose now that the random set K is Psk,(X)-valued. Since the Mosco 
convergence of sets majorized by a Pwkc (a-valued sets implies convergence in 
the scalar topology, the first part of the proof implies that for all X'EX* 

Proceeding as in the proof of Lemma 3.2 of [I] it can be shown that the above 
convergence is uniform with respect to all X'E B*. This proves the convergence 
in the Hausdorff distance. H 

3.2. Finite horizw. The following theorem concerns finding an optimal 
stopping time for a finite sequence of random sets. 

THEOREM 3.2. Let (zn)0<n8p be a sequence of w-compact convex ualued 
random sets. Suppose that sup 1, (12, (w)l( dP (o) is finite and that the families 
( E ( Z ,  1 are upwards directed (with respect to inclusion) for all 
n = 0, . . ., p. Then the sequence (XJo6, <, deftned by a backward induction 

for m = 0, 
(6) C~CO(Z~-,UE(X~-,+~~~~-,)) f o r O < m < p  

is the smallest integrably bounded supermartingale dominating the sequence (2,). 
Moreover, the stopping time 

is the solution to the Snell problem associated with (2,). 

The assumption that (E(Z, I 93,))v,n is upwards directed for any n EN is 
not required in the original SneFs result. In the set valued Snell's problem the 
usual relation < in R is replaced by inclusion in some families of subsets of X. 
However, these families are not totally ordered by inclusion and the above- 
-mentioned condition seems unavoidable. 



32.1. P r o  of of Theorem 3.2. Since Z ,  = X, and (X,, ,,,I is a martingale, 
X,, = E (Xvo I go) = E (Z,, 13,). On the other hand, by the definition of (X,) and 
the stopping time vo, for every stopping time v,  Xo 3 E (X, I go) 3 E (2, I a,). 
Thus vo is an optimal stopping time and 

X,, = ess cl co E (2, ( go), 
v d o  

Similarly, we can show that for 0 < n < p 

X, = ess cl co E (2, I a,,). 
veA, 

Thus v, is the desired stopping time. H 

3.3. Infinite horizon. We begin here with the presentation of all results. The 
proofs are postponed till the end of this section. 

THEOREM 3.3. Let (Z,) be a sequence, adapted to (a,), of closed convex 
random sets majorized by a P,,(X)-valued integrably bounded random set 
K and suck that, for any  EN, the family (E(Z, 1 AYn)}v,,n is upwards direc~ed. 
Then the random sets 

X, = ess cl co E (Z ,  I a,) 
YEA,, 

form an adapted sequence of integrably bounded random sets such that, for all 
n € N ,  

The sequence X, is the smallest (with respect to inclusions) supermartingale domi- 
nuting the sequence (Z,). Finally, 

EX, = clco U EZ,. 
VEA" 

The next theorem gives the optimal stopping time for the multivalued 
Snell problem. 

THEOREM 3.4. Let (2,) be a sequence of w-compact valued convex valued 
random sets satisfying the following conditions: 

(i) (2,) is majorized by a gWk, (XI-ualued integrably bounded random set K ;  
(ii) for any n~ N, the family (E(Z, 1 is upwards directed. 
In order that clco UYE,, EZ, is attained it is necessary and suficient that 

the stopping time v, defined in terms of the supemartingale (X,) by 

X,(w) = Z,(w)), 
if X, (w)\Z, (w) # 0 for a11 n E N 
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is a.s.$nite. When this condition is satisfied, EZ,, = cl co UvdO EZv and v, is the 
smallest finite stopping time satisfying this equation. Moreover, if K is Pskc (X)-  
-valued, then, for all E > 0 ,  

always defines an a.s. finite stopping time such that 

U EZ, cEZve+B(O,  8). 
VEAO 

- 
The stoppi& time vo is said to be optimal when it is a.s.$nite. The stopping times 
v, are called e-optimal. 

The following corollary gives conditions which assure finiteness of the 
optimal stopping time v,  defined in Theorem 3.4. 

COROLLARY 3.5. Let (2,) be a sequence of B,,,(X)-aalued random sets 
such that 

(i) (Zn) is majorized by a gwkc (X)-valued integrably bounded random set K, 
(ii) the set (E  (2, I an))vEnn is upwards directed for any  EN, 
(iii) there exists a set C such that w-Ls,, , 2, (a) c C as.; moreover, there 

exists a subsequence (Z,J such that C c Z , ,  a s .  
Then the clco U v , o ~ ~ v  is attained. 

EXAMPLE 3.6. Consider a Euclidean space Rd. Let Cfr)i=l,...,d be a collec- 
tion of real-valued increasing bounded functions. Let (in) be i.i.d. random varia- 
bles with positive mean. For any  EN define 

Zn:=  {(xi, ..., xd)€Rd: lxil < Ifi(n-l C tk)l, i = 1, ..., d ) .  
k =  1 

According to Corollary 3.5 there exists a finite stopping time vo such that 

The following corollary shows how the solution of the infinite horizon 
problem can be approximated by the solutions of the finite horizon problems. 

COROLLARY 3.7. Let (Z,) be as in Theorem 3.3. For any P E N ,  let 
(X~)os,sp is the smallest supermartingale dominating the sequence (Z,) (defined 
as in (6)). For all w EQ and  EN define 

Then X," (a) = ess cl cove,; E(Zv  I a,), where A: is the set of all bounded stop- 
ping times in A,. Moreover, the supermartingab (XJ dejined in Theorem 3.3 
coincides with (X,"). 
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3.3.1. Proofs 
Proof of Theorem 3.3. The random sets X, are a,-measurable and 

(9) zn (m) c Xn (m) c E (# l an) (m) a-s-, 

so the sequence (X,) is bounded in Y&~,~(,~. For a fixed  EN, Proposition 3.1 
yields the existence of a sequence (vk) such that 

It will be shown that (X,) is a supermartingale dominating a . s ~  the sequence 
(2,). Since (E (Z,, I I,) (a)) converges a.s. in the Mosco topology, the applica- 
tion of Fatou's lemma ([9], Theorem 2,3) yields that for almost all ~ E P  

E (X,, 1 a,, - 11 (a) = E (FMosm- lim E (Zvk I a n )  lan- I) ( 4  
k d  w 

! 
I 

Thus (X,) is a supermartingale dominating a.s. the sequence (2,). Therefore, '._ 

Let us now establish the opposite inclusion. For all ctl f SZ and all v e A,, 

Zv(m)= z n ( ~ )  l~v=n]IO)+Zvv~n+~)(~) l[v>n](m). 

Since E(ZVv(,,+ ll 1 an+ l) (0) c X,+ (a) as., we get, a.s. for all v E A,, 

I EIZv Ign)(w) = Zn(m)l,v=,(m)+E(Zvv(n+l) IWn)(a) l [v>n~(~)  
I 

1 c zn(m)lrv=nl(a)+E(Xfi+~ IA?J(~)I[v>n,(m)ccIco(Zn(~)uE(Xn+~ I%)(a)). 
I Thus, recalling the definition of (Xu) and Proposition 3.1, we obtain 
! 

x n  Iw) c cl co (Zn (a) U E  (Xn + 1 l Bn) (0)) a-s- 

Invoking again Fatou's lemma ([9], Theorem 2.3), we get 

E ess cl co E (Z, I 3,) = E (9Mosco- Iim E (2, I gn)) c s- Li EZ,, c cl co U EZ,. 
=An k+ m k+ m YEA,, 

On the other hand, for all VEA,, we have 

EZ, c E ess cl co E (2, I A?,). 
A. 

Hence (8) follows. 
Suppose that (Xk) is another supermartingale dominating the sequence 

(2,). Lemma 2.2 yields that for any V E  A, 

Thus X, c Xk a.s. by Proposition 3.1. H 
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Proof of Theorem 3.4. The proof of Theorem 3.4 will follow from 
a few lemmas. In these lemmas we assume the settings of Theorem 3.4. 

LEW 3.8. FOP euery stopping time v dominated by vo the stopped sequence 
(XY, ,J i s  a martingale. When v is a.s. finite as well, it follows that EX, 3 EX,. 

Proof. On the event { ~ G K J :  vo(o) > n) and on the smaller event 
{a E O: v (w) > n) we have X, 3 2, a.s. Theorem 3.3 (see (7)) implies that 
X, = E(X,+ I I B,) on these events. Thus 

Thus the sequence (X,,,) is a martingale. Lemma 2.1 yields X, = 

FMosca-lima+m X v n n  a.s. Since (X,,,) is bounded by an integrably bounded 
w-compact valued random set K, the Mosco convergence implies convergence 
in the scalar topology, Application of Fatou's lemma and properties of support 
functions and Lemma 3.2 (b) of [7] yield 

limsups(x*, EX,,,,) 6 Elimsups(x*, X v A 3  < Es(x*, w-LsX,.,) = Es(xh, X,). 
n-r cu A-a 

Thus, by Lemma 1.1 of 191 we obtain 

Since (X, , , )  is a martingale, we get the result. rn 

Lemma 3.8 implies that if the stopping time v o  is finite then, since 
ZV, (4 = XV, to) as., 

Proposition 3.3 yields EX, = cl co U,,, EZv, thus 

EZ,, = cl co EZ,. 
vsAo 

This yields optimality of v o .  
In order to show that v, is the smallest optimal stopping time we will use 

the following lemma. 

LEMMA 3.9. For every finite stopping time v l  we have 

Xvl  = ess cl co E ( Z ,  I a , , ) ,  
,€AvL 

where A,, is the set of all a.s.finite stopping times not less than vl . Consequently, 

EXv, = cl co U EZ,.  
QEA", 
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P r o  of. Since v, E A,, , the set A,, is nonernpty. Let X ,,,, denote the 
ess cl co in (10). For every stopping time v E A,, the random variable v v n is 
a stopping t h e  in A, and v = v v n on the event ( W E  a: v 1  (0) = n). On this 
event we have 

Therefore X(,,, c X,, a.s. Conversely, if v' is a stopping time belonging to A,, 
then the stopping time v' v v ,  E A,, and v' = v' v v ,  on {w E 62: vl  (o) = n). On 
this event we have 

- 

Thus one the above-mentioned event X, c X1,,, a.s. Therefore X,, c X(,,, a.s. 
The family {E(Z, /5f,J, V E  A,] is directed upwards. Indeed, on the event 

{a E a: r] (w) = n) the set (E (2, I a,)) is upwards directed, i.e. for v, , v2 E A, 
there exists v'") such that 

Thus we can set v = z:', lh=,, v'", SO that E (Z,, I a,) u E (Zv, I c 

E(Z, 1 B,J ass. 
Suppose that v* is an optimal finite stopping time, i.e. clco UVdo EZ, = 

= EZ,.  The preceding lemma yields 

On the other hand, by the definition of X,,, Xv, 2 Z,, as. Therefore 
EXv, 3 EZ,,. Hence EX,, = EZ,, as. Now the definition of vo implies that 
vo < v* and v, is finite a.s. 

In order to show finiteness and E-optimajity of the stopping times v,, we 
will use the following lemma: 

LEMMA 3.10. The following relation holds: 

w- Ls X, (a) = w- Ls Zn (a) a s .  
n+ m n-m 

Proof. For every stopping time V E  A, (and in A, for any n 3 m) 
m 

Z,(a) c clco Zi(w) a.s. 
i = m  

Therefore 
m 

X, = essclcoE(Zv(9?ln) c E ( U  ZiIB$. 
VEA. i = m  

For any x* E H*, rn E N, the sequences ( E  (s (x* , UZn Zd 1 s)) are martingales. 
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Theorem 11-2-11 of [ll] implies that these martingales converge a.s. and in L1 
m to s(x*, U i = m ~ i ) .  Thus, by Lemma 3.2 of [7] and Fatou's lemma, a.s, for all 

X* E H * ,  

s (x*, w- Ls X ,  (0)) < lim sup s ( x * ,  X, (w)) 
n+ a, n-r  m 

m rn 

< l h  E(s (x* ,  U z ~ ) J ~ J ( u )  = s ( x * ,  U ZiIW)) 
n+m i = m  i = m  

Therefore 
- 

m 

w- Ls X,(o) c U Zi(w) a.s. 
n A w  i = m  

Letting m + a, and using the fact that for almost all w ELI the sequence 
(cl co U a - m  >j(w)) is decreasing, we get almost surely 

41 m 

w- Ls X, (a) t f-) cl GO U Zi (a). 
n- m m= 1 i = m  

Applying Proposition 3.10 of [6] we conclude that 

w- Ls X, (o) c w- Ls Z,, to) a.s. 
n- m n-41 

The opposite inequality is obvious. H 

Now we come back to the proof of Theorem 3.4. Consider the stopping 
time v, defined in the statement of Theorem 3.4. Since v, < v,, Lemma 3.8 
implies that the sequence (Xvt ,, JnSN is an integrable martingale. Moreover, by 
the convergence theorem for martingales ([8], Proposition 5.8), there exists 
a 9,kc(X)-valued random set X, such that X, = FMOSco-limn,, X, a.s. on the 
event ( o ~ S 2 :  v, = a). However, almost everywhere on this event we have 

Fix an o in the subset of 9, where (1 1) is valid. For every n E N it is possible to 
choose x, EX, (o)\Z, (a) such that 

Since (Z,(o)) is majorized by the s-compact set K(a), there exists a subse- 
quence (x.3 which s-converges to some XEX, (w). According to Lemma 3.10, 
we have 

Thus there exists a sequence (z,,) such that z,, E Z,, (a) for all  EN and x = 

= w-lim,,, z,,. Again, since this sequence is bounded by an s-compact set, 
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one can choose a subsequence (z,,,) such that JC = s-lim,~,, z,,,. This, together 
with the fact that x = s-limkc, , x,,. and (12), yields {o E B: v, = oo) = 0. Thus 
v,  is a.s. finite. Moreover, X,@) c Z,(o)+B(O, 8)  a.s. Theorem 3.3 and Lem- 
ma 3.8 imply now that 

clco u EZ, =EX, c EX,, c EZ,,-t-B(O, E ) .  s 
VEAO 

P r o  of of Corollary 3.5. As was done in Lemma 3.8 one can show that 
(X,,,,) is a martingale. 1t-is majorized by an integrably bounded w-compact 
valued random set. Proposition 5.8 of [8] yields the existence ofa random set 
X, such that 

FMOsco- lim X, (w) = X, (a) as. on {w E a: v ,  (o) = m} . 
n-r m 

Since w-Ls,,, Z,(o) c C as., Lemma 3.10 yields X, (a) c C a,s. on 
( w E Q :  v0(w) = a}. Recalling that (X,,,,) is a martingale, we obtain 
X, (w) c E (C 1 g,,) = C a.s. on this set. Since Z,, (a) c X,, (w) a.s. for all k EN, 
Z,, (w) = C a.s. on ( W E  a: vo (a) = a). Then Z,, (w) = X,, (w) a.s. on the 
above set. This contradicts the definition of yo, at least when 
{ w ~  a: v,{w) = m) # $3. Thus vo < co a.s. ra 

Proof of Corollary 3.7. Observe first that for all WEO, Xi(a) c 
X:"' (o) for n = 0, . . ., p. Thus, taking into account that Xf: are majorized by 
a w-compact valued random set, we infer that X," (w) : = SM,,,,-limp+, Xf: (w) 
is well defined. As in the proof Theorem 3.3 one can show that (XP) is the 
smallest supermartingale dominating the sequence (Z,). Moreover, 

X," (w) = ess cl co E (Z, I 99,) (o) for all w E Q.  
VEA; 

Obviously, the supermartingale (X,") is dominated by the supermartingale (X,) 
defined in Theorem 3.3. However, since both supermartingales are majorized 
by a w-compact set, the Fatou lemma ([9], Theorem 2.3) implies that for any 
 EN and almost all OEQ 

for every VEA,. Thus aIso (Xn) is a.s. dominated by (X,"). rn 
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