REMARKS ABOUT THE DUGUÉ PROBLEM

BY

WIESŁAW KRAKOWIAK* (WROCŁAW)

Abstract. The paper presents some new results of the Dugué problem of finding the characteristic functions ϕ_1 and ϕ_2 such that

$$(1-c)\phi_1+c\phi_2=\phi_1\phi_2, \quad 0< c<1.$$

2000 Mathematics Subject Classification: 60E05, 60E15, 60E99.

Key words and phrases: Dugué problem, arithmetics of probability measures, characteristic functions.

1. INTRODUCTION

Let us consider a problem from the domain of arithmetics of probability measures given by Dugué (see [1], [2], p. 21). He was interested in finding couples (μ_1, μ_2) of probability measures satisfying the equation

(1)
$$\mu_1 * \mu_2 = \frac{1}{2} \mu_1 + \frac{1}{2} \mu_2.$$

A more general setting of the Dugué problem is contained in the question on couples (μ_1, μ_2) of probability measures for which the condition

(2)
$$\mu_1 * \mu_2 = p\mu_1 + (1-p)\mu_2, \quad 0$$

holds (see [3]).

Some examples of couples of probability measures satisfying (2) can be found in [1], [3], [7], and [5]. Equation (2) with $\mu_2 = \overline{\mu_1}$ was discussed in [6] and equation (2) with supp $(\mu_2) \subset (-\infty, 0]$ and supp $(\mu_1) \subset [0, +\infty)$ was considered in [4] and [8].

2. PRELIMINARIES

Let d_p : $C \setminus \{1-p\} \to C$, 0 , be a function defined by the formula

(3)
$$d_p(z) = \frac{pz}{z - (1 - p)} = p + \frac{p(1 - p)}{z - (1 - p)}$$

^{*} Institute of Mathematics, Wrocław University. The research is supported by KBN grant No. 2P03A 029 14.

and let $g_r: \mathbb{C}\setminus\{1/(1-r)\}\to\mathbb{C}$, $0 < r \le 1$, be a function defined by the formula

(4)
$$g_r(z) = \frac{rz}{1 - (1 - r)z}.$$

Functions d_p and g_r have the following properties.

LEMMA 2.1. (i) $d_s d_t = d_t d_s = g_w$ for 0 < s, t < 1 with $s+t \le 1$, where

$$w = \frac{st}{(1-s)(1-t)}.$$

(ii) $g_t g_s = g_s g_t = g_{st}$ for $0 < s, t \le 1$.

(iii) $d_s g_t = d_w$, where w = st/(1-s+ts) for 0 < s, t < 1.

Proof. (i) Since

$$d_{s}d_{t}(z) = d_{s}\left(\frac{tz}{z - (1 - t)}\right) = \frac{\frac{stz}{z - (1 - t)}}{\frac{tz}{z - (1 - t)} - (1 - s)}$$

$$= \frac{stz}{tz - (1 - s)(z - (1 - t))} = \frac{stz}{(1 - s)(1 - t) + (s + t - 1)z},$$

we have $d_s d_t = d_t d_s$.

If $0 < s + t \le 1$, then $d_s d_t = g_w$, where w = st/((1-s)(1-t)).

(ii) We have

$$g_{s} g_{t} = g_{s} \left(\frac{tz}{1 - (1 - t)z} \right) = \frac{\frac{stz}{1 - (1 - t)z}}{1 - \frac{(1 - s)tz}{1 - (1 - t)z}}$$
$$= \frac{stz}{1 - (1 - t)z - (1 - s)tz} = \frac{stz}{1 - (1 - st)z} = g_{st}.$$

(iii) Since

$$d_{s}g_{t} = d_{s}\left(\frac{tz}{1 - (1 - t)z}\right)$$

$$= \frac{stz}{\frac{1 - (1 - t)z}{1 - (1 - t)z}} = \frac{stz}{tz - (1 - s)(1 - (1 - t)z)} = \frac{stz}{(1 - s + ts)z - (1 - s)}$$

and

$$g_t d_s(z) = \frac{t d_s(z)}{1 - ((1 - t) d_s(z))} = \frac{\frac{t sz}{z - (1 - s)}}{1 - \frac{(1 - t) sz}{z - (1 - s)}} = \frac{\frac{stz}{z - (1 - s)}}{\frac{(1 - (1 - t)s)z - (1 - s)}{z - (1 - s)}}$$
$$= \frac{stz}{(1 - s + ts)z - (1 - s)},$$

we have $d_s g_t = g_t d_s = d_w$, where w = st/(1-s+ts).

COROLLARY 2.2. (i) If $0 < r \le p < 1$, then

$$d_r = g_s d_p$$
, where $s = \frac{r(1-p)}{p(1-r)}$.

(ii) If 0 , then

$$d_{1-s}d_p = g_r$$
, where $r = \frac{p(1-s)}{(1-p)s}$.

(iii) If $0 and <math>0 < v \le s < 1$, then

$$d_v d_{1-s} d_p = d_w$$
, where $w = \frac{pv(1-s)}{s - vs - ps + vp}$ and $0 < w \le p$.

(iv) $d_{p}d_{1-p} = I$.

Proof. (i) Since ps/(1-p+sp)=r, Lemma 2.1 (iii) shows that $d_r=g_s d_p$.

(ii) Since $p+(1-s) \le 1$, by Lemma 2.1 (i) we have $d_{1-s} d_p = g_r$, where r = p(1-s)/(1-p)s.

(iii) The equality $d_{1-s}d_p = g_r$, where r = p(1-s)/(1-p)s, follows from (i). The assertion (ii) implies $d_v g_r = d_t$, where t = vr/(1-v+rv). Hence $d_v d_{1-s} d_p = d_v g_r = d_t$, where

$$\begin{split} t &= \frac{vr}{1 - v + rv} = \frac{\frac{vp\,(1 - s)}{(1 - p)\,s}}{1 - v + \frac{vp\,(1 - s)}{(1 - p)\,s}} = \frac{vp\,(1 - s)}{(1 - v)\,(1 - p)\,s + vp\,(1 - s)} \\ &= \frac{vp\,(1 - s)}{s - vs - ps + vp} = p\,\frac{v\,(1 - s)}{v\,(1 - s) + (s - v)\,(1 - p)} \leqslant p. \quad \blacksquare \end{split}$$

LEMMA 2.3. A function d_p , 0 , has the following properties:

(i) if $d_p(x) = x$, then $x \in \{0, 1\}$;

(ii) a function d_p satisfies a functional equation of the form

(5)
$$zf(z) = pz + (1-p) f(z);$$

- (iii) a function d_p is an injection, $d_p(C \setminus \{1-p\}) = C \setminus \{p\}$;
- (iv) $d_p^{-1} = d_{1-p}$;
- (v) $d_p(\mathbb{R}\setminus\{1-p\}) = \mathbb{R}\setminus\{p\};$
- (vi) d_p is an increasing function on $(-\infty, 1-p)$ and $(1-p, +\infty)$.

The proof is immediate, and thus is omitted.

LEMMA 2.4. Let $A_p = \{z: |z| \le 1, |d_p(z)| \le 1\}$. Then

(6)
$$A_p = \{z: |z| \le 1, \, 2\Re z \le (1-p) + (1+p)|z|^2\}$$

and

(7)
$$A_p \cap \mathbf{R} = [-1, (1-p)/(1+p)] \cup \{1\}.$$

Moreover,

- (i) $d_p(A_p) = A_{1-p}$;
- (ii) $\{z: |z| = 1\} \subset A_p$;
- (iii) if |z| = 1 and $|d_p(z)| = 1$, then z = 1;
- (iv) $d_p([-1, 0]) = [0, p/(2-p)]$ and $d_p([0, (1-p)/(1+p)]) = [-1, 0]$.

Proof. Let z = a + ib. Since $|d_p(z)| \le 1$, we see that $|pz_1| \le |z_1 - (1-p)|$, which implies

$$p^{2}(a^{2}+b^{2}) \leq (a-(1-p))^{2}+b^{2}=a^{2}-2a(1-p)+(1-p)^{2}+b^{2},$$

and thus

$$0 \le -2a + (1-p) + (1+p)(a^2 + b^2)$$
.

COROLLARY 2.5. Let $0 . Suppose that the numbers <math>z_1, z_2 \in C(|z_1| \le 1, |z_2| \le 1)$ satisfy the equation

(8)
$$z_1 z_2 = p z_1 + (1-p) z_2.$$

Then

- (i) $z_1 \neq 1-p$ and $z_2 \neq p$;
- (ii) $z_2 = pz_1/(z_1 (1-p))$ and $z_1 = (1-p)z_2/(z_2-p)$;
- (iii) $2\Re z_1 \le (1-p)+(1+p)|z_1|^2$;
- (iv) if $\{z_1, z_2\} \cap \mathbb{R} \neq \emptyset$, then $z_1, z_2 \in \mathbb{R}$ and exactly one of the following conditions is satisfied:
 - $z_1 = z_2 = 1$;
 - $z_1 = z_2 = 0;$
- $z_1 z_2 < 0$; in fact: either $z_1 \in (0, (1-p)/(1+p)]$ and $z_2 \in [-1, 0)$ or $z_1 \in [-1, 0)$ and $z_2 \in (0, p/(2-p)]$.

The next proposition will be used in the sequel.

PROPOSITION 2.6. Let μ be a probability measure on \mathbb{R} and 0 < r < 1. Then (i) a measure $r \sum_{n=0}^{\infty} (1-r)^n \mu^{*n}$, where $\mu^{*0} = \delta_0$, has a characteristic function of the form

$$\frac{r}{1-(1-r)\hat{\mu}};$$

(ii) a measure $\mu * p \sum_{n=0}^{\infty} (1-p)^n \mu^{*n}$, where $\mu^{*0} = \delta_0$, has a characteristic function of the form

(10)
$$g_r(\hat{\mu}) = \frac{r\hat{\mu}}{1 - (1 - r)\hat{\mu}}.$$

The proof is immediate.

For every probability measure μ on R we denote by $g_r(\mu)$ ($0 < r \le 1$) the probability measure with the characteristic function $g_r(\hat{\mu})$.

3. THE DUGUÉ PROBLEM

First we prove the following lemma.

LEMMA 3.1. Let μ_1 , μ_2 be probability measures and 0 . Then the following conditions are equivalent:

- (i) $\mu_1 * \mu_2 = p\mu_1 + (1-p)\mu_2$, i.e. the couple (μ_1, μ_2) is a solution of the equation (2);
 - (ii) $\hat{\mu}_1 \neq 1-p$ and $d_p(\hat{\mu}_1)$ is a characteristic function;
 - (iii) $\hat{\mu}_2 \neq p$ and $d_{1-p}(\hat{\mu}_2)$ is a characteristic function.

The proof is obvious.

For every probability measure μ on R we define

(11)
$$\operatorname{Du}(\mu) = \{ p \in (0, 1) : \ \mu * \nu = p\mu + (1-p)\nu \text{ for some } \nu \}.$$

The class of probability measures μ on R with $Du(\mu) \neq \emptyset$ will be denoted by \mathcal{D} . For every probability measure $\mu \in \mathcal{D}$ we denote by $d_p(\mu)$ $(p \in Du(\mu))$ the probability measure with the characteristic function $d_p(\hat{\mu})$.

COROLLARY 3.2. Let μ be a probability measure on R. Then, for every $a \in R \setminus \{0\}$,

$$\mathrm{Du}(\mu)=\mathrm{Du}\big(T_a(\mu)\big).$$

COROLLARY 3.3. Let μ be a probability measure on **R** and 0 . Then the following conditions are equivalent:

- (i) $p \in Du(\mu)$;
- (ii) $\hat{\mu} \neq 1-p$ and $d_p(\hat{\mu})$ is a characteristic function.

COROLLARY 3.4. If $p \in Du(\mu)$, then $1 - p \in Du(d_p(\mu))$ and

(12)
$$\hat{\mu}d_{p}(\hat{\mu}) = p\hat{\mu} + (1-p)d_{p}(\hat{\mu}).$$

COROLLARY 3.5. Let μ be a probability measure on R. Then $\mu \in \mathcal{D}$ iff there exist a probability measure ν on R and 0 such that

(13)
$$\mu = \nu * (p^{-1} \mu - (p^{-1} - 1) \delta_0).$$

Moreover, $v = d_p(\mu)$.

LEMMA 3.6. Let μ be a probability measure on \mathbb{R} with $\operatorname{Du}(\bar{\mu}) \neq \emptyset$ and let $p \in \operatorname{Du}(\mu)$. Then exactly one of the following statements is satisfied:

- (i) μ and $d_p(\mu)$ are absolutely continuous;
- (ii) μ and $d_p(\mu)$ are singular;
- (iii) μ and $d_n(\mu)$ are discrete.

Moreover, if μ is a lattice law given on the same lattice L with the origin as a lattice point, then $d_p(\mu)(L) = 1$.

Proof. Lemma 3.6 follows from Corollary 2.5.

LEMMA 3.7. Let μ be a symmetric probability measure on \mathbf{R} with $\mathrm{Du}(\mu) \neq \emptyset$. Then, for every $p \in \mathrm{Du}(\mu)$, $\mu = d_p(\mu) = \delta_0$.

Proof. Let $p \in \text{Du}(\mu)$. Since $\hat{\mu} \cdot d_p(\hat{\mu}) = p\hat{\mu} + (1-p)d_p(\hat{\mu})$, Corollary 2.5 implies $\mu = d_p(\mu) = \delta_0$.

LEMMA 3.8. Let $\mu \in \mathcal{D}$ be a probability measure with supp $(\mu_1) \subset [0, +\infty)$. Assume that, for some $p \in \operatorname{Du}(\mu)$, supp $(d_p(\mu)) \subset [0, +\infty)$. Then $\mu = d_p(\mu) = \delta_0$.

Proof. By means of the Laplace transforms

$$\phi_1(t) = \int_0^\infty e^{-tx} \mu_i(dx), \quad \phi_2(t) = \int_0^\infty e^{-tx} d_p(\mu)(dx), \quad t \geqslant 0,$$

the condition (2) can equivalently be expressed by

$$\phi_1(t) \phi_2(t) = p\phi_1(t) + (1-p)\phi_2(t).$$

Since $\phi_i(t) > 0$, Corollary 2.5 implies $\mu = d_p(\mu) = \delta_0$. See also the proof of Theorem 2 of [8].

THEOREM 3.9. Let μ be a probability measure on **R**. Then one of the following statements is satisfied:

- (i) $\operatorname{Du}(\mu) = \emptyset$;
- (ii) $Du(\mu) = (0, 1);$
- (iii) $Du(\mu) = (0, p]$ for some 0 .

Proof. Let $p \in Du(\mu)$ and 0 < r < p. By Corollary 2.2 there is $d_r = g_s d_p$, where s = r(1-p)/p(1-r). An application of Proposition 2.6 now implies that $g_s d_p(\hat{\mu}) = d_r(\hat{\mu})$ is a characteristic function. Hence $r \in Du(\mu)$.

Let $(p_n) \subset \operatorname{Du}(\mu)$ be an increasing sequence with $\lim_{n\to\infty} p_n = p < 1$. Since $p_n \in \operatorname{Du}(\mu)$, we conclude that $\hat{\mu}(R) \subset A_p$. Hence Lemma 2.4 implies $\hat{\mu}(R) \cap R \subset [-1, (1-p_n)/(1+p_n)] \cup \{1\}$ for every n. Thus

$$\hat{\mu}(\mathbf{R}) \cap \mathbf{R} \subset [-1, (1-p)/(1+p)] \cup \{1\}.$$

In particular, $\hat{\mu} \neq 1-p$, which implies

$$\lim_{n\to\infty}d_{p_n}(\hat{\mu})=d_p(\hat{\mu}).$$

Since $d_p(\hat{\mu})$ is a continuous function, we conclude that one is a characteristic function, and thus $p \in Du(\mu)$.

COROLLARY 3.10. Let μ be a probability measure on R with $Du(\mu) \neq \emptyset$. Then

(i) if $Du(\mu) = (0, 1)$, then

$$\Re \hat{\mu} \leqslant |\hat{\mu}|^2 \quad and \quad \{\hat{\mu}(t): \ t \in \mathbb{R}\} \cap \mathbb{R} \subset [-1, 0] \cup \{1\};$$

(ii) if, for some $0 , <math>Du(\mu) = (0, p]$, then

$$\Re \hat{\mu} \leq \frac{1}{2} ((1-p) + (1+p)|\hat{\mu}|^2)$$

and

$$\{\hat{\mu}(t): t \in \mathbb{R}\} \cap \mathbb{R} \subset [-1, (1-p)/(1+p)] \cup \{1\}.$$

THEOREM 3.11. Let μ be a probability measure on R. Then $\mathrm{Du}(\mu) \neq \emptyset$ iff, for some (every) 0 < r < 1, $\mathrm{Du}(g_r(\mu)) \neq \emptyset$ and

(14)
$$Du(g_r \hat{\mu}) = \{ p((1-p)r + p)^{-1} : p \in Du(\mu) \}.$$

In particular,

- (i) $Du(\mu) = (0, 1)$ iff $Du(g_r(\mu)) = (0, 1)$ for every (some) 0 < r < 1;
- (ii) $\operatorname{Du}(\mu) = (0, p]$ for some 0 iff for every (some) <math>0 < r < 1 there exist $0 < s_r < 1$ with $\operatorname{Du}(g_r(\hat{\mu})) = (0, s_r]$. Moreover, $s_r((1-p)r+p)-p=0$.

Proof. We show that $\operatorname{Du}(g,\hat{\mu}) = \{p((1-p)r+p)^{-1}: p \in \operatorname{Du}(\mu)\}$ for every 0 < r < 1.

Let $p \in \operatorname{Du}(\mu)$. Hence $1 - p \in \operatorname{Du}(d_p(\hat{\mu}))$. Define

$$s = \frac{p}{(1-p)\,r + p}.$$

Since p < s by Theorem 3.9, we have $1 - s \in Du(d_p(\hat{\mu}))$, which implies $s \in Du(d_{s-1}d_p(\hat{\mu}))$. We have $d_{s-1}d_p = g_r$. In particular, if $Du(\mu) \neq \emptyset$, then $Du(g_r \hat{\mu}) \neq \emptyset$.

Let $\operatorname{Du}(g_r\hat{\mu}) \neq \emptyset$ and $s \in \operatorname{Du}(g_r\hat{\mu})$. Hence $1 - s \in \operatorname{Du}(d_s g_r(\hat{\mu}))$. Set

$$p=\frac{rs}{1+rs-s}.$$

This gives s = p/((1-p)r+p). Since p < s, we conclude that $d_{1-s}d_p = g_r$, and thus $d_p(\hat{\mu}) = g_r d_s(\hat{\mu})$ is a characteristic function. In particular, $p \in \text{Du}(\hat{\mu})$.

Let us give some examples of measures μ with $Du(\mu) \neq \emptyset$. We remark that if $\mu \in \mathcal{D}$, then

(i) $g_r \in \mathcal{D}$ and $\operatorname{Du}(g_r \hat{\mu}) = \{ p((1-p)r + p)^{-1} : p \in \operatorname{Du}(\mu) \}$ for every $0 < r \le 1$;

(ii)
$$g_r \hat{\mu} d_t \hat{\mu} + s g_r \hat{\mu} + (1-s) d_t \hat{\mu}$$
, where $t = rs/(1-s+sr)$ for every $s \in \text{Du}(g_r \hat{\mu})$.

Example 3.1. Let $\mu = \delta_0$. We have $\hat{\mu} \equiv 1$. Moreover,

(i)
$$Du(\delta_0) = (0, 1)$$
 and $d_n(\delta_0) = \delta_0$ for $0 ;$

(ii)
$$g_r(\delta_0) = \delta_0$$
 and $\operatorname{Du}(g_r(\delta_0)) = (0, 1)$.

Example 3.2. Let $\mu = \delta_1$ (see [5]). We have $\hat{\mu}(t) = e^{it}$. Moreover,

(i)
$$Du(\delta_1) = (0, 1);$$

(ii)
$$d_p(\hat{\mu}(t)) = \frac{p}{1 - (1 - p)e^{-it}}$$
 and $Du(d_p(\hat{\mu}(t))) = (0, 1 - p]$

for 0 ;

(iii)
$$g_r(e^{it}) = \frac{re^{it}}{1 - (1 - r)e^{it}}$$
 and $Du(g_r(e^{it})) = (0, 1)$ for $0 < r < 1$.

Example 3.3. Let $\mu=(1-p)\,\delta_0+p\delta_1$ (see [3]). We have $\hat{\mu}(t)=(1-p)+pe^{it}$. Moreover,

(i)
$$Du((1-p)\delta_0 + p\delta_1) = (0, p];$$

(ii)
$$d_w(\hat{\mu}(t)) = [(1-p) + pe^{it}] \frac{(w/p)e^{-it}}{1 - (1 - w/p)e^{-it}}$$
 and $Du(d_w(\hat{\mu})) = (0, w]$

for every $0 < w \le p$;

(iii)
$$g_r((1-p)+pe^{it}) = [(1-p)+pe^{it}] \frac{w}{1-(1-w)e^{it}}$$

where

$$w = \frac{r}{r+p-pr} = \frac{1-s}{1-p}$$
 and $Du(g_r((1-p)\delta_0 + p\delta_1)) = (0, p((1-p)r+p)^{-1}]$

for $0 < r \le 1$.

EXAMPLE 3.4. Let μ be an exponential law with the density function $p(x) = e^{-x} I_{(0,+\infty)}(x)$ (see [1]-[3]). We have $\hat{\mu}(t) = 1/(1+it)$. Moreover,

(i)
$$Du\left(\frac{1}{1+it}\right) = (0, 1);$$

(ii)
$$d_p\left(\frac{1}{1+it}\right) = T_{1/p-1} \frac{1}{1-it} \quad \text{and} \quad \operatorname{Du}\left(d_p\left(\frac{1}{1+it}\right)\right) = (0, 1)$$

for 0 ;

(iii)
$$g_r\left(\frac{1}{1+it}\right) = \frac{1}{1+it/r}$$
 and $\operatorname{Du}\left(g_r\left(\frac{1}{1+it}\right)\right) = (0, 1)$ for $0 < r \le 1$.

THEOREM 3.12. Let μ be a probability measure with $Du(\mu) = (0, 1)$ and let $Du(d_r(\mu)) = (0, 1)$ for some 0 < r < 1. Then μ is an exponential law.

Proof. We conclude from Corollary 3.10 that $\Re d_p(\hat{\mu}) \leq |d_p(\hat{\mu})|^2$. Consequently,

$$\frac{p|\hat{\mu}|^2 - p(1-p)\Re\hat{\mu}}{|\hat{\mu} - (1-p)|^2} \le \frac{p^2|\hat{\mu}|^2}{|\hat{\mu} - (1-p)|^2}$$

and, finally, $-\Re \hat{\mu} \le -|\hat{\mu}|^2$. This gives $\Re \hat{\mu} = |\hat{\mu}|^2$, and hence, by Theorem 1 of [6], μ is an exponential law.

THEOREM 3.13. Let $\mu \in \mathcal{D}$ be a probability measure such that $\operatorname{supp}(\mu)$ is bounded. Suppose that, for some $p \in \operatorname{Du}(\mu)$, $\operatorname{supp}(d_p(\mu))$ is also bounded. Then $\mu = \delta_0$ or $\mu = T_a((1-p)\delta_0 + p\delta_1)$ $(a \neq 0)$.

Proof. Let $\mu \neq \delta_0$. Suppose that $supp(\mu) \cap (0, +\infty) \neq \emptyset$. Set

$$a = \sup \sup (\mu)$$
 and $b = \sup \sup (d_{\nu}(\mu))$.

Since $\operatorname{supp}(\mu) + \operatorname{supp}(d_p(\mu)) = \operatorname{supp}(\mu) \cup \operatorname{supp}(d_p(\mu))$, we conclude that $a + b \in \operatorname{supp}(\mu) \cup \operatorname{supp}(d_p(\mu))$, which implies $b \leq 0$ and, finally, $\operatorname{supp}(\mu) \subset [0, +\infty)$ and $\operatorname{supp}(d_p(\mu)) \subset (-\infty, 0]$. An application of Theorem 1 of [8] now implies that $\mu = T_a((1-p)\delta_0 + p\delta_1)$.

The following result extends Theorem 4 of [8].

THEOREM 3.14. Let μ be a probability measure on R with $Du(\mu) \neq \emptyset$ and let $p \in Du(\mu)$. Then for every r > 0 with $2p-1 \leqslant r < p/(2-p)$

- (i) $d_{1-s^2}((d_r(\hat{\mu}))^2) = g_w(\hat{\mu}) d_p(\hat{\mu})$; in particular, $1-s^2 \in \text{Du}((d_r(\hat{\mu}))^2)$;
- (ii) $d_{s^2}(g_w(\hat{\mu}) d_p(\hat{\mu})) = d_r((\hat{\mu}))^2$; in particular, $s^2 \in \text{Du}(g_w(\hat{\mu}) d_p(\hat{\mu}))$, where

$$s = \frac{r(1-p)}{p-r}, \quad w = \frac{p-2r+pr}{(1-p)(1-r)}.$$

Proof. We have

$$r = \frac{ps}{1+s-p}$$
, $w = \frac{r(1-s)}{s(1-r)}$ and $p = \frac{r(1+s)}{r+s}$.

First we show that $r \le s < 1$ and $2p-1 \le s$. Since r(2-p) < p, we see that r-rp < p-r, which implies s < 1. Moreover, we have $p-r \le 1-p$. Hence $1 \le (1-p)/(p-r)$, and thus $r \le s$. The inequality $2p-1 \le r \le s$ is obvious. Since

$$(d_r(\hat{\mu}))^2 = \left\lceil \frac{r\hat{\mu}}{\hat{\mu} - (1-r)} \right\rceil^2,$$

we conclude that

$$\begin{split} d_{1-s^2}(d_r(\hat{\mu}))^2 &= \frac{(1-s^2)\left[r\hat{\mu}/(\hat{\mu}-(1-r))\right]^2}{\left[r\hat{\mu}/(\hat{\mu}-(1-r))\right]^2 - s^2} = \frac{(1-s^2)r^2(\hat{\mu})^2}{(r\hat{\mu})^2 - s^2(\hat{\mu}-(1-r))^2} \\ &= \frac{(1-s^2)r^2(\hat{\mu})^2}{\left[r\hat{\mu}-s(\hat{\mu}-(1-r))\right]\left[r\hat{\mu}+s(\hat{\mu}-(1-r))\right]} \\ &= \frac{(1+s)r(1-s)r(\hat{\mu})^2}{(s(1-r)-(s-r)\hat{\mu})((r+s)\hat{\mu}-s(1-r))} \\ &= \frac{r(1-s)\hat{\mu}}{s(1-r)-(s-r)\hat{\mu}} \frac{(1+s)r\hat{\mu}}{(r+s)\hat{\mu}-s(1-r)} = g_w(\hat{\mu})d_p(\hat{\mu}). \quad \blacksquare \end{split}$$

COROLLARY 3.15. Let μ be a probability measure on \mathbf{R} with $\mathrm{Du}(\mu) \neq \emptyset$ and let $p \in \mathrm{Du}(\mu)$. Then

- (i) if p > 1/2, then $d_{(2p-1)^2}(\hat{\mu}d_p(\hat{\mu})) = (d_{2p-1}(\hat{\mu}))^2$;
- (ii) if p < 1/2, then $d_{(2p-1)^2}(\hat{\mu}d_p(\hat{\mu})) = (g_{(1-2p)/(2(1-p))}(\hat{\mu}))^2$.

In particular, if $p \neq 1/2$, then $(2p-1)^2 \in \operatorname{Du}(\hat{\mu}d_p(\hat{\mu}))$.

Proof. (i) Let p > 1/2. Let us write r = 2p - 1. Hence s = r and w = 1. We have

$$d_{1-(1-2p)^2}(d_{2p-1}(\hat{\mu})^2) = \hat{\mu}d_p(\hat{\mu}).$$

(ii) Let p < 1/2. Hence 1 - p > 1/2 and $1 - p \in Du(d_p(\hat{\mu}))$. Thus

$$d_{1-(1-2n)^2}(d_{1-2n}(d_n(\hat{\mu}))^2) = \hat{\mu}d_n(\hat{\mu}). \blacksquare$$

Summing up, we have the following

Theorem 3.16. Let $\mu \in \mathcal{D}$. Then

- (i) $\{T_a \mu\}_{a \in \mathbb{R}} \subset \mathcal{D}$;
- (ii) $\{d_p(\mu)\}_{p\in \mathrm{Du}(\mu)}\subset \mathscr{D};$
- (iii) $\{g_r(\mu)\}_{0 < r < 1} \subset \mathcal{D};$
- (iv) if $Du(\mu) = (0, 1)$, then $\{(d_r(\mu))^2\}_{0 < r < 1} \subset \mathcal{D}$;
- (v) if $Du(\mu) = (0, p]$ for some $0 , then <math>\{(d_r(\mu))^2\}_{0 < r < p/(2-p)} \subset \mathcal{D}$;
- (vi) $\{\mu * d_p(\mu)\}_{p \in \mathrm{Du}(\mu) \setminus \{1/2\}} \subset \mathscr{D}$.

Proof. The theorem follows from Corollaries 3.2, 3.4 and 3.15 and Theorems 3.11 and 3.14. ■

Example 3.5. Since $\mu = \delta_1 \in \mathcal{D}$, we have

(ii)
$$\frac{pe^{i2t}}{e^{it} - (1-p)} \in \mathscr{D} \quad \text{ for } 0$$

Example 3.6. Since $\mu = (1-p)\delta_0 + p\delta_1 \in \mathcal{D}$, we have

(i)
$$[(1-p)+pe^{it}]^2 \left(\frac{we^{-it}}{1-(1-w)e^{-it}}\right)^2 \in \mathscr{D} \quad \text{for } 0 < w < (2-p)^{-1};$$

(ii)
$$[(1-p)+pe^{it}]^2 \frac{we^{-it}}{1-(1-w)e^{-it}} \in \mathcal{D}$$
 for $0 < w \le 1$, $w \ne 1/(2p)$;

in particular,

$$(1-p)^2 \delta_{-1} + 2p(1-p)\delta_0 + p^2 \delta_1 \in \mathcal{D}$$
 for $p \neq 1/2$.

EXAMPLE 3.7. Let μ be an exponential law with the density function $p(x) = e^{-x} I_{(0,+\infty)}(x)$. Since $\mu \in \mathcal{D}$, we have

(i)
$$\frac{1}{1 + (2p-1)it + p(1-p)t^2} \in \mathcal{D}$$
 for $0 ;$

(ii)
$$\left(\frac{1}{1+it}\right)^2 \in \mathscr{D}.$$

REFERENCES

- [1] D. Dugué, Sur les fonctions méromorphes transformées Fourier de fonctions monotones, C. R. Acad. Sci. 208 (1939), p. 1547.
- [2] D. Dugué, Arithmétique des lois de probabilités, Mém. Sci. Math. 137, Gauthier-Villars, Paris 1957.
- [3] L. Kubik, Sur un problème de M. D. Dugué, Comment. Math. (Prace Mat.) 13 (1969), pp. 1-2.
- [4] H. J. Rossberg, Characterization of the exponential and the Pareto distributions by means of some properties of the distributions which the differences and quotiens of order statistics are subject to, Math. Operationsforsch. Statist. 3 (1972), pp. 207-216.
- [5] D. Szynal and A. Wolińska, On classes of couples of characteristic functions satisfying the condition of Dugué, Comment. Math. (Prace Mat.) 23 (1983), pp. 325-328.
- [6] S. Vallander, I. Ibragimov and N. Lindtrop, On limiting distributions for moduli of sequential differences of independent variables (in Russian), Teor. Veroyatnost. i Primenen. 14 (1969), pp. 693-707.

- [7] A. Wolińska, On a problem of Dugué, Lecture Notes in Math. 982, Springer, Berlin 1982, pp. 244-253.
- [8] A. Wolińska-Wełcz, On a solution of the Dugué problem, Probab. Math. Statist. 7 (1986), pp. 169-185.

Institute of Mathematics Wrocław University pl. Grunwaldzki 2/4 50-384 Wrocław, Poland E-mail: krakow@math.uni.wroc.pl

Received on 16.12.2002