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1. INTRODUCTION

Let us consider a problem from the domain of arithmetics of probability
measures given by Dugué (see [1], [2], p. 21). He was interested in finding
couples (uy, u;) of probability measures satisfying the equation
(1) By* Py =S p+3ps.

A more general setting of the Dugué problem is contained in the question on
couples (u;, u;) of probability measures for which the condition

V3] Ur* iy = pu+(1—p)p, O0<p<l,

holds (see [3]).

Some examples of couples of probability measures satisfying (2) can be
found in [1], [3], [7], and [5]. Equation (2) with u, = ji; was discussed in [6]
and equation (2) with supp (u,) = (— o0, 0] and supp(u,) = [0, + o0) was con-
sidered in [4] and [8].

2. PRELIMINARIES

Let d,: C\{1-p} >C, 0<p<1, be a function defined by the formula

__pz ___ pl-p
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and let g,: C\{1/(1—r)} > C, 0 <r < 1, be a function defined by the formula

rz
4 =
@ 0 = 1=
Functions d, and g, have the following properties.
LemMmA 2.1. (i) dyd, =d,d;=g,, for 0 <s,t <1 with s+t <1, where

st

Y=oy —o -

(i) 9:g5 = gsdi = gut for 0 <5, t< 1. _
(iii) d¢g; = d,,, where w = st/(1—s+ts) for 0 <s,t < 1.

Proof. (i) Since

stz
_ tz _ z—(1-1)
4d(2) = d, (z—(l—t)) R
—a—p 479
stz stz

T —(1—9)(—(1-1) (-9I-0)+G+t—1)z

we have d.d, = d,d;.
If 0 <s+t<1, then dyd, = g,, where w = st/((1—s)(1—¢)).
(i) We have

stz
_ tz _ 1-(1-9z
59 =9\1_"(1—9z) " . (1—-9)iz
1—(1-9z
_ Stz _ stz _
T1-(—fz—(—9)z 1—(1—spz v
(iii) Since
‘ tz
dsg, = d, (1 —(l—t)_z)
stz
_ 1-(1-9)z _ stz _ stz
&z T z—(1-s)(1—-(1—z) (A—s+is)z—(1—s)
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and
tsz stz
gdu(2) = td(z) _ z—(1—5) _ z—(1—y)
e 1—((1—1)d,(2)) 1_(L4hz (1—(1—t)s)z—(1—s)
Z—-(l—S) z—-(l—s)

_ stz
T (—s+ts)z—(1—s)

we have d;g, = g, d;, = d,,, where w =st/(1—s+1ts). m
CoRrOLLARY 22. (i) If 0<r<p< 1, then

_ _r(d-p)
d,=g.d,, where S_p(l—r)'
() If 0<p<s<l, then
_ _p(1—y)
dy_sd, = grs where r = a—p)s
(i) If0<p<s<land O<v<s<1, then
pr(1—5s)

d,d_,d,=d,, wherew= and 0 <w<p.
P

S—uvs—ps+uvp
(iv) dydi—p,=1.
Proof. (i) Since ps/(1 —p+sp) =r, Lemma 2.1 (iii) shows that d, = g,d,,.
(ii) Since p+(1—s)< 1, by Lemma 2.1 (i) we have d,_.d, = g,, where
r=p(—s)(1-p)s.
(iii) The equality d, —,d, = g,, where r = p(1—s)/(1—p)s, follows from (i).
The assertion (ii) implies d, g, = d,, where t = vr/(1—v+rv). Hence d, d, _,d, =
d,g, = d,, where

vp(1—s)
‘o ur (1—p)s _ vp(1—3s)
Cl—v4r vp(1—s) (1—v)(1—p)s+vp(1—s)
1—v
(—p)s
vp(l—s) v(1—5s)

= = < p.
s—vs—ps+up pu(l—s)+(s—v)(1—p) p-m

LemMMa 2.3. A function d,, 0 < p <1, has the following properties:
(@) if d,(x) = x, then xe{0, 1};
(i) a function d, satisfies a functional equation of the form

) #f (2) = pz+(1—-p) £ (2);
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(iii) a function d, is an injection, d,(C\{1—p}) = C\{p};

() dy ' =dy_p;

(v) d,(R\{1-p}) = R\{p};

(vi) d, is an increasing function on (— oo, 1—p) and (1—p, + o).
The proof is immediate, and thus is omitted.

LemMA 24, Let A, = {z: |z| <1, |d,(2)| < 1}. Then

(6) 4, ={z: 121 <1, 2Rz < (1-p)+(1 +p) 21}

and ' B
Y A,nR=[-1,1-p)/1+pIufl}.
Moreover,

(1) dp(Ap) = Al—p;

@) {z: |z = 1} = 4,;

(i) if |zl =1 and |d,(z)| = 1, then z=1;

@iv) d,([—1, 01) = [0, p/2—p)] and d,([0, (1—p)/1+p)]) = [—1, 0.

Proof. Let z=a+ib. Since |d,(z)] < 1, we see that |pz;| < |z;—(1—p)|,
which implies

p*(@*+b?) < (a—(1—p))*+b* = a>—2a(1—p)+(1 —p)*+ b2,

and thus

0< —2a+(1-p)+(1+p)(@*+b?). &

COROLLARY 2.5. Let O0<p< 1. Suppose that the numbers z,,z,€
Cllz4] < 1, |z2] < 1) satisfy the equation

® Z1 25 = pz1+(1—p) z,.

Then

(i) zy # 1—p and z, # p;

(ii) z, = PZ1/(21 —(1 —P)) and z; = (1—p)z,/(z2—p);

(i) 2Rz; < (1 —p)+(1+p)|zs/%

(iv) if {z1, 22} "R # D, then z,, z,€R and exactly one of the following
conditions is satisfied:

® z; =2z, = 1;

e z; =z, =0;

o 2,2, <0; in fact: either z;€(0, 1—p)/(1+p)] and z,e[—1,0) or
z;€[—1,0) and z,€(0, p/2—p)].

The next proposition will be used in the sequel.
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PROPOSITION 2.6. Let u be a probability measure on R and 0 < r < 1. Then

(i) a measure rZ:’:O(l —r)" u™, where u*° = 8o, has a characteristic func-
tion of the form

r

9 —_— .
® Y
(i) @ measure pxpy . (L—p)"u™, where w® = 3o, has a characteristic
function of the form
. ri -
10 S () =
The proof is immediate.

For every probability measure z on R we denote by g, (1) (0 < r < 1) the
probability measure with the characteristic function g, ().

3. THE DUGUE PROBLEM

First we prove the following lemma.
Lemma 3.1. Let u,, u, be probability measures and 0 < p < 1. Then the
following conditions are equivalent:
() py*py = pps +(1—p)us, ie. the couple (uy, ) is a solution of the
equation (2);
(i) A, # 1—p and d,(ji,) is a characteristic function;
(iii) 4, # p and dy_,(fi;) is a characteristic function.

The proof is obvious.

For every probability measure y on R we define
1) Du(y) = {pe(©, 1): u*v = pu+(1—p)v for some v}.

The class of probability measures g on R with Du () # @ will be denoted by 2.
For every probability measure ue2 we denote by d,(u) (peDu(y)) the
probability measure with the characteristic function d, (/).

COROLLARY 3.2. Let u be a probability measure on R. Then, for every
aeR\{0},

Du () = Du(T, ().

COROLLARY 3.3. Let u be a probability measure on R and 0 < p < 1. Then
the following conditions are equivalent:

(i) peDu(p);
() 2 #1—p and d,(f) is a characteristic function.

7 — PAMS 23.1
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COROLLARY 3.4. If peDu(u), then 1—peDu(d, () and
(12) fid, () = pfi+(1—p)d,(f).

COROLLARY 3.5. Let u be a probability measure on R. Then pe 9 iff there
exist a probability measure v on R and 0 < p <1 such that

(13) = ve(p~ p—(p~ = 1)).
Moreover, v =d,(y).

LEMMA 3.6. Let u be a probability measure on R with Du(u) # O and let
peDu(y). Then exactly one of the following statements is satisfied:

() p and d,(u) are absolutely continuous; .

(i) p and d,(p) are singular,

(iii) # and d,(p) are discrete.

Moreover, if u is a lattice law given on the same lattice L with the origin as
a lattice point, then d,(u)(L) = 1.

Proof Lemma 3.6 follows from Coroilary 2.5. &

Lemma 3.7. Let p be a symmetric probability measure on R with
Du(u) # 9. Then, for every peDu(y), p = d,(u) = do.

Proof. Let peDu(u). Since fi-d,(f) = pfi+(1—p)d, (&), Corollary 2.5 im-
plies p=d,(y) = do. m

LEMMA 3.8. Let ue2 be a probability measure with supp (11) < [0, + o).
Assume that, for some peDu (p), supp(d, (1)) = [0, + ). Then p = d,(u) = .

Proof. By means of the Laplace transforms
b1(t) = e m@dx), ¢2(0)=[e "d,Widx), >0,
(4] 0

the condition (2) can equivalently be expressed by
¢1(0) 92 (t) = pd1 (D+(1—p) $2(9).

Since ¢;(t) > 0, Corollary 2.5 implies u = d,(u) = do. See also the proof of
Theorem 2 of [8]. =

THEOREM 3.9. Let p be a probability measure on R. Then one of the fol-
lowing statements is satisfied:
(i) Du(p) =9;
(if) Du () = (0, 1);
(iii) Du(y) = (0, p] for some 0 <p < 1.

Proof. Let peDu(y) and 0 <r < p. By Corollary 2.2 there is d, = g, d,,
where s = r (1 —p)/p(1—7r). An application of Proposition 2.6 now implies that
gsd, (i) = d.(j1) is a characteristic function. Hence reDu ().
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Let (p,) = Du(u) be an increasing sequence with lim, ., , p, = p < 1. Since
pn€Du(y), we conclude that i(R) < 4,. Hence Lemma 2.4 implies g(R)nRc
[—1, A—p)/1+p)]u{1} for every n. Thus

AR)NR<[-1, (1-p)AL+pJu{l}.

In particular, g # 1—p, which implies
lim d, (8) = d, (3.

Since d,, (/1) is a continuous function, we conclude that one is a characteristic
function, and thus peDu(p). =

COROLLARY 3.10. Let u be a probability measure on R with Du (i) # O. Then
(i) if Du(y) = (0, 1), then

Ra<|g® and {4@): teR}nR<[—1,0]u{l};
(i) if, for some 0 < p <1, Du(p) = (0, p], then
Ri < 3HA-p)+(1+p)Ia’)

{a@®): teR}nR<[—-1,(1-p)/1+pJu{l}.

THEOREM 3.11. Let u be a probability measure on R. Then Du(u) # @ iff,
for some (every) 0 <r <1, Du(g,(n)) # D and

(14) Du(g, ) = {p((1-p)r+p) ': peDu(w}.
In particular,

(i) Du(w) = (0, 1) iff Du(g, (W) = (0, 1) for every (some) 0 <r < 1;

(ii) Du(u) = (0, p] for some 0 < p < 1 iff for every (some) 0 <r < 1 there
exist 0 <3, <1 with Du(g,(#) = (0, s,]. Moreover, s,(1—p)r+p)—p =0.

Proof We show that Du(g, 1) = {p((l—p)r+p)_1: peDu(u)} for every
O<r<l1.
Let peDu(y). Hence 1—peDu(d,(4)). Define

s=—P

(I1-p)r+p
Since p<s by Theorem 3.9, we have 1—seDu(d,(4), which implies
seDu(d,—,d,(#). We have d,_;d, = g,. In particular, if Du(y) # @, then

Du(g, i) # ©.
Let Du(g, /i) # @ and seDu(g, ji). Hence 1—seDu(d,g,(j)). Set

s
T 1+rs—s

and

P

This gives s = p/((1—p)r+p). Since p < 5, we conclude that d, _,d, = g,, and
thus d,(f) = g,d,(fi) is a characteristic function. In particular, pe Du(f). =
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Let us give some examples of measures p with Du (1) # &. We remark that
if ue, then

(i) 9,2 and Duf(g, fi) = {p((l—p)r+p)—1: peDu(w)} forevery 0 <r < 1;

(i) g, Ad, i+ sg, fi+(1—s)d, i, where t = rs/(1 —s+sr) for every se Du(g, fi).

ExampLE 3.1. Let = 8,. We have ji = 1. Moreover,
(@) Du(do)=(0,1) and d,(6p) =00 for 0<p<1;
(ii) . g.(60) =08, and Du(g,(5)) = (0, 1).

ExampLE 3.2. Let u= 6, (see [5]). We have fi(t) = ¢”. Moreover,
® Du(é,) = (0, 1);

(i) d, (@ (1) =ﬁﬁ and  Du(d,(2()) = ©, 1~p]

for 0<p<1;

(iii) g,(€") = iTIe;_rﬁﬁ and Du(g,(¢9)=(0,1) for 0<r<1.

ExAMPLE 3.3. Let u = (1—p)do+pd, (see [3]). We have (1) = (1—p)+pe".
Moreover, '

() Du((1—p)do+pds) = (0, p;

. SN i (wip)e™® N

(11) dw (ﬂ.(t)) - [(1 —P)+Pe ] 1__(1 _w/p)e—it al’ld Du(dw(au)) - (Oa W]
for every 0 <w < p;

i) 0:((1=p+pe") = [ =)+ Pl =

where
r —
w = =
r+p—pr 1-—p

and Du (g,. ((1 —D) o +p51)) = (0, D ((1 —D) H‘P)il]

for 0<r<1.

ExaMPLE 3.4. Let u be an exponential law with the density function
p(X) =e"*Ip, +u)(x) (see [11-[3]). We have fi(t) = 1/(1+4it). Moreover,

. 1
@) Du (m) =(0, 1);
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(ii) 1\ 1 1)
dp (I_—I-lfj) = Tl/p—li——_it and Du (dp (—1 +lt)) = (O, 1)

for 0<p<1;

1 1 1
= —]=(0,1 < 1.
(i) g,( 1+it) T+ir and Du(g,( 1+it>> ©0,1) forO<r

THEOREM 3.12. Let u be a probability measure with Du(u) = (0, 1) and let
Du(d, (@) = (0, 1) for some O <r < 1. Then p is an exponential law.

Proof. We conclude from Corollary 3.10 that Rd, (4) < |d, (@) Conse-
quently, ' .

plﬁlz—p(l—p)iﬁﬂ< Pl
lA—(1—p)? li—(1—p)?

and, finally, — R < —|A|. This gives Rji = |fi|?, and hence, by Theorem 1 of
[6], u# is an exponential law. &

THEOREM 3.13. Let ue2 be a probability measure such that supp (u) is
bounded. Suppose that, for some peDu (), supp(d, (1) is also bounded. Then
p=20¢ or p="T,((1—p)do+pdy) (a #0)

Proof. Let u # §,. Suppose that supp(u)n(0, +o0) # B. Set
a=supsupp(i) and b = supsupp(d,(w).

Since supp (1) +supp (d, (1)) = supp () supp (d, (1)), we conclude that a+be
supp () wsupp (d, (1)), which implies b <0 and, finally, supp (y) < [0, + o)
and supp(d, () =(— o0, 0]. An application of Theorem 1 of [8] now implies
that = T, ((1—p)do+pdy). m

The following result extends Theorem 4 of [8].

THEOREM 3.14. Let u be a probability measure on R with Du(u) # @ and
let peDu(u). Then for every r >0 with 2p—1<r<p/2—p)
() dy_s2 ((d, (ﬁ))z) = gw (@) d,(d); in particular, 1 —s*eDu ((d, (ﬂ))z);
(i) (g, (8)dp (@) = &, (D); in particular, s* € Du(g, (2)d, (2)), where
r(1-p) p—2r+pr
s= , W=
p—r (1-p)d-r)

Proof We have

ps _r(l—ys) and =r(1+s)

r=1+s—p’ W_s(l..—r) P
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First we show that r < s < 1 and 2p—1 < s. Since 7 (2—p) < p, we see that
r—rp < p—r, which implies s < 1. Moreover, we have p—r < 1—p. Hence
1<(—p)(p—r), and thus r <s. The inequality 2p—1 <r < s is obvious.

Since
A2 rp 2
w0 = | =i

A-=s*)[ra/(a—-Q —T))] i (A—s)r? @3
[ri/(a—Q1—1)]* —s (Tﬁ)2 —s*(a—(1—n)*
3 (1=5)r @
[rﬁ—s(ﬁ——(l —r))] [rﬁ +s(ﬁ—(1 —r))]
_ A +s)r(1—s)r(i)?
(sA=n—G—nA)(e+9 i—s(1—7)
_r-94  (+9m
T s(l=n)—(—1A @+ i—s(1-7)
COROLLARY 3.15. Let u be a probability measure on R with Du (1) # @ and
let peDu(u). Then
@) if p> 1/2, then diyp— 1y (fid, (8)) = (d2p-1 (ﬁ))z;
(i) i p < 1/2, then dizp-1y2 (4d, (D) = (91 - 251201 -y (D)’
In particular, if p # 1/2, then (2p—1)* € Du(dd, (4)).

we conclude that

dl sz(d( ))

= Gw (ﬁ) dp (ﬁ) a

Proof. (i) Letp > 1/2. Let us writer = 2p—1. Hence s = rand w = 1. We
have :
d1 ~(1~2p)2 (de— 1 (ﬁ)z) = ﬂdp (ﬁ)
(i) Let p < 1/2. Hence 1—p > 1/2 and 1—peDu(d,(f)). Thus
di—(1-2pp2 (d1—2p (dp(ﬁ))z) = jid, (fi). m
Summing up, we have the following

THEOREM 3.16. Let uc 2. Then

(1) {T; I"'}aeR = @,
(11) {dp (ﬂ)} peDu(u) <9 ’
(lil) {gr (ﬂ)}0<r<1 < -@,
@(iv) if Du() = (0, 1), then {(d, (W)*}o<r<1 = D;
(v) if Du(u) = (0, p] for some 0 < p < 1, then {(d,(W)*}o<r<piz-n < Z;
(vi) {p*d, (1)} pepugunir/zy < 2-
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Proof. The theorem follows from Corollaries 3.2, 3.4 and 3.15 and Theo-
rems 3.11 and 3.14. =

ExamPLE 3.5. Since p = 4d,€2, we have

: p* :

(@) 1—2(1—p)e_"‘+(1—p)2e'2"‘€@ for 0<p<1;
pei2t

ii —_— for 0 1/2.

(ii) e"—(l—p)eg or0<p<l1,p#1/

ExamPLE 3.6. Since u = (1—p)do+pd, €2, we have

: 1 ir2 we_it 2 g f 0 2 -1,

@ [(1 —p)+pe] T—a—we) © or 0<w<Q2-p);

G [(-p+ P " 5 forO<w<l, we 1/2p);
1-(1—w)e™®

in particular,
(1=p)*6_1+2p(1—p)6o+p*6,€2 for p# 1/2.

ExampLE 3.7. Let u be an exponential law with the density function
p(x) =€ "I, +0)(x). Since peP, we have

. 1
® 1+2p—Dit+p(l—p)

e
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