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Abstract. We analyze the asymptotic behaviour of the tapered
discrete Fourier transforms for random fields with singular spectrum.
The results are used to establish consistency and asymptotic normality
for semiparametric estimates of the singularity parameter under broad
conditions.
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1. INTRODUCTION

Let Ul(ty, t3, t3) = (U1 ("), ..., Up(*)) be a wide-sense homogeneous and
isotropic random field defined on the lattice Z* and taking values in R?, pe N.
| Let {f(A, 1, V)}gh=1,..., denote the spectral density matrix. In this paper, we
shall be concerned with random fields such that the component functions f, ()
satisfy, for some ¢ > 0,

(11)  fu(@) = Loy (lolllol**™  for |loll <e, —3/2 <oy o <3/2,

where w = (4, p, v), ||-|| denotes Euclidean norm, and L, (||wl]) is a complex-
-valued scalar function whose modulus is bounded and bounded away from
zero at the origin. Throughout the paper, the exact form of L, (Jjw]|[} is assumed
to be unknown. We write oy, for a,+ay; thus

0 for a,, >0,

Illillln Jaa(@) =<4 Ly (@) >0 for o, =0,
w||—=0

0 for oy, <0.
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Hence we say that the random field U (t,, t,, t3) has singular spectrum, i.e. it is
long-range dependent for a,, # 0 and some g; the condition a,, > —3 is needed
to ensure integrability of the spectral density, and hence wide-sense homo-
geneity of the field. U(-) may represent a scalar density field for p=1 or
a vector velocity field for p = 3. The equality (1.1) implies that U (-) is isotropic,
which is a standard assumption in the vast majority of physical applications.

Random fields with spectral singularities are now known to arise in many
cases of interest. Albeverio et al. [1] and many subsequent authors have stud-
ied the asymptotic behaviour of solutions for Burgers’ nonlinear differential
equation in three dimensions, as motivated in particular by the @nalysis of the
distribution of self-gravitating matter in the late stages of the Universe. In
particular, Albeverio et al. [1] have shown heuristically that in the absence of
long-range dependent behaviour these models imply that the density of matter
is asymptotically uniform — an implication utterly contradicted by astronomi-
cal data (see Shandarin and Zeldovich [22] and the references therein), where
the presence of large voids and intermittent structures (Voronoi tessellations) is
firmly established (see also Funaki et al. [5], Molchanov et al. [17], Leonenko
and Woyczynski [13]. In fact, in the astrophysical literature on matter dis-
tribution (1.1) with p =1 and a close to unity is often taken for granted, for
instance by the highly popular Harrison—Zeldovich model (Peebles [18]). In
the same context, Shandarin and Zeldovich [22], p. 205, mention six alter-
native proposals for f(w), all of them satisfying (1.1) with « > 0. Many other
stochastic models outside Burgers’ turbulence can produce long-range depen-
dent behaviour in random fields; for instance, fractional and non-fractional
diffusion-wave equations producing spectral singularities are considered by
Anh et al. [2], Anh and Leonenko [3], [4] and others, with applications
including wave diffusions in porous media, nonlinear acoustic shock waves and
other types of irrotational flow. In all these cases the exact form of the spectral
density can be quite complicated or even not yet known, depending on as many
as sixteen parameters in some cosmological models, however typically (1.1)
does hold around the origin.

In the time series case, statistical inference and its mathematical foun-
dations in the presence of long-range dependence have now been investigated
in great detail, under both parametric and semiparametric conditions. On the
other hand, although the probabilistic literature in the random field case has
now reached a high level of sophistication, statistical inference procedure have
not been developed to the same extent as for time series. The main references
are Heyde and Gay [8], Leonenko and Woyczynski [14], [15], Ludena and
Lavielle [16], each of these authors considering, under different assumptions,
a fully parametric specification over the whole frequency band. Therefore, it
seems that semiparametric procedures, which impose only the milder condition
(1.1), i.e. which make assumptions only on an arbitrary small neighbourhood
around zero frequency, have largely been neglected in the random field case.
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Nevertheless, data sets which are candidates for long-range dependent behav-
iour (like catalogs of galaxy redshifts in the astronomical context) are often
characterized by an extremely high number of observations. Hence it can be
computationally very hard to implement fully parametric estimates, which are
typically not available in closed form and require lengthy iterations. More
important, a full-band model entails by necessity a number of assumptions and
approximations whose validity can be questioned, while many of them need
not be necessary for the analysis of the behaviour of the system at the largest
scale. The presence of observational error, moreover, can add a white noise
additive component in the spectral density of the observables, so—that a full
band model may be misspecified, whereas (1.1) may still be valid, at least for
negative a. It is also important to remark how most physical models are devel-
oped for continuous parameter fields, whereas observations are usually availa-
ble on a lattice like Z3. Discretization procedures have a complicated nonlinear
effect on the spectral density, which is often difficult to pin down exactly,
especially as data collection is in many cases beyond the control of the statis-
tician. The most common discretization procedures, however, such as neigh-
bourhood smoothing or grid sampling, do not have effects at zero frequency,
except at most some rescaling in the constants, and this provides in our opin-
ion one further reason to favour local-to-zero specifications such as (1.1). The
parameter « is often of considerable interest by itself; for instance, many geo-
metric functionals of random fields commonly used as model checking devices
are well-known to have asymptotic distribution depending only on o and L (0),
see Ivanov and Leonenko [9]. Finally, estimates of « can be used as the bench-
-mark to discriminate between alternative models, such as different inflationary
scenarios for the very early Universe (Kolb and Turner [10]).

The purpose of this paper is to develop a semiparametric procedure for
statistical inference on the long-range dependence parameters o, imposing only
local-to-zero conditions. Our basic idea is to extend to the random field case
the Whittle semiparametric procedure considered for long-range dependent
time series by Kiinsch [11] and Robinson [21]. As many semiparametric meth-
ods, Whittle estimates rely only on the information at the smallest frequencies,
and therefore have asymptotic efficiency zero with respect to procedures based
on a correctly specified parametric model. In the presence of misspecification of
the high-frequency component, however, a parametric model will generally
lead to inconsistent estimates, whereas semiparametric procedures have robust-
ness properties that seem desirable. Moreover, the loss of asymptotic efficiency
seems acceptable in many random fields contexts, where data sets candidate for
long-range dependent behaviour are often characterized by an extremely high
number of observations (e.g. the ongoing Sloan Digital Survey on stellar dis-
tribution aims at mapping the position of more than 10° galaxies). Finally, from
the computational point of view the procedure we advocate seems extremely
convenient, requiring minimization of a globally concave univariate function,
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a task which can be easily accomplished by several well-known optimization
routines.

The plan of the paper is as follows. In Section 2 we establish some results
of independent interest on the asymptotic behaviour of the discrete Fourier
transform of the vector field U (-). This material extends to the random field
case analogous results by Robinson [20] and Velasco [24], and we believe it
may find applications in other semiparametric inference procedures in the pres-
ence of spectral singularities. In Section 3 we focus more directly on statistical
inference; in particular, we apply the results of Section 2 to the analysis of the
Whittle semiparametric estimates, for which we prove consistency and asymp-
totic Gaussianity. Most proofs are rather lengthy and thus collected separately
in Sections 4 and 5. In the sequel, we use C to denote a generic constant whose
value may vary from line to line.

2. ASYMPTOTIC BEHAVIOUR
OF THE DISCRETE FOURIER TRANSFORMS

For technical reasons, we need to strengthen (1.1) slightly and impose
some additional smoothness condition; more precisely, we shall assume that

AssuMPTION A. There exist ¢ > 0 such that, for ||w|| < &, (1.1) holds, where
L, (flwl]) is differentiable with derivatives Hoélder continuous of degree f—1 for
1<f<2,9g=1,...,p

Assumption A is a mild local smoothness condition which covers most
parametric models so far considered in the applications; note that we are only
considering the terms on the main diagonal of the spectral density matrix,
which are real valued. We stress that, as in Robinson [20], [21], no condition
whatsoever is imposed throughout the paper on f (w) outside a neigbourhood
of the origin, except of course integrability which is implied by wide-sense
homogeneity. The condition f < 2 is only convenient for notation, as any
function such that Assumption A holds with f > 2 would obviously satisfy
Assumption A with § =2 also.

Define by

fgh ()
/Jaa (@) frn (@)

the coherency of the field. For some results in the sequel, we need a further
regularity condition on the behaviour of the cross-spectral density at the origin,
namely,

AssUMPTION A’. Assumption A holds and there exists ¢ > 0 such that, for
lleoll < &,

R (|leol]) =

dReR,y(llol)) dIm Ry, el _

_ -1
(2.1) Al TR | O (loll ™).
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By the Cauchy-Schwarz inequality, R, (||w|]) is bounded in modulus by
unity, so Assumption A’ is requiring little more than differentiability in a neigh-
bourhood of the origin; note that (2.1) holds trivially for g = h, as in this case
the left-hand side is identically zero.

Now assume we have a sample of dimension n, x n, x n; from the random
field U(-), i.e. we have observed U,(ty, t2, t3) for 1<t;<my, i=1,2,3,
g=1,...,p. Define the row vectors t = (t1, t2, t3), Wy = (4;, px, v1), where
Aj, W, v represent Fourier frequencies, ie. (omitting for notational simplicity
any reference to ny, n,, nj)

2y 2nk 2nl
Ay =— =— =—;
J ny ’ M n, ] Vi ny
and the tapered discrete Fourier transforms
ni,n2,n3
(2.2) WgT (CD]M) =H" 1 Z ht Ug (t) exp {ltm}k,} .
11,62,t3=1
(23) H= [(2";)3 Hm an Hn;]llzs Hn = Z h:%:
u=1

h,=h, h;, h,, rebresenting the taper (or convergence factor); the untapered di-
screte Fourier transform clearly corresponds to h,, =1, j =1, 2, 3. Likewise,
we define the tapered (cross-) periodogram :

I Z;. (@) = Wg (wjkl) Wiy (wjkl)a
the bar denoting complex conjugation, whence
El gTh (0) = EW; (0j2) Wi (w5)
ny,n2,n3 ny,n2,n3

=H?* Y Y [exp{it—s)(0m—0)} f(w)dw

t1,2,t3 S1.52,83

= l Ky (01— ) fon (@) dw

for T=[—m, n)?, s = (51, S2, 53), KnT(wjkt—w) = KnT1 (/‘Lj_'l)K:; (Hk—ll)KZ;(Vt—V),
and

|3 e,

KO =g |2

Tapering is a well-known bias reduction technique, which is useful, but not
strictly necessary, in the frequency domain analysis of long-range dependent
time series. It becomes mandatory when random fields are considered, indeed it
is known that, due to edge effects, the untapered periodogram is second-order
biased even in the independent and identically distributed (i.i.d.) case, see Guyon
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[6] or Ludena and Lavielle [16] for details. In this paper, following Velasco
[24] and for convenience of computations we shall always use the asymmetric
cosine bell taper, i.e.

1 21u 3n
h, = 5(1 —Cos I:_n_:D’ H,= 3

With this choice KT (£) integrates to one, it is even, positive and satisfies (Han-
nan [7], p. 265)

@4  splKI@=OGmin{m n %), -n<i<n
3

Other choices of tapers satisfying (2.4) are possible, but the cosine bell taper has
the nice property to factorize the discrete Fourier transform as

T N3+ kD — (LR
(2.5) Wy ((Djkl) = Z (—7) 10D =G ) Wy (wj’k’l’)s
=l Jk* =k, =1 < 1
where w,(wy,) corresponds to the discrete Fourier transform in the untapered
case, and we define

IG, k, D=, k', D = [ —jl+ 1k — k| + 11" —1.

Hence the cosine bell taper has the orthogonality property when at least one of
the coordinates is two or more fundamental frequencies further away, which is
clearly convenient for many proofs.

In the sequel, we shall need three user-chosen bandwidth parameters m;,
ie. three positive integers m; = m(n;), i = 1, 2, 3, non-decreasing with n;; we
write N = (nq, n,, n3), M = (my, m,, mz), and we assume that

AssuMPTION B. ||N|| = o0 in such a way that 0 < xy < m/l|M||, ny/||INIl,
i=1,2,3

Assumption B imposes a mild restriction on the degree of elongation of
the observed range of (¢, t,, t3), with a corresponding constraint on the user-
-chosen bandwidth parameters m;. In some authors’ terminology, it relates to
the notion of going to infinity in the Fischer sense, see for instance Ivanov and
Leonenko [9].

The first result of this paper relates to the bias of the tapered periodo-
gram at very low frequencies. For convenience, we write M; = max (j, k, /) and
Ny = min(ja k, l)

THEOREM 1. Under Assumptions A and B, for -3 <a,,<3,9=1,...,p,

_ _ M, )f
(2.6) EI, (@1) — Lyy (0) |0 jal| ™o = O ({Ml 24N+ {nﬁ} } ”(Djkt”a”>,
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and assuming further that A’ holds, for g, h=1,2,..., p we have
2.7) |EL (@) —fan (@)l = O (M + N1} lowjlI*™).

Theorem 1, as Theorems 24 to follow, can be seen as an extension to the
random field case of analogous results for time series by Robinson [20] and
Velasco [24] in the untapered and tapered cases, respectively. Note that our
method of proof for (2.6) would allow some slight improvement over the Velas-
co result [24] even in the time series case, as the exponent of M, is —2,
irrespective of the value of f. The result for (2.7) is in a sense not so sharp as
(2.6), as a consequence of the fact that Assumption A relates only to terms on
the main diagonal of the spectral density matrix. Although it would be straight-
forward to extend Assumption A to cover non-diagonal components, the
present formulation of Theorem 1 is sufficient for our purposes and it affords
the greatest generality of a priori conditions. The following result concerns the
cross-products of two transforms.

THEOREM 2. Under Assumptions A’ and B, for g,h=1,...,p,

|EWg (@) W!T, (@)l =0 (“ﬂj\%l;li)
i

For the results to follow, we define
MZ = maX(jl,jz, kl: k23 lla 12)1 N2 = min(ilsj2s kls kls ll’ lZ)
THEOREM 3. Under Assumptions A’ and B, and if
min {|j; —jal, lks—kal, Il — L[} = 3,
min {"1—”1 —Jjal, na—lk1—kal, "3—”1—12'} =3,
we have
|EW; (wi1k1lx) W{ (wjzkzlz)l
. , . , _, M%—agh;‘z
= O llojryp, I oo pcpll*™ Hkl{max(laz_aﬂ’ D} NZ a2
A= ]\K,

Jor ay, <0, whereas for agy =0

|EW;‘ (wjlkili) wl]; (wizkzlz)l

2 My
=0 ||wj1k111||°'”"/ |-|wj2k1l2“aghlz H {max (la;—ay|, 1)} “W)
A 2

a=j,k,l
THEOREM 4. Under Assumptions A’ and B, for o, <0,

ll02j,x41,11%"2 Nev )17
(28) IEW;‘(wflkxh) wlf(wfzkzlz)l = 0( S8 Ng 2R )




112 D. Marinucci

and for oy, =0

2 2
(2 9) IEWT (CO kil )W}T(ﬂ) kol )l =0 (“wjlklhnugh/ ”w.izkzh”agh/ )
- g Jikidy J2k2l2 .

N3

In the proofs of Theorems 1-4 we borrow several ideas from the argu-
ments of Robinson [20] and Velasco [24]. The random field setting, however,
poses considerable extra difficulties, because in the three-dimensional case the
Fourier frequencies satisfy only partial order relationships, and this introduces
major technical problems, as confirmed by a careful analysis—of the proofs
in Section 4. It is also important to stress that the error term which emerges
in Theorem 1 when we approximate f(w) by L, (0)||lo||* is of the order
(IM]I/IN1)Y, ie. it is not improved in the random field case with respect to
time series circumstances; on the other hand, the rates of convergence of our
estimates, as we shall see in Section 3, is of the order ||M]||3/?, i.e. “much faster”
(in a loose sense — a strict comparison is clearly meaningless) than the rate for
the time series case, which in our notation would be |[M[|'%. In terms of
applications, this implies that for our arguments in Section 3 to go through we
need to provide a bound for the variance of a sum of discrete Fourier trans-
forms, rather than more simply (but less efficiently) bounding each of the ele-
ments of the sums itself (see Lemma 3 for more details). This is the main
difference between our arguments and the arguments of Robinson [20], [21]
and Velasco [24] for the time series case, and also the main motivation for the
presence of the terms of order HFM’I (az—a;)"? in Theorem 3; such terms
would not contribute to the bounds in any positive way for a fixed distance
between a, and a,, but their role is crucial as we sum over these same in-
dexes. For related reasons, we had to strengthen the smoothness condition
in Assumption A to § > 1, whereas § > 0 can suffice in time series circum-
stances.

3. ESTIMATION OF THE SINGULARITY PARAMETER

The main purpose of the present paper is to analyze a semiparametric
procedure for estimation and inference on the parameters . For simpli-
city, and because this is by far the most relevant case for applications, we
shall concentrate in this section on the case p = 1, i.e. the scalar environment
(density fields, say); here it is also convenient to denote by o, the “true” value
of the (unique) memory parameter of interest, and by o any generic value. It

_is worthwhile to remark that even if we focus on the scalar case, cross-

-periodogram terms do arise in the arguments to follow, so that, for instance,
the “multivariate” result (2.7) is required explicitly in the proof of Lemma 3
below.
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We focus on an extension to random fields of the Whittle semiparametric
procedure introduced by Kiinsch [11] and developed by Robinson [21]. Write

Y= LLY

Bl j=ry,rn+3,...my, k=ryr+3,..,my, I=ry,r343,...,ma,

m—r

3

my—1, ms—rj
3 ) my =

) mp; =

(3.2) Wy =

where we assume for simplicity that (m;—r)/3 is integer-valued, i = 1, 2, 3; the
integers ry, 7o, r'3 are user-chosen trimming numbers, motivated by the need to
drop very low frequencies for the bound in Theorem 3 to become effective;
trimming of low frequencies is imposed (with a different motivation) in Robin-
son [20] and Velasco [24]. The consideration of only one fundamental frequen-
cy w;q out of three with respect to j, k, I is motivated by (2.5), which implies
that with this device we are able to retain orthogonality among the tapered
discrete Fourier transforms. Now take

B 1 a (C!iji)
(33) (L )= ";mazﬂ"{l"gL”w”““ anmn“}’
(34) (L, @) =arg min Q(L, )
O<L<m
i

for [|M||/|IN]| = 0, and @ a compact subset of (—3, 3]. Compactness is needed
for the minimum to exist: in the absence of any a priori information on the
range of values of a, ® can be chosen to be [—3+46, 3] for an arbitrary small,
positive 4. The quantity Q(G, «) can be viewed as the Whittle approximation to
the Gaussian likelihood, considered at the only frequencies where the parame-
tric model f (|jo|]) = L(0)||@|[* is relied upon, ie. on a degenerating band
around the origin.
Standard manipulations give

. : A I &
d=argminZ(x), Z(®)= logG(oc)+ocﬂr;,{z—n~1—3 7108 llooull,

1=

1 o I7 (wjkl)

Gl)=———Y. )
@ 1ty iy iy <k | gll*

It follows immediately from Proposition (2.15) in Vajda [23] that Z (o) is strict-
ly concave, and this is very convenient for the derivation of &, which of course
must be obtained through a numerical optimization procedure. On the other
hand, a rigorous analysis of the asymptotic behavmur of & requires some
further assumptions.

8 — PAMS 231
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AssumpTiON C. The field U(t) is Gaussian.

Gaussianity is needed in our argument to follow in order to bound con-
veniently the fourth-order cumulant of normalized discrete Fourier transforms.
In the time series context, Robinson [21] relaxes Gaussianity to a linear pro-
cess condition driven by martingale difference innovations. Although it seems
possible to extend his argument to the present setting, a linear representation
with martingale difference innovations appears of little practical significance in
a context without a temporal ordering such as the one we are considering.

As mentioned above, it is very hard to justify linearity as a primitive
condition for a random field; a linear representation for U (-), however, can
indeed be derived as a nice consequence of Assumption C. More precisely, by
the Wold representation theorem for random fields, we can write, as in Leo-
nenko and Woyczynski [14], '

o

Uy= 3 a(@e(t—1,

i1,i2,i3= 1

where i = (i;, i,, i3) and the &(:, -, ©) are mean-zero, uncorrelated innovations
with constant variance Eg? = ¢2, and hence by Gaussianity i.i.d. Now, clearly,

f(w) = ‘r'g_,,ld(co)l2 for d(w) = i a(r)exp{itw'}, t = (14, 72, T3).
(ZTE) T1,T2,T3=1

In the sequel, we shall write for brevity (see (2.2) and (2.3))

Ikal =17 (wjkl):» I.o.Tjkl =1I7 (wjkl) = WsT_(CDjkt) VT’sT(wjkt)a

ni,n2,n3

wiwm)=H™' Y hs()exp {itwj},

t1,t2,03=1

2
Jz ~ a ) A
Jim =f o) =53 lajkz|2, Ajpp = a(@ju)-
(2m)

We now need to impose some conditions on the rate of increase of the trim-
ming coefficients r and the bandwidth parameters m. In the sequel, we let
R = (7‘1, ¥y, r3).

ASSUMPTION D. As: ||N|| -» oo,
3.5) rifr;j=0(Q1) for any i,j=1,2,3,

may/n, ~ 1im ma/ns _
NIl >o My/Ry  {IN]|>0 My/Ny

(3.6) 1,

and
IRl IM|P*28 [|M||* =@~ =D ]og? ||N]|

”RHZ + max{(0, —ao/2)

-0.

3.7 i T
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The conditions (3.5) and (3.6) seem natural in view of Assumption B and
symmetry in law of the field with respect to the coordinates (recall that, of course,
trimming and bandwidth parameters are user-chosen). (3.6) is not strictly neces-
sary for the argument to follow, but it allows the derivation of a much neater
expression for the asymptotic variance. (3.7) imposes a mild lower bound on
the rate of increase of ||M]|| with ||N]||, a significant upper bound on the rate of
increase of the same ||M||, and a significant lower bound on the rate of increase
of ||R||. Again, the condition [|R||/||M|l = (1) is not strictly needed for our
argument, but if the trimming rate grows more slowly than [|M||, asymptotic
efficiency is unaffected. (3.7) is close to Assumptions 6 and A4’ in Robinson
[20] and [21], respectively; for instance, it is nice to remark from our ar-
guments to follow how the factor 3 in the numerator of the third summand of
(3.7) would correspond to unity in the time series case. A bandwidth choice
satisfying Assumption D is granted by, for instance,

_| . ™ — ™ __2 (24
my = 10gn1 s 2 = My nla my = ny nls Q"’3+2B 5973

where [ -] denotes integer part. In practice f is unknown; a practitioner, how-
ever, can choose ¢ on the basis of a priori assumptions on the smoothness of the
spectral density of the field of interest around the origin the values of g closer
to % ensuring more robustness, the values closer to 4 entailing more efficient
est1mates On the other hand, the results of this paper do not imply that
trimming (i.e. ||R|| > 0) is necessary for the asymptotic theory to go through,
indeed in the time series case trimming has recently been proved to be unne-
cessary. As discussed above, however, trimming does not effect the asymptotic
variance under Assumption D, whereas a careful inspection of the proofs to
follow suggests that very low frequency periodogram ordinates are typically
heavily biased, so that dropping such frequencies seems in any case desirable
(see Robinson [20]).

Now let us put

1 =~
Ay = log|leoll ~ i ity s 2 loglloll;

we are now in the position to provide the main result of this paper, which is the
following

THEOREM 5. Under Assumptions A, B, C and D, as ||N|| — oo, for & defined
by (3.3) and (3.4) we have

{ty riiy 13} 2 (o"c—oco)—"» N, 27,
where, for x = (xq, X3, Xa),

&= { log?|xlldx —{ | logllx|ldx}’ ~0.125.

0,13 [0.113
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Proof. The proof is similar to the argument in Robinson [21]; we con-
sider only the case n, = n, = ny =n, iy =i, =My =m, ¥ =r, =r3; =1,8ay,
the general circumstances being only notatlonally more complicated under
Assumption B. Consistency of 4 is established in Lemma 5 below, by a long
but standard argument for extremum estimates. Then, by the Mean Value
Theorem,

dZ () , & Z(o’t)

0= do.

(& —ao),

ie.

2 -1
o e S )

for |&—oo| < |d—0o|, provided the second derivative is non-zero. Now

dZ(@) G, (oc)

(3.9) i = Co@ ij, loglwjull,
2 A _ 2
(3.10) d*z z(ac) _G:®6, 2(oc) 61 ()
do G ()
where we define
¢ (- 1) .
a(a) - ijllogallw_)klll ” ”a’ a= 0: 15 2'

Concerning (3.10), the consistency of d, Slutsky’s theorem and Lemma 4 below
imply that, as n, m —» o0,

?Z@)  G,(@G(@—G1@
du? G3()

1 & 1 & 2
2 sz“ log? [je all — {7[3 >.ulog ||mjk,||}

2||(L F I)_JLs L&
<m’ m’ m> {m3 f"’IOgH(m m’ 'm ~¢>0

from integral approximation. Concerning (3.9), it is immediate to see that
Go (o)™ L(0). Hence to conclude the analysis of (3.8) it is enough to focus on
the asymptotic distribution of

1 &

= o L 108

1 < A I}l‘r.l
i P L —
m3/2 &kt L(0) ”wjkl”uo,
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which equals

1 & ( fjkz I)A I;kz 1 & Ay _]kl lajkll Iaﬂct
; P il wy Ay
m?2 =i\ L(0) ||l ol ! f, m3/2 ik S

(275) Isjkl
3/2 Z,kz ( o2 —1),

&

because
. Y A = 0.

We then need to show that, as n— oo, -

1 &~ 2m)3 IZ.
@3.11) EQE.MAW(L%?;EWI)$NKL¢L

1 & S ) T o
3.12 ) —1}4,,E B0,
12 Wzmgmwmm ™

1 & Jkl Ia]kll Is]kl p

(3.13) 37 g i T 0.

The proofs of (3.11), (3.12) and (3.13) are consequences of Lemmas 2, 3 and 4
(respectively), all three collected in the Appendix. =

Theorem 5 appears qualitatively analogous to Theorem 2 in Robinson
[21]; to aid comparison, we note that our « corresponds to 2d in the time series
circumstances of Robinson [21], whose main result can be presented as

m2(2d—2d) 5 N©,1) as n— .

Note that in the time series case the inverse of the asymptotic variance is
indeed provided by

1 1
jlogz X1 dx]_ ‘—{j'log X1 dx1}2 =1.
0 0

The limiting result in Theorem 5 is expressed in a form as compact as possible;
an alternative formulation is

{Vﬁl Hi, ”~13} ~12 4 (2“)3 IaTjkt
T gz Lmlm\ T 2

(3.14)

5172 1)£N®Ax

]

where

~ N < Y ~ 2

&= {m1 m; ms} ! ij,Ing ”a)jkl”_{{ml my ms} ! ij, 10g||wjkz||}, >
and lim N“_,wcﬁ = . It is easy to see from our argument in the proof of
Lemma 2 that (3.14) and (5.1) are indeed equivalent; for any triplets
(4, My, M), (ny, ny, ny), the functional @ is bounded and bounded away from

zero and can be immediately computed. We conjecture that (3.14) may provide
a better approximation to asymptotic distribution in finite samples.
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4. PROOFS FOR SECTION 2

Proof of Theorem 1. We start with the proof of (2.6), and we drop the
subscripts from I (+), f,,(*), L,,(0) and g, for notational simplicity. Consider
first « < 0 and (without loss of generality) j <k <1l We have

EIT (@) — L) [lwmll* = EI T (@) —f (@) +f (@) — L(O) |05l

where, for ||N|| large enough

S (@) —LO) ||wpll* = {L(”wjkl”)""L(O)} [l jual[* = 0(”01115”””),

‘as in Robinson [20] and Velasco [24].

Also,

EIT (@) —f (wjkl) = _[ Ky (wjkl—w) {f (w)—f (wjki)} do.
T
From (2.4), for ||lw|| > ¢, we have easily the bound

| Ki(@p—o){f (@) —f (@)} do

ol >

scuNn—a(ﬁ)_ ( | S dosf(ou)}

= O(IN||"? {1 +[lomli*}) = O (M7 3 |lwgull*),
because |lw|| > ¢ implies max {4, u, v} > s/\/g, and for any a <3
M3 "
NI

Clearly, ||o|| < ¢ implies —& < v < ¢, which can be decomposed in the four
regions

{—e<v< —v2}u{—v2<v<v/2}u{v/2 <v <32 u{3v/2 < v < gl

We have

INII73 = O(INI***llorll*177%) = 0(M1_3 I|w,-m||’) = O (M7 [lwzull®)-

K; (@pu—o){f (@) —f (@)} do

ol <e,v<—wvi/2

f(w) /2 —vif2
< { max —} [ MK 0= dv+S (@) | Kii—v)dv

loll Sevs —wyz V@32

vz -vij2
=O(llwjll*ns® | PI=Sdv4+vfF=32n33 | |y~ dy)

—-& —&

= O (|loull*17%) = O (lwjull* My %).
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Exactly the same argument can be used for {3v;/2 < v < ¢&}. Then we consider
{—v/2 < v < v/2}, subpartitioned as follows:
A;2 2 w2 Ayf2 /2 /2 wvif2 vi/2
I I U N T A R I N -
“Mgf2 —uel2 w2 —Ag2 |ml>d2 ~vi2 N> A2 —mel2 ~vi2 (A1 2502 (6l > 2 - vif2

The first element is bounded by

Ail2  pef2 vij2 ‘
@y [ [ | Kl'ou—of{f (@)~f (@)} deo
-‘1_,/'2 —prf2 —vij2 - .

C”N 3 Aj/2 uxi2  vi/2 ]
<TI0 { (ol +f @) do

—Ajf2 —uxf2 —vi/2

C N 3Vvi2n 2n
< lee llls § 5 j {0*+f (0;)} *d%dpde

CIINI? ., , " lleojaall*
< FIG {V1+3+”wjkl” Vi}=0 7 ,26 B)

where the second inequality follows from moving into polar coordinates,
A= gsinpcosd, u = gsingsind, v = gcos ¢. For the second term, by (2.4) we
have the bound

512 = w/2

Cni®A;%n3®vis | [ | Kuy(u—md Lgwsme ol +llopll®} didudy

—2j/2 =% —wif2

—10 1-6 - z " llewjall®
< CIINI~0 A5 8 v S Agvi {lml* + llewjall*} = 0( ljsﬂzlz .
Similarly, for the third and fourth term we obtain bounds of order

|| gl |l jral*
O( k;k;z and O _IJT ,

respectively, and each of these terms is clearly O (M 2wl = O (M1 |l
Finally, we consider

e & 32 A2 3ay2 . w2 3pe/2 e 3w/

42) JIE =+ 3+ T+ ]+ 1}1,

—& —€ vif2 —& Ajf2 3A;/2 it Pif2 Jurl2  vif2

and hence, using

&o/2 P

([ + [ )KoE—E)dE< -5?5-6da=oa-5), Emi gy, t=j kL

—& 342 &2
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we obtain
Aj2 prj2 3vy2 23/2 pacf2 3vy/2
j j j Kf(wjkl—w) {f(w)_f(wjkl)} do < vf J' J' j K:T(wjm—w) do
—& —& wvif2 - —& w2

_ ”wjkl“a _ [l jkl”a
- ot - ot

The same argument can be applied to all but one terms in (4.2.), giving
bounds of order O (j ™ |lw;ll) or smaller. A different proof is needed only for

j'ij/jzfz :;"2/2 3;';2, where the argument is more delicate. Define f; = §f/0¢; fol-
lowing Velasco [24] and by Assumption A, for |A| < 4;/2, |yl < w2, V] < vy/2,

for some 0601

floju—o)—f (@) = — z Se(wj—0w) €

E=A,u,v
== L Kowit T (k (@)~ (@— )} £.

Now
|falom) = O(Hmjkz”a_z'lj) = O (|lojmll*” ",
the same bound also_ holding for ¢ = u, v. On the other hand, note that
fi(@) = Ly () lloll* +aL(|ol) llol|*~> 4,

and hence

43)  fi(oju—0w)—fi(@m)

44 = |L1 (011~ 00) ||w g — Ol|* — L 5 (@532) ||60jk1||“|

4.5 + |L(Cﬂﬂu — 0w) || 11— Ow||* ™2 (Aj— 04) — L(w ) lleoll* 2 )vjl .

Now for (4.4) we obtain the bound
(44) < |Ly(@ju—0w)— L, (@)l lloju — Oo||*

+ |||wjk1 —bo||*— ”wjkl”al L; (@)

A;—0OA A
£ C|L(||® 5 — fo))) —L———— — I (llw 7l]) —2—| [l 7, — 8|
(hopa— 00l 2 L o) o e
+ O (llwll* =2 A;llwll)
E(Il-wju—f?wll) E(”wjkl”)|
<C - @ull* 44
T T L
Lilosl), . N
+cor 202wl e 10 gl 4ol

“wjm”

= O (lwjull* 2 loll),
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where L =dL/d|w|, and recalling that, by Assumptlon A, L(lwpwl) =
O (lleosallf~ 1),
IL (lle2 s — Bl]) _ L (||0-’jkt”)|
| || — O] lleo jaal l

=00l — E (el lleogall*™* A5+ | (leogall)]

[l ll* 4;

l"%m” /‘l'j
Newja— 90’" I jk|||

- _ lleol]
$C{'”m]‘kl—ew”—”miﬂ”|ﬁ 1||l50ﬁ:1“z 1/1j+||mjkl||ﬂ 1” ”2” ﬂcl”a
. D it

= 0 (ol ool + o all = ol ool
= O (||lo|l?~ | jall® + llo all*~ 2 leo}l),
by the Mean Value Theorem, the triangle inequality and 4; = O (|| l]). Also,
4.5) < | lleo 1 — Oeoll* ™2 (Aj— OA) — [ uall* 2 )u'l L (@ja)
i + |L (lo iy — B0]]) — L (”wjk!”)| lleogmall® =2 4;
Z <C {IBM ”a’jkt”m*2 L (wj)+ | llew s — 9w|la_2 - ”wjkl”a_zl A;L (wjkl)}
+0 (lojull = lleofl e guall*~2 45)
< C{lloll llewjall* =2+ llewjualI* =2 lleoll A+ Heojall* 2 lleol] A3}
= O (||oli ”C!ij!lla_z)-
An identical argument holds for f,(:) and f,(-), and hence
(4.3) = 0 (max {llogll* 2o, llolf = llomwl™})

(note that |A;—A] < A4;/2, and likewise for u, v). Hence
325/2 3px/2 3vi/2
j _f _f Ky ((Djkt—w) {f (w)—f (wjkz)} dw
! Aj/2 px/2 vi/2
32 md2 w2
= ,[ I _‘. K;'-r (w) {f (wjkl_w) —f (wjk!)} do
—Aj2 —pK/2 —vi/2
A;2 /2 vi/2
=—§ | § Ki@{fillowul)d+f(lomul) g+ (ol v} do
—A5/2 — 2 —wif2
A2 w2 w2
+ | § | K (@{0(lowul ?lol®)} do
=232 —px/2 —vij2
252 p/2 vif2
+ § [ § Kl @{0(loulllelf} do
—A432 —prf2 —vij2
A2 prf2 vif2 Ag/2 mc/2 vif2

—O(Ilw,ull“_zg | | Ki@lol*do)+O0(loul® | | | Ki (@)l do),
0o 0 o 0 o
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because the first integral vanishes by symmetry of KT (-). Standard manipula-
tions yield
A2 prcf2 vif2

| § § Kl@)lwlfdo < C|IN||I%;
1] 0 0

hence
345/2 3pa/2 3vy2

1§ Klon—o){f©—f (0} do

512 /2 wvij2

[l jrall™ ”wjkl”a}

< C {llowll®™ 2 INII 2+ llozall® N1 ~*} < C{ MI NP

Now let us focus on o = 0. For ||lw| > &, the argumeﬁt is the same as
before, recalling that |N|| ™3 = O (j|lw;|"/M3) always, for o < 3. Consider now
the region

, = {lloll < E\[(—4y/2 < 2 < 24) " (— /2 < o < 2m) N (=2 < v < )T},

where, for |v| > |4, |ul,

{ f ()

sup EERCE

||CD||3/2 “e2K] (wjkl - w) dw
@sn(vi = a1 1]

} wen(|vi 2] ]e)

< Oz f W32 KT, (v~ v) dv
(v>3vi/2)u(y < —vy2) .

_ _ o jowll®
< Cvgz/z 3/2 IN| 5 j‘ vl 9/12-2/2 1, — O (l lJ;cl” i
(v>3vf2)u(v< —vi/2)

and likewise we obtain the bounds

lloual* [leo jal|* Jw |
0 =0 —
O( js ? k5 Ni’

for |A| = |ul, [v| and || = |Al, |v], respectively.
The remaining region is decomposed as

24y 2ux 2v; Ay2 245 Hicl2 23 vi/2 2v;
f 0 =i+ S+l +]h
—A32 —urf2 —vif2 —A52  Ay2 —me/2 w2 w2 w2

where, for instance,
A3/2 /2 w2

_f KT (@ —w) {f (w)—f (wjkl)} do

=452 —pe/2 —vi/2

2312 uxf2  vif2
CINP %7 55 ™ (Ilw,-kzll“)

fo0f {lelr+f (@)} do =0

= 515795
PP 3 gz —w2

j4 k4 l4
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as in (4.1). Similarly,

245 k2 w2

I f I KT (a)jkz—a’) {f (w)—f (mjkl)} do

Aj2 — /2 —vif2

< w2 iz T (u A Nlogall®
<4 | | KL(u—wKEL(v—v)dudv =0 55 )
Copef2 —vif2

because A} = O (||w;ll*) when « is positive. The proof for all remaining terms is
similar, with the exception of -

245 2pp 2v;
|11 Kex-o @ e - o ),

512 ~pl2 —vif2

which follows in the same way as for a negative a. Thus (2.6) is established.
To prove (2.7), we note that, under assumptions A and A’, similarly to
Robinson [20], Appendix B,

G (leoll| _ |df 55* Qo) 1 it (o) 2 ’
dlall | S| diol el fi dop R (0 S5 Qi)
dR g (lleo]l)
1/2 gh 12
(lol) = o/ (e ||){
= O (llwl1*"~"),
whence
0
(4.6) Sinallal) =2 jl"”(lcﬁ”) % = O (lloo]l* =2 2)

because 0||w||/0A = A/||lw||, and likewise

@D faulliol = 0Qlwll= 2, S lol) = O (lwl=29).

Since f;(w) ~ C|lwl||**, the proof of (2.7) follows exactly from the same steps

with the exception of the term ji:/’zlz :”:/"2/ 2 ﬁ;'zﬂ For this term, by (4.6) and (4.7)
we have

232 m/2 w2

| ] _f f K (wpa— (D)(Z lf:(w,kt)|+|f.:(w,kl—9w)|) édw|

=252 —pr/2 ~vi/2
11/2 w2 w2
= [ | [ Klou—o)lo|llopml* ! do
=22 —m/2 —vif2

I oo
O (lloozall** N 1)=0<M)- .

M,
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Proof of Theorem 2. The proof is similar (indeed simpler) to the proof
of Theorem 1, and hence omitted for brevity’s sake. &

For the results to follow, let
DI(®= Y h,e™, DI ) =DfC+EDI(-2).
u=1

It is well known from Hannan [7] (see also Percival and Walden [19]) that
(4.8) DI (&) < Cmin{n, n~?|¢™3}.
The following lemma will be exploited in the proof of Theorem 3 to follow.

LemMA 1. (i) Let & = 2nt/n; for any 15, T4, GS B — QO,

J IDI (¢, &) 1D (é—£t2)|dé=0<min(n, . 3))
—n T2 —14l

(ii) For any t,, 74, as n— o0,

§ DI €~ ONIDF €~ E)IE—El d& = Omin(1, 73— "?)

Proof. We have

13 (€t1+§tz)/2 T
[ IDT (&, —EIDy (E—&.,)dE = f + [ .
“n ~n (&, +E, )2
where
(&g, +E,)02 n, G +&, )2
T _ T(r _ T _
_In |Dg (&, = IDs (E—E ) dE < T—E _I” |Dy (&, —&)|dE
— nz "
=0 <|72‘T1|3>’
and
T . n m
[ IDF(E,—OIDTE-ENdE < ——— | |IDJ(E—&)dE
(g, +& )02 [tz =71 ¢, +e, 2

)
=0|————=).
<|Tz—1'1|3>

_} ID7 (Ce, —ONIDT (E—EME— &l dE < Cn j ID7 (&)l 1€]dE

1/n

<Cin? [ |8dé+n™ [ 1E72dE} = 0(),

—1/n 1i/n

For (ii), we have
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and also, considering without loss of generality 7, > 75,

n

§ 1D ey = ONDT (€= LN IE— &, dE

-T

(&g, +Ec,)12 x
<{ | + | }DT& =D E-ENIE—EldE
-n G, FE )2

n GtE
<c[m [ DT (=) E—Ede

2 _
€, — & )2

[ DT @) —E)—ul déJ_

1
= 0((r2—n)2)’

after the change of variable u = ¢, —¢&, and because

H 1 % 1 1
{oreiaa <2+ § oad-o(2),

LY

n
|T2—131|3

and
@&, — & )2

| IDFGIIE ~ &) ~uldg < | D@ {lul +E. ~ £} du

<0 (%) £2E— &)1 [ IDT ()] du
0

1 n k+1/n 1 d
< — —_— E)
0<n)+c (1+Z [ == u) o(

k=1 kin
Proof of Theorem 3. We have

T1—1T2 T1—1T2

n

)

n

EW} (wj1k111) w{ (a)jzkzlz) = H_2 IEj1k1llj2kzlz (w)f;h ((D) dwa
T

Eilkllu'zkzlz (ﬂ" M, V) = D‘:; (,{, ljl’ }“Jz)ljz‘z (ﬂ’ Hiy» ﬂkz) D‘Z; (V, Vi vlz)a j
DAIZI; (/1’ ;{‘il’ A‘jz) = DZ; (;I'J'l —’I)Drll; (A—I’sz),
where we recall that

I Dz‘(j-h_l)Dr]l‘(A_ljz)dl =0 if [ji—Jj21 = 3 and n—|j; —j,| > 3.

Recall that only Fourier frequencies which are not closer than 3n/n; (mod 2r)
are used in the sequel. Assume wihout loss of generality that ||@;.,5,ll = ll0;s., 1,
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Ajy < Py Vigs Vi, = Ajy, iy; W consider

j Ejikilljzkzlz (w) {f;;h (@) _f_;;h (@ jzkzlz)} do.

Examine first the case « < 0. Note that, by using (4.8) for 7, # 7, and under the
assumption |&,,|, |£,,] <&,

sup H™** DJ(£,,— &) D7 (§—&,)=0(n™°e™"),
LEE

sup H™?PDJ(,~&D](E~¢,) =0 (ML)

—n<é<n _7:_1|3

and hence

< § + § +
|| Ze Tr(lAl>e/3) Tn(u|>e/3) Tn(vl>¢g3)

1 1 1 1 1 1
= O(IINlla(jz i (kz—k1)2>+0(nNn3(jz i) (12—11)2>

1 1 1
+0(||N”3(lz—l1)2 (kz—kl)z)

1
= 0<”wj1k111”¢gh/2“wjzkzlg”aghlz H {max(az—al, 1)} 21—>
2

a=jk,l

2 2 1 T2
O lloj | |@ppanal® ] {max(az—ay, 1)} 7+~ 52—
a=jkl I ji~ o

2 2 2 M%_aghlz
= O{ ol l0ppell? T] {max(a;—ay, D} 500 ),
a=jk,l 2

because I, > j;. For 2v, < ||| <e,

(4.9) [ < } + | + ,
lollZ2vi,  TndAl>2vi/ /3  Trdel>2vi//3)  Tadvl>2vi//3)

where the first term, for instance, is bounded by

C ”N“ -3 ”a)jzkzlz”umI j |Ej1k1l1]'2kzlz ((D)l dCD
Tn(i]> 2"12/\/5)

S CINI"lopenll™™  §  1D% (4;,— DDy (A—4;,)| dA
21> 2%, /3

< CINIH@pepli® | 1A, =473 1A—457%dA
|l|>2v12/ﬁ
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< C”Nll—s ”wjzkzlz”ugh j. {M’JH“AI_G"' l'l_z'jzl‘G} di
1> 3vi,) /3

2v -5 2v -5 ; 2gh
< CINII™2 ||ojp01, )7 {( 2 —ljl) +<‘£_ljz> } =0 (ll]—z"?z”—)
V3 V3 A

the first step following by

j ID“:(E: 6113 crz)ldg s h fOI’ any T1, T2,

by the Cauchy—Schwarz inequality. The argument for the other two terms on
the right-hand side of (4.9) is identical. Next, we note that Assumptions A
and A’ imply (see (4.6) and (4.7))

Jma(lol) = O(loll*~2a) for a= 4, u,v.
Therefore, for (A;,+v;,)/2 <A< 2v,, 0< pu, v<2v,, we have

| fon (w) —Jon (wjzkztz)l

<L sup sup {1 fon2 (@, |fonu @), | fony @)} |0 — @10,
(ol €2vi)n(AZ (A), +v12)/2) .
< C “wjzkﬂz“agh -1 |CO - mjzk)_lzl .

Recursive application of Lemma 1 gives
1

TV—§ Eilk1llizkzlz (CD) {f;ﬂl (CO) _f-;lh (a)jlkzlz)} do
NI jon € 2vimi® g, + w2

< C sllezkzlzllug:-lllN”_l 2}1, IDT (A, — M IDT (A=A 1A — 4, dA
ko =ky)” (=) (i 2
C “w.izkzlz”agh_ ! -1 2via
+ — N DY (ur, — ) DT (1~ e )l | — g, 4
G2—i1)® (=) 1V _sz' (e, — N D5 (= pi ) 11— gt | A
C ol ™! _; 2"
+ o 2kala N DI (v, — V)| IDX (v=v,)| [v—v,,| dv
G Gakp NI L DTG —9IDT 6= vl v,
. 1 )
S.C”wfzkz!z"ughg ]_[ {max(a,—ay, 1)} 2
a=j,k,l

“a)_hkll;l ”mg;./Z ”a)jzkzlz”agh/z
l%_ugh/z j"l‘ghlz

A

C [] {max(a;—a,, 1)}2

a=j,k,l

- dghl2 @ Zgh/2
< O(” 11k111” “ 12k212“ n {max(az—ah 1)}72 ’

tgh/2—1 2—agh/2
Mzg Nz g a=jk!l
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l%-ughlz _o lggh/z—l -0 Mdztgh/Z—l
ji_aghlz - j'igh/z - Nazlgh/Z :

Now recall we assumed without loss of generality that j, > j;; note that

because

sup sup | fynq (@)l

A3 /254 (4, +v)/2, |lell €2vi, a=4,u,v

< A2 sup {A+u+v} =0@F 2v).

A2 A8 (A5, +vi2)/2, || 0] €2y,

For 4;,/2 < A < (4;,+,)/2, 0 < p, v < 2v;,, we add and subtract f, (w;,4,1,) to
obtain, by the same argument as before,

“N” -3 j. Ejlkllu'zkzlz ((D) {f;lh (0)) _fgh (wjlklli)} do

Ap/2€ A5 (A4, +vi,)/2, | |0 € 2vy,

c A;i'hszlz

< 3 3
(k2 —k1)* (2 —11)

INI™* § IDT (A=A, IDT (A, — A |2~ Ay,| dA

C A2y 2
o J1 lzN—1 DT_zDT _ “‘1d
(]z"h)a (12_11)3 IN| _szl (ﬂ Hi )” (ﬂh ﬂ)' |ﬂ M l U
b OB s DT () IDT () v
(2—j1)® (k2 —ky)? ~v, 5 " i
< C ”wjlklll”‘lghi 1
(ky—ki)® (La—1)* j1(j2—jr)?
C ”w.ilkih”ayh 1 1 C ”w.ilkﬂl”agh 1 1

(Ga=i® —0)? jilka—ke)* " (ja—i1)® (ka—k1)® ji(L—1y)?
=0(”wj1k111”agh/2 ”w_izkzlz"agh/z lé—aiz 1 )
(G2=i1? (=0 (ko—k)* 3~)

Also, for j, =j;, by Lemma 1 we have the bounds

0 <“C0jlk111||¢”h/z ||(Dj2kztz||a”"/2 _1_) 0<”wj1k1h”agh/2 ||60j2k212”z9"/2 1}e/2 )
(=LY (ky—k)* L) jime? (=1 (ky—ky)?)

and likewise for k,=ky, I, =1,.
We also have a term of the form

IV ~2 § Ej ity jakeaty (0) { fon (@00,) —fon (@ ,1,1,)} doo,

A3, /2 € A€ (Mg +v15)/2, [ ]| €2vi,
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which is bounded by
(4'10) C ”N“ -3 ”wﬁklh”agh_ ! (leﬂqll - wjzkzlzl)

X J 1Ejykstsjokaty (@) do
A2 SAS (A4 Hv)/2, o] € 2u

C .. _
<E“wjlkm“a"'(liz—h|+lkz—k1|+|lz“l1|) [l {max(a;—a,, 1)} 3.

a=j,k,l
Hence the right-hand side of (4.10) is B
M%‘“gh/z
0(||03j1k111”“""/2 ”wjzkzlz”aghlzw [1 {max(a;—ay, 1)_2})-
2 a=jk,l )

Finally, for —2v,, < 4 < 4;,/2, we consider first the case ||w|| > 4;/2, which entails

lEhklhjzkz!z (@)l Ifgh (w) —fan(@ jzkzlz)l do
A12€ o]l €2v1,,A<45,/2

< max |fg(w) ~fan (@j50,1,)] _[ 1Ejikq1jakat, ()| deo
o]l =4;/2 2312 < || o] S 2vip A€ A,/2

< E 1 1

TS ky—ky)? (1 —1y)°

— 0 ”wj1k1h”¢gh/2 ”wjzkzlz”aghlz 1 MZ_ 2gn/2
ji (ka—ky)® (,—1)* N3~ )"

A%

J1

Also, for |lo|| < 4;,/2

| S- max 'Ejlklhjzkzlz (CD)' I l.ijh (CJ’J) _ﬂh (wjzkzlz)l d(l)
lHoll <252 leoll €452 llell <452

”N” 13 lush _ 0 (”wjlkﬂl”agh{z ”wj:.kzlz“aghlz)
< It = - .
AL A3, i, iy v v, BRRkEE

Now consider a«,;, > 0; again, we discuss only regions where a different treat-
ment than for negative « is required. For 2v,, < |lo|| < &,

< {0 = 1A, e} + {1 0ul = 141, PO} + {1021 = |al, MDY,

llea]] =2y, lleo|l Z2vi, ’

where the last term, for instance, is bounded by

_ S (llel])
c ”N” 3 { max |3 Fagr)2 .f . ”01”(3 T an)/2 IEj1k1l1.izk212 (CD)| dw
Az2v, ||| Tn(lA> 21/ /3)

9 — PAMS 23.1
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< CIINII™ o [l 2 | |AI®* %2 DT (A5, — A) Dy (A—Ay,) dA
|}'|>2Vlz/ﬁ

”wjzkzlz”ugh

< CIINI7? ll@ppgppli®en =32 [ JAT2T2W2dA < C R

|M>2"lz/\/§
because |4, — A 73, 14—, P < AT A > 2v;2/\/§; analogous bounds hold for
the other two terms. Next, for (4;, +v,,)/2 < A < 2v;,, 0 < p, v < 2v,,, we obtain
as before '

Ejlk1ll.i2k212 ((D) {fgh (CO) '—fgh (CO jzkzlz)} do -

ller|| S 2vi5,4 2 (A5, +vi)f2

=0 (”a)]zkzlz“a 1_[ {max (a2 —ay, 1)2} B 1)

lla =j,k,1

Ma ghi2—1
- O(Hwhhhuaghfz ”wjzitzlz“ag Ntlgh/Z ]._[ {max (aZ a, 1)2} )

a=j,k,l
The remaining part of the argument is similar to that in the case of a negative
(xgh. ]

Proof of Theorem 4. The proofs is similar (indeed slightly simpler) to
that of Theorem 3, and hence omitted for brevity’s sake. m

5. PROOFS FOR SECTION 3
LemMa 2. Under Assumptions A, B, C and D we have

Y e v —1j2 2m)3 IT
(5.1) {m1 mzma} llzzjk!/ljkl((——)c,_—zl&l”-].)‘d—)N(O; @)

Proof We use the Lindeberg—Feller Central Limit Theorem for trian-
gular arrays. Note that, by Gaussianity,

((211:)3 I E )kl

A

)E iid. (0, 1),

where by iid. (0, 1) we denote a sequence of independent and identically
distributed random variables, with zero mean and unit variance. We need to
show that

(5:2) H'll?tx | Al = 0 (114 iy His),
DKy !
~ 1
(5.3) WZ A =0(1),
1
(54) $ Al = 0()

mlm m3
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for some p > 2. Now (5.2) is trivial, whereas for (5.3) we consider
j k1
ny ny’ ny
. j k1 2
— log Rl
{{Pm mst} Z]kl (n nz ns) }
) (_]_ my/ny k ms/ng l)

2 —3 -
my my/ngmy my/n; ms

1 3 ~ ~ ~ _ -~
Hiy i, 1 Zﬂcl Afa = {tity iy vy} Z_W@g2

= {rﬁl n’!z ?ﬁg,}_ 1 Zﬂdlog

}2
subtracting log?m,/n; from both summands; by Assumption D and integral
approximation we obtain

(L mz/"zi ms/n; i)

9’ ’
my my/ngmy my/ng my

- {{rﬁl 7712 fﬁ3}_ L ijl log

1 Wy, dizha  (J+ 3) s (k4 3)jriz (14 3)/ris
e W/ SR ) [ 1 [ loglix)ldx
pomPr—" il
i 1y ity <k j=rik=ral=rs  jW kjma  Uia

sz, s (J+3)miy e+ 3)/ma (14 3)/riis

-[ ¥ f [ log2lmldx]

j=rik=ral=ry jim kfriz i3
2 o o~
= [ log?lllldx—[ | loglix)ldx]" =@ as iy, iy, iy — co.
[0,1]3 [0,113

The same argument holds for (5.4), for instance considering p = 4; thus
Lemma 2 is established. =

LEMMA 3. Under Assumptions A, B, C and D, we have
& I};cz—ldjkdzIeTjkt o~
(5.5) ijl i B = 0,(\ /iy Wymis) for 1=0,1,2,
jki

(5.6) (i miyris) ! Z,k: i {l"— 1} —d>‘N(0, &) for 1=0,1,

Jkt

and
~ JT2
(5.7 E{zﬂdl"} = O (i ity 1i3).
St _
Proof. The convergence (5.6) is an immediate consequence of (5.5), Lem-
ma 2 and trivial manipulations; note that subtracting unity is vacuous for 7 = 1

because the Ay,’s sum to zero. The expected value of the square of (5.5) is
bounded by

2 ~
log * ”N“ Z.hhh Z]zkzlz L1k1l1 f]zkzlz E( Jikds = Iahhhl Iﬂllkllx) (Ijzkzlz la.izkzlzI2 Ig.‘lzkzlz)’
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where, in view of the Isserlis formula for the fourth moment of Gaussian
variates,

E (Ijrﬂuh la11k1l1|2 Iﬂ]lklll) (Inkzlz Idjzkzlz|2 Ig}zkzlz)
- EIJ1k111 EIJzkzlz lajzkzlzlz EIJlklhEIEJzkzlz Ianktlll EIenksh EInk:l:
185001 * 8 300511% EL i, EIL i, + EWTkt, Whio, EW] i, Whicals
+ Ewllklll WJzkzlz Ewhklli Jzkzlz la 1k111|2 EWgJ"lhh wjl;kzlz Ewg}lklll 1|’T’J'Tzkzlz
- Idjlkllll Ewej1k1h szkzlz E“—)ejlklll W,'Tzkzlz -
- mjzkzlzl2 Ew};klll W:;'zkzlz Ew};klh w{izkzlz
_f}zkzlz EW]lelll WZJ"zkzlz Ew};klll wZizkzlz
1 ests Bjsiatal® EW ity Wikt EWeakaty Wejakata

4 214 2 T =T =T T
+ |aj1k111| |ajzkzlz| Ewej1k1l1 Wejskala Ewehklll Wejakzlz

(5.8) = (EIijh - |dj1kll1|2 EI:Z_;'Iklh) (EIszkztz - |dizkzlz|z EIeszkzlz)

(59) +EWE kit Whiotal® 185 18 gaeatal® |EWS st Waiakatal®
(5.10) +1EWh it Whiona? 18k, 8kl VEWS i1, Wajateans |
(5.11) — 18kt EWE it Whicatol* — 155001, 1 |EW Sk, Whieotol?

(5.12) —18iatal? EW ket Wheono? = 18skatal® |EWT ity T
Now for (5.8), as in Robinson [21],
IEI]1k111 |Gy, E1311k1'1||EIJzkzlz 10,2 EI;'.;'Zkzlz|
< {IEI ju, — f]1k111|+|f“k111 16001, E1211k111|}
X {|EI eyt — Fiskata) [ fiakats — Visieatal® Xt}
28
< G S s g IR+

by Theorem 1 (recall that EwZy, Xy, = 02/(2m)°); here we write J; = (ji, ki, 1),
i=1,2
Note that
- 1 ||M|| " 2n

X I He 29%dpdfdg < C|IM]|.

e &
Z]kl ]2+k2+12 = .11 ”x”z

Hence, under Assumption D,
2 2] 2 T
IOg t”N”zjlkll1 Z}zkzlz f;1k1l1 f;zkzlz (E111k1l1 |aj1k1!1| EIEilkllt)
X(EI jakalz ™ |dj2k212| EIEizkzlz)
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& 1 1 Ml | (|IMppe*2#
g 2t .
log “N”thlll ijkztzj +k2+ll ]2+k +F+”R”10 IINHZﬁ

M 6 IM|6+Zﬁ
0(”M"2 |I|I1z||q°+ quxlru” = o(MR-

For (5.9)5.12) we consider first the case where (j, ky, Iy) # (2, k2, o).
Note that, by the orthogonality properties of the taper, Ewl s 1, W&k, = 0. By
Theorem 4 we have

2 -1 -1 T T 2
log™ |IN| Z“klll ijkzlz f}lklll f}zkziz IEWJ'lhh wizkzlzl

< Clog”|IN]|

My
IR

For (5.10), we Have again by the orthogonality properties of the taper
|EW . k11, Weiokorn] = 0; by Theorem 3, for ag <0,

2 o 2
log IV ijkxlx ijkzlz fixhh f}zkzlz |ij1k111 W.izkzlzl

= o(IMIPP).

< Cloth“N”ZJIhh zJ'zkzlz 1 L] H {max(az—al, 1)}—4

a=jk,l
M|~
< C gy 'og” I
y = 2 s 1 1 1
h1=ruji2=j1+1 ki=ra.ka=k1+1 li=r3la=l1 +1 (]2 _j1)4 (kZ - k1)4 (12 - £1)4
M|~ - '"Z 1 1
+C ———=1og**|IN||
IIR||! %/ ,-Z‘,, ,§=k1+1 Lmraip 11 (ky—kq)* (=)

]|~ - !
+...+Ci———1log¥|IN
(iR 08" IN 13 % -1y

ji=riki=r2 h=ralz=lg+1
- 0(%%1%2’“1\7”),
the summands corresponding to the cases

{1 #Ja2s by # Kz, 1y # L)},
{Gr=J2, ks # ko, Iy # L) (s # 25 by = ko Iy # L)y #ja, ki # Kz, L = 1)},
and
{Ur=Jas ks =k, Iy # L) (s #ja, ks = ko, Iy = L)y = ja, ks # Ky, Iy = 1)),

respectively; the role of the indexes can clearly be permuted. The argument for
oo = 0 is entirely analogous, whence we have a bound of order o (||M||*) under
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Assumption D. Analogous bounds hold for (5.11) and (5.12), on the basis of
Theorems 3 and 4. If instead (j;, ky, I;) = (jz, k2, l5), we rearrange terms in
(5.9)(5.12), to. obtain

(5.13)  |EW]a 1 + 1m0, * VE Wijiaa,)*1?

(514) - |dj1k1l1|2 |Ew3j1k1l1 WjTlhhlz - Idjduhlz |Ew£kxl1 W~Z}1k1l1 2
(515) + |Ew};k111 w£k1h|2 + ld.i1k111|4 |Ew43.;'1k1l1 W5Tj1k111|2
(516) T |dj1k1l1l2 |EWIj1k111 w};hhlz - |dj1k111|2 |Ew};klli Wz;'ﬂuhlz' —

(5.13) and (5.14) are o(1) as an immediate application on Theorem 2. From
Theorem 1, each of the four terms in (5.15)(5.16) has the asymptotically ab-
solute value fZ;, (1+ o(l)), whence (5.15)+(5.16) = o(1) also; note we are using
here (2.7), which requires Assumption A’: the latter is immediately seen to be
satisfied when we consider the cross-spectral density between the field U(-),
and its Wold innovations &(-). Hence the sum over (jy, ky, ;) is o(rft; #i 1it3),
and thus (5.5) is established. Finally, for (5.7) we note that

IJHIT:

& Ijkl O Ikat 2 & & k'l
E {ijl f ijzE E +ijsz'k'z'¢jkz fia f:;’k’l’.

Now
ZJME{ f”‘i} = O (1#i iy i)
ik

follows easily from Theorems 1 and 2 and standard manipulations for fourth
moments of Gaussian variates, whereas the proof that

jkl &= j k' 1’ = jk1 fikl fi’k’l'

= O (1#iy i, tit3)

is very similar to the argument given for (5.5). Thus Lemma 3 is established. =
LEMMA 4. Under Assumptions A, B, C and D, for 1 =0, 1,2 we have
1T

L) llogmll*
—(1iy iy i) 1 Y 108 ol 0.

Proof. Clearly, (5.17) can be rewritten as

(5.17) (R riipriig) ™t Y, log" [lwjull

1T
(5.18) (g riiy 1iig) ™" Z ikl log® [l il {fl‘l— 1}

(5.19) + (g iy 1ii3) 1 Y 10g" (|0 ull <1 -

LO)||w jkl”ao) I,kl
S L0} |lojll*™
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L(0) || gll*®
E|(5.19) < {sup (1——(M) log® |||
Joksl
L(0)||co;,]|*
(1—M)1ogfuwmn } = o(l). m
fjkt -

Now (5.18) is 0,(1) as an immediate consequence of Lemma 3, whereas for
(5.19) we have, by Theorem 1,
S }
& El},
X (g Mg tiig) ™Y — =
(i iy ) Z’“L(O)”wjm”m
£C {sup
Ikl
LEMMA 5. Under Assumptions A, B, C and D, as ||N|| — oo, we have, for
d defined by (3.3) and (3.4),

a5 a,.
Proof Again we give the proof for the case ny =n, =n3 =n, i =
Fiy =1ty =m, 1y =1, =1y =r. Let N3 & {a: la—oto| > 8}, 3 > 0. For S(a) =
Z (%) —Z (o),

P(|&—ao| > 8) < P(infS(®) <0, aeN,).
Now
P(infS(®) < 0, 2 N,) < P(jsup T (2)| >inf U (),
where S(x) = U(a)— T (o) for

( 0) G(“)
T (2) = log L0O) logG(a),

1 & —vo
G (u) = L (0) F jkl “a)_]kl" 2

1 1 &
U (a) log{ 3 Lajkl ”wﬂd”u GD}_m_ gkl ”a)]klna "o

1a |lfj k D\*= j k1
““"g{ﬁm (a’ m E) } il ”(m m m)

and ~ means that the ratio between the left-hand and the right-hand side tends
to one in view of Assumption D. Note that G (o) = L(0). Now U () is easily
seen to be uniformly bounded below by some #n = #(x) > 0, the inequality
being strict for o # o, by Jensen’s inequality and strict concavity of the loga-
rithm function. Also, it is immediate to see that

b

G (@) G(x o) G (o)
1 lo 1 .
PP ‘ 0] I T
By the same argument as in Robinson [21], we thus only need to prove that
G(20)—G )| _
sup |—————— 1
. mrerm 0p(1).




136 D. Marinucci

Now we infer easily from Assumption D that

G(®)—G(o) < sup A (@)
G < o B()’

| k i) “'“°[¢_1]
“m’m L0} lleosall*® ’

a-ap

sup
"1

AW =105

1jkl

B()=L(0)-

Note that

inffB(@)2=C | x| %dx>c>0 for a—ay> —3,
[0,113

infB(@) > LOm="*"33 (i, k, DI~

[IM]] n 2z
>C | [[e™e*dpdbdg > Clmryo*"> for dp—a > 3.
IRl 00O
Hence
G(®—G()
— < A
|| < Chup A
S I;
— -3 ki _ _
_0p<m E Zf"'(—L(O)IIka,Il““ 1)‘) for a—oaqy >0,
G(W—-G®
— | < A
|G| < Clsup A@)

mao—¢—3
=OP< rao—a E

~ T
Z.k,(—l’k’ ,,0—1>D
s L(O)”wjkl”
1 o~

; _—1 for —3<a—0y <0,
Zom (L O ol °
G(@)—G(w) <

r*~*"3|sup A (o)
G (o)

mao—a—S

—o.(Llg ) L 1
RN K L (0) l|eo ™

Hence consistency will follow if we just show that

O IJkl _
E ijl (W—l)‘ = 0(7'3).

-]

) for a—ay < —3.
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Now
Iz 2 3
Iy o =4l Ie]kl ((275) Ia]kl )‘
— 1) <E ———|+E — 1
Z”" (L O) |l ) Z”" S Z"" o2
+E A.,d( S - )I’TH
J L(0)|[opll®/ S

For the last term, we have

A sz ITH f jkl
Y (P B L 1 ’
Zﬂcl( L (0) ||l jafl*® ) ka'

Ll rafiel 5T
su —_—_— ;
ol TLO) ol T

||M||”+3’2)
=0 (ol IM|P?) =0| ————],
(ool 1M1 ( NP

the bound following from Lemma 3. For the other two terms, we have by
Gaussianity and Lemmas 2 and 3, respectively,

B S (f21)| —o,0. 5, Bl gapeny
m3/2 ikl 0.3 = Yp\i)h jkl fjkla.z 0p

E

€

Thus consistency is established. =
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