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Abstract. Let (M,),,, be an ergodic Markov chain on a general 
state space X with stationary distribution n and g: X + [0, m) a mea- 

def surable function. D&e So (g) = 0 and S,(g) g (MI) +. . .+g(M.) 
for n 3 1. Given any stopping time T for (MAnao and any initial 
distribution v for (M,,),,,, the purpose of this paper is to provide 
suitable conditions for the finiteness of E, S , ( g ) P  for p > 1. A typical 
result states that 

for suitable f i t e  constants C1, C2. Our analysis is based to a large 
extent on martingale decompositions for S, (g) and on drift conditions 
for the function g and the transition kernel P of the chain. Some of the 
results are stated under the stronger assumption that (M,)n20 is positive 
Harris recurrent in which case stopping times T which are regenera- 
tion epochs for the chain are of particular interest. The important 
special case where T= T(t) inf {n 2 1: S.@) > t )  for t 2 0 is also 
treated. 
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1. INTRODUCTION 

Stopped sums of real-valued random variables appear in many areas of 
probability and statistics. The analysis of such so-called stopped random walks 
frequently leads to the problem of finding verifiable necessary and/or sdicient 
conditions for the existence of their moments. Classical random walks (S,),> 
with i.i.d. increments XI, X2, . . . form an extensively studied class of sequences 
in this respect; a monography by Gut 191 gives a good account of the rele- 

* Research partially supported by the Deutsche Forschungsgemeinschaft (418 SWD 111/1/01). 
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vant results and references. In this paper we will focus on the case where (Sn)n30 
forms the additive component of a Markov random walk (M,, S,),,, driven by 
an ergodic Markov chain (see Section 2 for definitions) for which much less 
seems to be known. The main problem we will address can be phrased as 
follows: 

Given p > 1 and a stopping time T for (M,, S,),,,, find conditions on 
(M,),,, *, the increments XI,  X, , . . . of (Sn). and on T such that E JS,JP < m . 

Our main motivation for this work arose from the special case where 
(M,),30 is a positive Harris chain and T an associated regeneration epoch. To 
explain, if (M,), , ,  is positive Harris recurrent, then it can be decomposed into 
1-dependent cycles (Mk),,s,,,n, ,, n 2 0, which are further stationary with finite 
average length for n 2 1. The stopping times 0 = so < g1 < ;. ., called regen- 
eration epochs, form a renewal process (see Section 2 for further details). This 
decomposition is of great importance when dealing with various functionals of 
(M, ,  SJN3 arising in the context of Markov renewal theory, a typical example 
being the moments of the excess over the boundary at first passage beyond 
t 2 0, i.e. E (ST(,, - t)P for p > 0 with T (t) inf {n 2 1 : S, > t ) .  In order to 
obtain finiteness of E(S,(t)- t)P or even convergence as t + my the regenerative 
approach typically imposes suitable moment conditions on the derived variable 
S,, rather than on the variables XI, X,, . . . given by the model (see, for exam- 
ple, [I]). Hence it does not come by surprise that a lack of verifiable model 
assumptions for the existence of moments of S,, is frequently held against the 
use of regeneration methods despite its mathematical elegance. 

Not at least because of their role in renewal theory the afore-mentioned 
first passage times T ( t )  have been extensively studied for classical random 
walks with nonnegative drift ( j~  '25 EX1 E [0, m]). A classical result by Gut (see 
[9]) states that in case p > 0 the equivalences 

hold for all p 2 1 and t 3 0, where X+ max {X, 0) and X- -min {X, 0) 
as usual. - 

Relaxing the independence assumption on XI,  X,, . . . only a little leads to 
random walks with stationary 1-dependent increments for some 12 1. Janson 
[lo] showed for such (Sn)nBO with positive drift that (1.1) as well as "a" of (1.2) 
remain true. But he also gave a simple counterexample ([lo], Example 2.1) that 
proved the converse "e" of (1.2) be false in general. In fact, let Yo, Yl, . . . be 
i.i.d. positive random variables with P(Yl < 1) > 0, finite mean and EYf = 
for some p > 1. Put X, = 9 (Y,- l ,  Y,) for n 2 1, where 

-Yz  if Y l  < 1 < Yz, 
cp(Y1, YZ) = 

1 + yl otherwise. 
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Then (S,)na, has stationary 1-dependent increments with positive mean and 
E ( X #  = a. On the other hand, T ( t )  6 2(t+l)  for all t 3 0 because 
max(X,, X,+X,+,) 2 1 for all n 2 1. 

This negative example deserves an explicit mention here for two reasons. 
First, it belongs to the class of Markov random walks (M,, S,),., driven by an 

dcf ergodic Markov chain (M,),,,; in fact, Mn = (Y,-l, Y,) for n 2 l and this 
chain is even uniformly Harris ergodic. Second, it shows that moment results 
for stopped sums of i.i.d. random variables can already break down under very 
moderate deviations from the i.i.d. assumption. 

As briefly explained at the beginning of Section 3, it suffices?o consider 
sums of the form 

for measurable real-valued, mostly even nonnegative functions g. Our con- 
ditions for the existence of moments of ST(g) ,  where attention is also given to 
the case T = T (t], will be in terms of the Markov chain (M,)nBo, notably its 
initial distribution v, its stationary distribution n: and its transition kernel P, 
and of the increment distributions under P, and P,. More precisely, the majori- 
ty of results, stated in Section 3, will provide upper bounds for E,  ST (gIp in case 
of nonnegative g which besides finite terms involve E,  TP and E, ST,, (gP) for 
some  EN,. Assuming Ev TP < 00, finiteness of Ev ST(# hence follows if 
E, ST+,,, (gP) < a. This is a great simplification because finiteness of the latter 
expectation can be checked by using a Wald-type equation for MRWs recently 
obtained in [dl and [q. For instance, if m = 0, T is a regeneration epoch and 
v the distribution of MT, then E, ST (43 = E, gP (M,)  E, T holds (even more 
directly from the regenerative representation of z as a normalized occupation 
measure, see (2.4) in the next section). The main tooh in our proofs will be: 

e suitable martingale representations of S, (g),  which are therefore presen- 
ted in Section 3 and by which we wilI be able to utilize the powerful Burkholder 
inequality, and 

s drft  conditions which are also of great importance in the analysis of 
ergodic ~ a i k o v  chains. 

More information on this, including a more detailed model description 
and some basic facts on Harris recurrence, are collected in Section 2. All proofs 
can be found in Section 5. 

2 MODEL DESCRIPTION AND PREREQUISITES 

Let (X, B(x)) be a measurable space with countably generated a-field (in 
most applications a Polish space with Borel a-field), B(R) the Borel a-field on 
R and P: X x (% (X)@% (R)) -, [0, 11 a transition kernel. Let further (M,, Xn)n30 
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be an associated Markov chain, defined on a probability space (a, a, PI, with 
state space X x R, i.e. 

(2.1) P (M,+l~A,Xv+I~BIM, ,X, )  = P(M,, AxB) a.s. 

for all n 3 0 and A E B (X), BE 23 (R). Thus (M, + , , X, + ,) depends on the past 
only through M,. It is easily seen that (Mn),,30 forms a Markov chain with state 
space X and transition kernel P(x, A) P(x, A x R). Given the driving (or 
modulating) chain (Mj)jbO, the X, are conditionally independent with 

for all n 2 1, B E %  (R) and a kernel Q: X2 x B() -+ [0, 11. The sequence 
def (M,,, S,In3 o ,  where S,, = Xo + . . . +X,, is called a Markov random walk (MRW). 

Let throughout a standard model be given with probability measures 
P,, X E X ,  on (Q, d) such that P,(M, = x, X, = 0) = 1. If v denotes any dis- 
tribution on X, put P , ( . )  = j,B,(.)v(dx) in which case (M,, X,) has initial 
distribution v@So under P,.  Expectation under P,  is denoted by E,. P and 
E are used for probabilities and expectations, respectively, which are indepen- 
dent of the initial distribution. As usual, Pm (x, - )  denotes the rn-step transition 
kernel of (MAnBO and 

I Finally, put 
I 

v(f)Sjf(x)v(dx) and ~ " f ( x ) ~ ~ f b ) ~ ~ ( x , d y )  
X X 

for any function f: X -, R for which the respective integrals exist. 
A standing assumption throughout this article is that (Ad,),,, has a unique 

stationary distribution n. and forms an ergodic process under P,. Some of our 
results will also make the stronger assumption of positive Harris recurrence, 
which means that x is also a maximal irreducibility measure for (M,),,, and 
that every n-positive set A E %(X) is (Harris) recurrent, i.e. P, (M,, E A i.0.) = 1 
for all x i X ,  where i.0. means "infinitely often". We note here that the bivariate 
chain (M,, X,),,, automatically inherits these properties from (M,,),,, because 
of the special transition structure (2.1). 

We proceed with a summary of some important facts on positive Harris 
chains on which we will draw later on. For more detailed information the 
reader is referred to Meyn and Tweedie's excellent monograph [12], or to [3]. 
If (MA,,, is Harris ergodic, i.e. positive Harris recurrent and aperiodic, then 

lim llPx(M,,~.)-xII = 0 for all XEX, 
n+ m 

where 11.11  denotes the total variation norm. Another important property from 
which the previous one may be derived is that each n-positive set contains a small 
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set C (called a regener~tive set in [3]) with the defining properties z(C) > 0 
and 

for all x E C and some r 2 1, c ~ ( 0 ,  11 and a distribution 4 with 4 (C) = 1. Each 
such small set induces an aperiodic renewal process 0 = a, < G, < . . . by using 
the Athreya and Ney coin-tossing procedure (see [3], p. 151). Under Pg, the 
a, divide the chain into stationary 1-dependent cycles 

of finite mean length E4 a,, and ~c yields as the normalized occupation measure 

where 1, denotes the indicator function of A. If v # 4, the ?-dependence of the 
cycles is preserved but stationarity holds only for n 2 1. Let us further mention 
that the cycles are even independent if r = 1 in (2.3), which is the so-called 
strongly aperiodic case. 

Sharper concIusions, subsumed as f-ergodicity in [12], can be drawn if 

(2.5) . ~ ( f )  < 00 

for some unbounded function f: X + [I, a). Define the f-norm as 

for signed measures v. Given a Harris ergodic chain (Mn)n2 ,, Theorem 14.0.1 in 
[12] states that (2.5) implies 

Iim IIPn(x, -)-nllf = 0 
n'w 

for all x E Xf; where Xf is absorbing and full. Moreover, there exists a function 
K X + [0, a], finite on Xf, a petite set C (see [12], p. 121) and a finite 
constant /I such that the drift condition 

holds with AV(x) PV(x)- V(x). Up to an additive constant, the minimal 
function V in (2.7) is given by 

where a (G) inf (n 3 0: Mn E C). This means that V- Vc (f, .) is bounded 
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from below for any other function V 2 0 for which (2.7) holds (see [12], Theo- 
rem 14.2.3). Finally, if n(V) < m , then 

12.9) C IIP"(x5 .)-xlls G Kf(V(X)+l) 
n 3 O  

for all X E X  and a suitable finite constant Kf. 
Geometric ekgodicity of the chain yields under the following geometric 

drift condition: 
For a function E X  4 [1, oo], finite on an absorbing and full set X,, 

- 
a petite set C and constants o ~ E ( O ,  I), B E  [O, m) 

(2. 10) AV(x)  < -CLV(X)+)B~(X), X E X .  

As stated in Theorem 15.0.1 in [12], (2.10) implies 

(2.1 1) C rnIIPn(xy .)-.Ilv < K v V M  
n 2  0 

for all x E X, and some constants r E (0, I), Kv < ao . 
Drift conditions of a similar type as (2.7) and (2.10) play an important sole 

in some of our main results (Theorems 3.1 and 3.2) and are perhaps among the 
most amenable ones when trying to prove finiteness of moments of stopped 
Markov random walks. 

3. RESULTS 

Turning to the statement of our results, we begin with a simple obser- 
vation. If (M,, S,Jnao is an MRW, the same holds true for (MX, S,),>o, where 
M,* (M,, XJ for n 2 0. Moreover, all previously discussed properties of the 
driving chain (Mn)n30 automatically carry over to (MZ),,,. But replacing 

with (M:),30, we further see that X, = g(M,*) for g(x, y) y. Hence 
we may confine ourselves hereafter to MRW's with sums S, of the form 

n 

sn (8) %if C g (Mk) 
k =  1 

for functions g: X + R, in other words, to additive functionals of the Markov 
chain (M,), o. 

We recall our standing assumption that (Mn)n3 forms a Markov chain on 
X with unique stationary distribution x under which it is ergodic. However, the 
positive Harris recurrence of (Mn)n30 will only be assumed where explicitly 
stated. Given any distribution v on X, we put 

and note that n* = x. Let (9n),30 be any filtration to which (Mn)n20 is Markov 
adapted. 
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THEOREM 3.1. Given p > 1 and any distribution v on X, let g: X -t 10, a) 
satisfv 

for some  EN, OIE[O, 1) and BELO,  m). Then 

for euery stopping time Twith respect to (9n),,g and somefinite positive constant 
C which depends only on occurring parameters. - 

If (M,),,, is geometrically ergodic and satisfies the drift condition (2.10) 
for some function K then V also satisfies (3.1) with rn = 1 and for every dis- 
tribution v on X. Hence 

for every stopping time T with respect to (F,)n30 and some finite positive 
constant C which only depends on p. 

A particular application of Theorem 3.1 is to stopped sums of stationary 
E-dependent increments which were studied in some detail in [2] and [lo]. To 
see this, let (X,),, be a doubly infinite sequence of stationary, I-dependent and 
nonnegative random variables. Put M,, ( X J i l n  and S,, 5 z:=, X, for n 3 0. 
It is readily verified that (Mn)n30 forms an ergodic Markov chain and 

def 
(M,, S3,, an MRW. Moreover, Sn = S, (g) with g ((x,JkgO) = x0. Provided 
that the X, have finite mean p, condition (3.1) holds with rn = E + 1 because 

Hence Theorem 3.1 yields the conclusion 

for each stopping time T with respect to (M,),,,. Furthermore 
T+l  

13-51 EST+I(S~) = E ( C  Xi) " -EXfE(T+Z) - 
i =  1 

by Janson's identity (see [lo], Theorem 1.1) which is the pendant to Wald's first 
identity for sums of stationary I-dependent random variables. Combining (3.4) 
and (3.5), we finally conclude Theorem 1.3 (ii) in [lo], namely 

for suitable constant C only depending on p and 1. 
Besides constituting a well-behaving particular example to which Theo- 

rem 3.1 applies, random walks with 1-dependent increments are interesting for 
yet another reason. As already mentioned in the Introduction and in Section 2, 
if (M,)n20 is a positive Harris chain and (a,),,, a sequence of regeneration 



epochs associated with a small set C (see Section 2), then, under every P,, 
(So, has 1-dependent increments which are further stationary for n 3 2. 
Moreover, 

M ~ ~ M ~ ~ = M ~  and M ~ ~ ( M , , - , + ~  ,..., M,,) for n > 1  

forms a Markov chain with state space d U,, , X" and transition kernel p, 
say. Defining 

s,, (h) "" 2 h (A&) - 

k =  1 

for any function h: .f -+ R and 
k 

8(xl ,..., xk)S zg(Xi )  for (x i  ,..., x k ) € x k  and k 3 1 ,  
i =  1 

we infer that Sen (g) = f,, (i) for each n 3 0 and that ( M ~ ,  sm (i)),, , constitutes 
an MIPW. Given a distribution v on X, the regenerative construction implies 

V P = P ~ ( M , , E - ) = $ ~ P + ( M ~ E . )  and 1 1 " g = ~ 6 d ( & n ) = ~ + ~ , ,  
for all n 3 2. Hence i* Zn, ,2-"- l  dn takes the simple form $* = (v/2)+ , + (vP i- $)/4, and 

where ( v  + 4)/2.  Furthermore, condition (3.1) is satisfied with 8, instead 
of P, g, and with rn = 2. 

Now consider any stopping time T with respect to (Sn),,, with 
A def E, TP < OC) . Put z +E inf(n 2 0: c, 2 T) and T = a,. Since (B,) , ,  , constitutes 

a delayed renewal process with finite drift E4al  (by positive recurrence), 
a trivial extension of Theorem 1.5.2 in [9] to the delayed case implies (even 
if E, TP = m) 

for some constant C only depending on p. Note that E, zP < OC) follows from 
z < whence E, ?p < OC) holds if ES 4 < m for 5 as defined above. 

After these considerations an application of Theorem 3.1 to the MRW 
( M ~ ,  (d)),,,, yields for any p > 1 and nonnegative g 

for some constant C depending only on p, but which may differ from line to 
line. Moreover, by Wald's identity for MRW's with I-dependent increments (the 
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extension of Janson's identity to the delayed case), which has been given in [2], 
identity (3.2), we obtain ( I  = 1) 

Clearly, E, ST (g)P < E, Si:(g)P follows from T 6 Fand g p 0. Therefore the 
conclusion of the previous considerations is the following: Given the positive 
Harris recurrence of (M,)n30, any first regeneration epoch al associated with 
a small set and a stopping time T with finite p-th moment, E,ST(~)P < ca 
follows whenever Eg 4 < ca and Ec S,, ~ J ) P  < m. This means that the problem 
of finding conditions on (M,, S.).,, for the finiteness of EvS,(g)P reduces to 
the very same problem for the special case when T = a,. We summarize the 
result in the following corollary: 

COROLLARY 3.2. Let (Mn)nBO be a positive Harris chain, al the$rst regene- 
i ration epoch associated with Q small set C and 4, r be defined by (2.3). Given 
I 

i p > 1 and any distribution v on X ,  let [ = (v  + 4)/2 and z be as defined above. 
! Then it follows for every function g :  X + [O,  m) that 

for every stopping time Twith respect to (Fn)n,, and somJinite positive constant 
C which depends only on occurring parameters. 

Of course, (3.9) holds trivially true if Ec S,, ( Q ) ~  = oo. A combination of 
Theorem 3.1 and Corollary 3.2 further leads to: 

COROLLARY 3.3. Let (M,)n30 be a positive Harris chain, al thefirst regene- 
ration epoch associated with a small set C and 4 be defined by (2.3). Given p > 1 
and any distribution v on X ,  let g: X +LO, co) satisfy (3.1) for some  EN, 
U E  [0, 1) and fl  E [0, co). Then 

for every stopping time Twith respect to (9JnB0 and somefinite positive constant 
C which depends only on occurring parameters. 

We now turn to our second result which is actually a generalization of 
Theorem 3.1 as will be discussed further below. 

THEOREM 3.4. Given p > 1, y E [ I ,  2) and any distribution v on X ,  put 
s 'E rlogz p1 (i.e; 2"-l < p < 2"), v (2y)"-l, and let g: X + LO, LO) satisfy 

for some rn E N ,  a, E (0, ao) and b, E [0, m). Then 
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for every stopping time T with respect to (Fn)n30 and afinite positive constant 
C which depends only on occurring parameters. 

We will show in Lemma 5.2 that (3.11) implies the same condition for each 
q ~ ( 0 ,  v ] ,  i-e. 

for suitable constants a, > 0 and #$a 0. The choice q = y = 1 now shows that 
Theorem 3.1 is a special case of Theorem 3.4. 

If (M,), , ,  isf-ergodic, and thus satisfies the drift conditiolr(2.7) for suita- 
ble functions f, T/'. X + LO, a)), f 2 1, and i f  V 2 af -b v*-as. for some a > 0, 
b 2 0 and y E [ 1 ,  21, then (3.11) holds with pn = 1 and g = . v ~ ~ ' ~ ,  as one can 
easily verify, Notice that gPYU = V p / 2 8 - 1 .  Hence, by Theorem 3.4, 

for every stopping time T with respect to (FJn2, and some finite positive 
constant C. 

If (M,Jns0 is positive Harris recurrent and sl the first regeneration epoch 
associated with a small set, then a combination of Theorem 3.4 with Corolla- 
ry 3.2 yields the following counterpart of Corollary 3.3. 

COROLLARY 3.5. Let (MAngo be a positive Harris chain, al the jrs t  regene- 
ration epoch sssociated with a small set C and # be defined by (2.3). Given p > 1 
and any distribution v on X, let g: X -, [0 ,  oo) satisfy (3.11) for some  EN, 
y E [ l  , 2), a, E (0,  co), pp E [0,  oo) and s = [log2 p] . Then 

for every stopping time Twith respect to (9,)nB0 and somefinite positive constant 
C which depends only on occurring parameters. 

For our third theorem we continue to assume that (M,JnBo be positive 
Harris recurrent. We then call a function g :  X + [0, co) 1-regular, 1 E N o ,  if the 
set {P'g > t) is small for some t 3 0.  The following result shows that for 
regular functions g we obtain the same inequality for E, S , (S )~  as in Corol- 
lary 3.3. This means that regularity provides a substitute for condition (3 .1) .  

THEOREM 3.6. Given p > 1, the positive Harris recurrence of (M,),>, and 
any distribution v on X ,  let g: X + [0,  m) be such that gP is 1-regular for some 
l E No and satisfies v* ( g 3  < oo. Let al be theJirst regeneration epoch associated 
with the small set {P'g > t), # as given in (2.3) for this set, and z, ( be as defined 
earlier. Then (3.10) holds true for euery stopping time T with respect to (9n)nB0 
and some finite positive constant C depending only on occurring parameters. 

We finally turn to a discussion of the first passage times 
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where g: X + R  is now any function such that n(g) > 0. The latter implies 
n-'S,(g) + ~ ( g )  B,-a.s. by Birkhoffs ergodic theorem, and thus T(t) < oo 
P,-as. for all t 2 0. Our goal is to provide conditions for the finiteness of 
E,S&,, for p ), 1 and all t 2 0. We make the basic assumption that (MnlnBO is 
a positive Harris chain and that (an),,3o means the sequence of regeneration 
epochs associated with a small set C (so 0). Let also # and rn E N  be given 
by (2.3). 

It is obviously true that g(MT(tl) = g+(MT(,,) 3 0 and 

For i.i.d. increments g(M1), g{M,) ,  ..., a combination of (3.16) with Wald's 
equation implies for each p > 1 and t 2 0 that 

whence Egi'(M# < co forms a necessary and sufficient condition for 
ESTIt)(~)P < m for one (and then all) t 2 0. The result extends to the case of 
1-dependent stationary increments [lo] by almost the same argument in which 
Janson's equation (see (3.5)) replaces Wald's equation. However, a further gene- 
ralization to the situation described above and to general initial distributions 
v requires greater care and will be dealt: with in the next theorem for which we 
define 

L , ( ~ ) E  max g(Mn) for n 2 l .  
O C k G n  

THEOREM 3.7. Given the general situation described before and p 2 1, let 
g: X -, R be such that n (g) > 0 and v be any initial distribution with E, rrl < co 
and Ev S,, (g-) < m. Then EvPk T(t) < co for all k 2 0 and t 2 0. Provided 
that additionally a ((g+)P) < co rand E, L,, (g+)P < a ,  the following assertions are 
equivalent: 

(a) vPk ((g+)p) = Ev g+(Mk)P < co for all k 2 0; 
(b) Evpk ST(,) ( s ) ~  < cc for all k 2 0 and t 2 0; 
(c) EvpATIo,@)P < co for all k 2 0. 

If v equals the stationary distribution a, the previous result simplifies 
because n P  = 7~ for each k 2 0: 

COROLLARY 3.8. Given the general situation described before and p 2 1, let 
g: X + R be any function mch that n @) > 0. Then E, al < a and En S,, (g-) < oo 
imply E, T (t)  < oo for alI t 2 0. Iffirthemtore En Lo, (g +)P < co , then the following 
assertions are equivalent: 

(a) n((g+)P) < 03; 
(b) E, ST(, (g)P < m for all k 2 0 and t 2 0; 
(c) E,ST(o,(g)P < oo for all k 2 0. 



We note, though trivial, that in the previous corollary n((g+)*) < or, also 
implies assertions (b) and (c) when n is replaced with any v < cn for some c > 0. 
The relevance of this remark lies in the fact that, by (2.4), this condition holds 
for all 4pk, where k 3 0 and # is a minorizing distribution associated (via (2.3)) 
with any small set C. On the other hand, even more can be concluded in this 
situation. If v = 4, then E, a, < co and E4 So, (g-) = a ( g - )  E4 a, < rn auto- 
matically hold by the positive Harris recurrence of (Mn)n3 and the assumption 
R (g) > 0. Moreover, x ((g + )p) < m implies 4 ((g ')3 < CXI and 

Hence the following corollary is an immediate consequence of Theorem 3.7. 

COROLLARY 3.9. Given the general situation described befiore and p 2 1, let 
g: X + R be any function such that n (g) > 0 and 4 be any minorizing distribution 
associated with a smalE set. Then E4,kT (t] < KJ fur all k 3 0 and t 2 0. If  
furthermore n ((g')P) < a, then the following assertions are equivalent: 

(a) 4pk ((g+)P) = E,  g+(Mk)P < co for all k 2 0; 
(b) E + p  S,, @)P < ao for all k 2 0 and t 2 0; 
(c) E4pc ST(,, (g)P < a, for all k 2 0. 

4. MARTINGALE DECOMPOSITIONS 

In the following we consider an MRW (M,, S,(g)),,,, where g:  X -+ R is 
supposed to be n-integrable, i.e. ~ ( g )  < a. Given a stopping time T, the first 
step towards finding bounds for the moments of S,(g) is to decompose it into 
a martingale WT (g) and a remainder R,  (g). Put g 'E g - n (g) and note that 
S, (g) = Sn (g) - nn (g) for n 2 0. 

There are various ways of extracting a martingale (W,(g)),,, from 
(Sn(g))n,, such that (M,, W,(g)),,, is also an MRW. The first one is based on 
the common method of conditional centering. Suppose that all g(M,) are in- 
tegrable under a given P,, which is particularly true if v*(g) < m. Put 
R, (g) sf g (MO)  - g (M,). Then (g (M,) - Pg ( M ,  - ,)),,, forms a sequence of mar- 
tingale differences under P, and we have 

with 
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being a B,-martingale. Since the sum Sn(Pg) is of the same type as S, (g) but 
with Pg instead of g, an iteration leads to 

for each pn 2 1, where PD g g. Noting that E, IPk g (Mn)I < E, [g(M,,+k)l < co 
for all n, k 3 1, each ( w , ( P ~ ~ ) ) , ~ ,  forms a By-martingale with respect to 
(Mn)n3 O, and so does 

m - 
W ~ ~ ] ( ~ ) E  w , ( P ~ ~ ) ,  n > O  for each m > 0 .  

k = 0  

A second way of getting a martingale decomposition under a given P, works 
in the case when there is a v-integrable solution 8 to the Poisson equation 

$ - p i  = 4 

for g .  Zf (M,),,, is Harris ergodic and satisfies the drift condition (2.7) with 
f = lgl v 1 and some v-integrable V, then g En,, Pn ij = En,, (Pn g - ,r (9)) 
forms indeed such a solution because, by (2.9), 

and 
v ( d ) < K f ( v ( V ) + l ) < ~ ;  

see aIso [12], Theorem 17.4.2. Notice that the previous conclusions are true as 
well for pk i j  = xn3 Pn g for every k 2 1. In particular, 8 (x)  < co vPk-as. for all 
k 2 0, and thus n-as. because xk,02-k-1 vPk and x are equivalent distribu- , 
tions by the Harris ergodicity. Now c j  = 8-  Pd gives the decomposition 

into the Pv-martingale ( W n ( ) )  and the Pv-integrable remainders 
(R,(Pd)),>,; see also [12], Theorem 17.4.3. Notice that Wn (pk g) = Wn(Pk g )  
and R, (P g) = R, (Pk g )  for all k, n 2 0. Hence 

as well as 

for n 2 0.  Since furthermore lim,, , Sn (Pm g) = nx (g) Pv-as. for each n 2 1 
under (2.7) with f = Igl v 1, we see that, under appropriate conditions, decom- 
position (4.4) can also be obtained as the limit of (4.3) as m + a. 
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In the case where v = n and W, (81, Rn (PG) are square-integrable, decom- 
position (4.4) can be used to show asymptotic normality of S,, (g) /n1/2;  see [4 ] ,  
[5], [a], [12], 1131. For the same purpose, Maxwell and Woodroofe [ll] give 
yet another decomposition of S,(g) obtained by solving the perturbed Poisson 
equation 

(1 + E )  Qe- P i ,  = 0 
for E > 0. The solution is 

14-71 

where 

and all 8, (M,)  are Pv-integrable if supn3, (1 + E)-" E ,  g (A43 < co. Now 

(4.8) s n  (9) - nn (g) = W,  t4,) + ES, (i,) + Rn ( P i 3 ;  
see [ll], equation (6). Notice that 

for all n 2 1 ,  whence (4.8) may be rewritten as 

The martingale decomposition (4.4) based on solving the Poisson equation 
for g can be used to obtain Wald's equation for MRW's. This has been done by 
Fuh and Zhang [7], see also [6] for another approach for uniformly ergodic 
(Mn)n30. We state the result for the case of bounded stopping times Tin which 
it follows immediately by an appeal to the Optional Sampling Theorem (see 
[7], Corollary 1). 

LEMMA 4.1. Given an arbitrary distribution v on X ,  Iet g: X + R satisfy 
~ ( ( g l )  < CO, vPk (IgI) < GO ~ n d  vPk(lhl) < oo for all k 2 0, where 

Then 

for every bounded stopping time T for (M,Jn3 o .  

Notice that if g is nonnegative as will be the case for most of our results in 
Section 5, then, by monotone convergence, (4.10) extends to unbounded stop- 
ping times T in the following way: Providing additionally Ev T < m, 
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and the right-hand side is finite iff the Iimit of Evh(MTAn)  is finite. Sufficient 
conditions for this to hold may again be found in 171. An extension of Wald's 
second identity to MRW's is also proved there by using a suitable martingale 
decomposition of W, (hI2. We refrain from a statement here because we will not 
make use of this identity. 

5. PROOFS 

Throughout the whoIe section C denotes a generic positive constant which 
may differ from line to line, but which does not depend on occurring random 
variables or their distributions. 

In order to prove Theorem 3.1 we first give a lemma concirning the drift 
condition (3.1). 

LEMMA 5.1. if (3.1) holds, then 

(5.1) (P" g)q < u, gq + flq vv-a.s. 

for each q > 0 and suitable constants ag E [0, 1) and P, E [0, m). 

Proof .  The assertion follows because (3.1) implies for each q > 0 

(Pm gl4 6 ( a ~  + B~ (ag + P ) ~  l[g > 28/(1 -101 +p(L+ 1-0: 1)' 

P roo f  of Theorem 3.1. Without loss of generality let v* ( g P )  < oo and 
E, TP < co because there is nothing to prove otherwise. Suppose first m = 1 in 
(3,l) and consider decomposition (4.1). Then a combination of (3.1) and 
Rn (Pg) b Pg (Mo)  leads to the inequality 

for all n 2 1. We consider the martingale transform 

An application of Fatou's lemma, Burkholder's inequality and (5.1) give 
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so that with (5.2) we get 

Ev ST (SF G 3' (1 -a)-' (Ev I WT (g)IP + Ev (PdP(Mo) + Ev TP)  

< C (&ST (g2lPl2 + Ev gP (Mo) + E,P gP  (Mo) + Ev TP) 

< C(EVST(g2)p12 +v* (gP)+Ev TP).  
- 

If 1 < p d 2, E ,  ST (g2)p12 < EEy S, (gp ) ,  and thus 

which is (3.2) for m = 1. 
If 2k < p < 2k+1 for  EN, use the previous estimation k further times 

(successively for E, ST (gZ)p12, . . ,, Ev ST (g2k)p i2k ,  which is possible by Lemma 5.1), 
to obtain 

and thus again (5.4) because 0 < p/2k+1 6 1. 
If m 2 2 in (3.1), then put 

n -  1 

S r , , ( g ) s  x g(Mk,+,)  for l < r < m , n > l  
k = O  

and 

T, inf{n 2 1: nm+r 2 T } .  

Notice that z, is a stopping time with respect to (Fmn+r)n30 because 

for all n > 1 and 1 < r < in. Moreover, (M,+,). is Markov adapted to 
(Fmn +,), with transition kernel P" and z, 2-' - P, (M,+ ,E . )  < Cv*. 
Consequently, (5.4) applies to each S,,,,(g), 1 < r < m, giving 

Finally, use mr + r  < T+ rn- 1, and thus r=, Sr,*, (gP) < ST+,- ( g P )  to con- 
clude 

which is (3.2). ar 
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Proof  of Corol lary  3.3. In view of (3.9) it suffices to examine 

E{ (@IP = (EV S ~ i  (Q)' + E@ b)P)/2q 
But Eg S,, (g)P = n ( g 4  E4 al (use (2.4)) and Theorem 3.1 imply 

Ev @IP G C ( E v  So1 +m- 1 (gP) f V* (Q*) + E v  0:) 

for a suitable constant C. Furthermore, 

Ev(sm,.m-,Ig")-s,,~") = 4p(gP)+,.-+&Pm-1(gp) G b - 1 ) n ( g P ) .  - 

Condition (3.10) now easily follows (of course, in general with a different C). 

For the proof d Theorem 3.4 we again need a lemma that extends the drift 
condition (3.1 1) to arbitrary q 6 p. 

LEMMA 5.2. If (3.1 1) holds, then 

(5.5) P'" gqy < gQY - a,, g'l + pq v*-U.S. 

for all q ~ ( 0 ,  u] and suitable uq E (0 ,  a ) ,  /Iq E [0, CO). 

P r o  of. Fix an arbitrary g~ (0, v). The following estimation uses twice 
I the subadditivity of x w xQlv for x 3 0,  which particularly implies 

(x -y)41" < xQt2 - yQlv for 0 < y < x. It follows on the event (guy - txvgV > 0 )  that 

while Jeensen's inequality and K g  supd (a$" $ - gqy) < a imply on 
{guy - go d 0 )  

Both inequalities combined prove (5.5). H 

Proof of Theorem 3.4. Without loss of generality let V* (gPYq < 
and E, TP < a because there is nothing to prove otherwise. We only consider 
the case m = 1 in (3.1 1) (and thus (5.5)) because the extension to general m fol- 
lows by a lmst  the same argument as in the proof of Theorem 3.1, and can thus 
be omitted. A combination of (5.5) and (4.1) shows that for all q ~ ( 0 ,  v] 

which in turn implies 

(5-6) Ev S ~ ( g 4 ) '  d C ( E v  I W ~ ( g " ) l ~  +v* (gqyr)+Ev T) 

for r > 0; in particular, 

(5.7) Ev ST @)' 6 C (Ev IWT ( @ " ' I P +  V* (gPY) + Ey TP). 
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Using PggY < gqY + PQ for each q E (0, q] and Burkholder's inequality, we obtain 
by a similar estimation to that in (5.3) 

If p E (1, 21, then (3.12) follows because E, ST @Zv)p'Z 6 Ey ST (gP2). Otherwise, 
a repeated use of (5.6) and Burkholder's inequality lead to 

which together with (5.7) and (5.8) yields the asserted inequality (3.12). FA 

Proof  of Theorem 3.6. Let 4, r ,  c be given by (2.3) for the small set 
C { P 1 g p  > t ) .  With the help of Corollary 3.2 it suiEces to prove that 

for a suitable C depending only on occurring parameters. We will do so by 
induction over I. Once again, without loss of generality we assume v* (gp) < co 
and, for simplicity, also r = 1 (strongly aperiodic case). The extension to the 
case r > 1 requires no extra argument but is more technical because of a more 
unpleasant definition of the regeneration epoch a,. 

Assuming I = 0, let x,, be the successive visits to C and (Z,),,, be the 
sequence of i.i.d. Bernoulli(c) variables describing the outcomes of the coin 
tosses each time the set C is hit and thus determining the first regeneration 
epoch al. Namely, a, = x,, where Q 3 inf{k 3 1: Z ,  = 1) (see [ 3 ] ,  p. 151).' 
Observe that gP (M,) < t for a11 n outside the random set (x, , x,, . . .) . Hence 

which leaves us with a further estimation of the final sum on the right-hand 
side. To this end, by using the (infinite) Minkowski inequality, the independence 
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of and g (M,J for each n 2 1, and gP(Mx,) 6 Sul (gP) for n = 1, . . ., e ,  we 
obtain 

and thus 

where C is a constant which depends on p, c and t and which as before may 
vary from line to line. 

For the inductive step I - 1 + E ,  we first observe that if (P' gP > t }  is small, 
then PgP satisfies the same condition with I- 1. Moreover, for q~ [ I ,  p ] ,  
(Pgq)l/" (Pgp)ll%a.s. implies that 

and therefore that Pgq is (l-1)-regular for every q~ [I, p ] .  Again, using the 
martingale decomposition (4.1), we obtain 

We apply the inductive hypothesis to Ev S,, (Pg)P (i.e. (5.9) with P g  instead of g) 
which, together with the inequality (PgF G PgP and KP = X, leads to 

(5.1 1) Ev S,, (PdP < C (E, S,, ((PdP) + ~ ( ( P s ) ~ )  E$ a1 + v* ((pgIp)) 

G c (Ev So, (PgP) + x (gP) E& 81 + v* (gP)). 

We also have 

(5.12) Ev Saj (PgP) = Ev ( C 4 m 1  3 9 Pgp (Mi)) = Ev ( C 3 i )  gP (Mi + I)) 
i 2  1 iB  1 

G Ev S,, + I  (gP) G Ev S,, (93 + x(gP), 

which, when combined with (5.11) and Ev,g(Mo)p < 2v4(g3, finally shows in 
(5.10) that 

for a suitable constant C. 
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Thus it remains to derive a bound for the martingale term E,  IW,, (g)lP. If 
2"' < p G 2Vor s E N, a simijar estimation as in the proof of Theorem 3.1 (see 
(5.3) and the subsequent argument) shows that 

Ev I K, (811' C CE, ( 2 (g2 (MA +(&I2 (M.- A)ri2 
n =  1 

4 C (E .  S., @')"' + E* s n ,  ( ( ~ g ) ~ ) ~ ~ ~  + Evp gP(M0)) 

d C (E,  IW,, (g2)lpt2 + E y  SQ1 (PgZ)p/2 + v* (gp)) - 
s-1 

d . . . < C ( E ,  1 W,, (g2w-1)lpiZB-' + Ey Sul ( ~ ~ ~ ~ ) p / ~ ~  + v* ( g p ) ) ,  
i = O  

Since 0 < p/P < 1, we have 
28- 1 2 p/Z8 E, IK, (g2'- l)~''~'- ' C C (E,  SC, (g28)pi2s + Ev SmI ((Pg ) ) + EvP g p  (M~)) 

6 C (E. S,, (93 + E, S., ((Pg2'- ' )p '2 '  ') + v* (gp)) 

which gives 

Putting this into (5.13) and using once again (5.12), we arrive at the asserted 
result. rn 

Proof of Theorem 3.7. Let us define Skp@) Sn@)-Sk@) for 0 < k < n. 
In order to show that E, T (t) < oo put further z (t) inf {n 2 1 : Sam (g )  > t) 
and observe that T (t) < a,(,). Since (Son (g)), 30 has 1-dependent stationary in- 
crements under Pg, we have Eg z (t) < C (t + 1) for all t > 0 and some C > 0; see 
[lo], Theorem 2.2. Moreover, (an)n2o has i.i.d. increments under Pg, whence we 
infer with Wald's identity that 

for all t 20. 
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,In order to get the same result under ByPk for k 3 I, consider the MRW 
(Mn, Sk,n(g))nak under P,, where M k  has distribution vpk under P,. Define 

& ( t )  inf (n z k: Sk," (g) > t )  and z, ( t )  3 id{n > k :  S,,,,, (g] > t }  

for t 3 0. Then E , p  T ( t )  = E,  T, ( t )  and T, (t) < a ~ ~ ,  for all t 2 0. Moreover, we 
again have Ed T~ ( t )  < C ( t  + I) for all t 2 0 and some C > 0, and furthermore 

E , ( C ~ + ~ - ~ )  d E , O ~ + ~  = E,tr,+kE4u1 < a, 
- 

as well as 

Consequently, an analogous estimation as in (5.14) leads to 

From now on assume that additionally ~ ( ( g ' ) ~ )  < c~ and Ev L,, (g')P < co 
hold true. 

(a) - (b). In the following estimation we will make use of the independence 
of {T ( t )  > an-r )  and ((g+)P) for each n 2 1, which is a consequence of 
the construction of the regeneration scheme (see 131, p. 151). We first prove (b) 
for k = 0, i.e. E, ST(,, {s)~ < co . By (3.16), it suflices to prove E ,  LJ+(M,[,,)~ < CQ 

which follows from 

= Ev La, (gi)' + 71 ((g+)') E4 0 1  (T (t) + I) < co . 

Proceeding with a proof of E, ,~~+(M, ( , , )P  < co for k 2 1 we consider 
again the MRW (M,, S,,,(g)),,, under P, and utilize the fact that 
EvpkST,tl ( s ) ~  = E, Sk,Tk(t) (g)P for all t 2 0. Since 

13 - PAMS 23.2 
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a similar estimation to that in (5.15) now yields 

Since (b) =. (c) is trivial, we turn to the implication jc) * (a). Notice that 
v((g+)P) < E,L,, (g+)p < m, while for k B I we infer from the left-hand side 
inequality in (3.16) that 

P roo f  of Coro l l a ry  3.9. Here it suffices to note that if v = @ in Theo- 
rem 3.7, then (5.15) simplifies to 
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