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Abstract. In this paper, we present a more direct way to compute 
the SzeggJacobi parameters from a generating function than that in 
[S] and [6] .  Our study is motivated by the notions of one-mode in- 
teracting Fock spaces defined in [I] and Segal-Bargmann transform 
associated with non-Gaussian probability measures introduced in [Z]. 
Moreover, we examine the relationships between the representations 
of orthogonal polynomials in terms of differential or difference opera- 
tors and our generating functions. The connections provide practical 
criteria to determine when functions of a certain form are orthogonal 
polynomials. 
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1. INTRODUCTION 

The theory of orthogonal polynomials [9], [23] has a long history with 
a wide range-of applications, for example, to stochastic analysis [13], [I61 and 
mathematical physics [lo]. Its connection with the notion of one-mode interact- 
ing Fock space has been recently examined by Accardi and Boiejko [I]. In the 
papers by the first-named author [2], [3] and the authors [4], important 
aspects related to Accardi-Boiejko's work have been recently studied from the 
viewpoint of the Segal-Bargmann transforms associated with non-Gaussian 
measures. The results in this paper will be useful for relating the analysis of the 
Segal-Bargmann transform to quantum probability theory [19], [20]. 

Let p be a probability measure on R with finite moments of all orders such 
that the linear span of the monomials 2, n 2 0, is dense in I? (p). Then we have 
a unique complete orthogonal system {P,),"=, such that P, (x) is a polynomial 
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of degree n with leading coefficient 1, which is called a monic polynomial. It is 
well known [9], [23] that (P,),"=, satisfies the following recursion formula: 

where a, E W, w, 2 0 for n 2 0 and, by convention, cu, = 1, PI, = 0. The num- 
bers an and w, are called the Szego-Jacobi parameters of p. Define a sequence 
l = by 

For such a sequence A, we can define the associated Hilbert sfice T, as the 
Ez-space with weight A. The annihilation operator A and creation operator A* 
acting on rl are defined from on. We point out that in general the pair {A, A*) 
is different from the pair {b ,  b*)  of the bosonic annihilation and creation 
operators. The neutral operator a, is defined from {a,) and the number opera- 
tor N. The Hilbert space rA equipped with (A, A*, a,) is called the one-mode 
interacting Fuck space. See [I], [2], [4] for explicit definitions of r,, A ,  A*,  N, 
and c t ~ .  

In [I], it is proved that there exists a unitary isomorphism U: T, -, L2 (p) 
such that the following intertwining formulas hold: 

(1) U!D0 = I ,  
(2) UA* U* P,  = P, + ,, 
(3) U(A+A*+aN)UX = X ,  

where @, is the vacuum vector and X is the multiplication operator by x in 
I? (p). This unitary isomorphism U is canonical in the sense of condition {3), 
namely, under U, the classical random variable x on I? (p) considered as the 
multiplication operator X can be decomposed into the sum of the operators A, 
A*, and a, on the interacting Fock space rl. In this sense, U provides a natu- 
ral starting point to develop probability theory from the noncommutative 
algebraic point of view. In fact, central limit theorems and random walks on 
noncommutative algebras are examined as an application of one-mode inter- 
acting Fock spaces in [12] and references cited therein. 

The transform associated with the Gaussian measure was introduced ori- 
ginally in [7], [21], [22]. The generating function for the Hermite polynomiaIs 
plays important roles as the integral kernel function. This integral transform, 
so-called the SegaI-Bargnaann transform, has been extended by many authors 
within Gaussian analysis. Consult the paper by Gross and Malliavin [I 11 and 
references cited therein. Motivated by Accardi and Boiejko [ I ] ,  the first-named 
author has extended the Segal-Bargmam transform to the one associated with 
non-Gaussian measures to study intertwining property, as (1H3) above, among 
classical random variables on E(p] and creation, annihilation and neutral 
operators on the I?-space of holomorphic functions [2]. As one of the interest- 
ing applications, the classical Gaussian and Poisson random variables can be 
represented as the sum of b and b*, and that of by b* and N ,  respectively. This 
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point of view shares the same spirit as Hudson and Parthasarathy [IS]. In 
addition, if "appropriate" integral kernel functions are chosen, the bosonic 
expressions of the classical Gaussian and Poisson random variables can be 
realized on the common J?-space of holomorphic functions with respect to the 
Gaussian measure ,i on C, XL2 (C, ii). This case study has been considered in 
[ 5 ] .  The q-Gaussian [18], q-Poisson [3], and free Gaussian (q = 0) [8] cases 
have been also studied. 

The notion of generating function has several different definitions, and 
hence many of classical formulas in [9], [lo], [23] should be modzed in case 
by case for applications. In particular, to obtain "appropriate" generating func- 
tion as an integral kernel for the associated Segal-Bargmann transform with 
a given probability measure and noncommutative realizations of classical ran- 
dom variables, we need alternative methods to remove such inconvenience in 
a unified manner. Moreover, in order to keep good contacts with the theory of 
interacting Fock space, it is a crucial point to derive the Szego-Jacobi parame- 
ters from the generating function 151, [6]. 

In this paper, we will adopt notions of pre-generating functions, generating 
functions, the multiplicative renormalization, and related theorem from our 
previous papers [5 ] ,  [ 6 ] .  

By a pre-generating function for p we mean a function q ( t ,  x) having 
a power series expansion in t near t = O 

where gn(x) is a polynomial of degree n for each n 2 0 satisfying 

lim sup I lgnl lipb, < oo . 
n+m 

The rnultipZicative renormalization of a pre-generating function cp (t, x) is de- 
fined to be the function 

where E, denotes the expectation in the x-variable with distribution p. Then 
$It ,  x) is also a pre-generating function. A generating function for p means 
a function $ ( t ,  x) given by 

with some nonnegative coeEcients {a,). Here {P,)  is given by equation (1.1). 
Inspired by Hida's multiplicative renormalization in the theory of gene- 

ralized Brownian functionals in [13], [14], called white noise theory nowadays 
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[17], we have given a systematic way to find generating functions for given 
probability measures in [ 5 ] ,  [6] .  Then the following question arises naturally: 

Q m n o ~ .  How can we obtain the Szegij-Jacobi parameters directly from 
generating functions without deriving the PnYs? 

One of the answers can be found in the following theorem proved in [6]. 

THEOREM 1.1 (Theorem 2.6 in [6]) .  Let $ (t, x) = z" a, P,, (x) tn be a gen- n = o  
erating fisnction for p. Then 

where aPl  = 0 by convention. 

The basic idea of this theorem is the following. Once we have a generating 
function $ ( t ,  x)  for p, we can find the power series of E, [$(t, .)'I and 
E, [ x ~ ( t ,  -)'I. Then by Theorem 1.1 we can find an and the Szegij-Jacobi 
parameters a, and o,. We remark that in [6] the Gram-Schmidt process is not 
used to get P i s .  

However, there are stiIl d=culties in applying Theorem 1.1 to certain 
examples. That is, if the integrals E, [$ (t, -)'I and E, [x$ ( t ,  .)2] are very com- 
plicated or even worse cannot be calculated explicitly, then Theorem 1.1 would 
not be practical to get a, and wn from the computational point of view. This is 
the case in examples given in Sections 4 and 5 in [6] .  

The first purpose of this paper is to present a simpler way to calculate 
Szegii-Jacobi parameters from a generating function without using explicit 
information about polynomials Pn's. 

It is known that classical orthogonal polynomials associated with con- 
tinuous measures can be represented in terms of differential operators as fol- 
lows. Suppose that w (x) is a smooth positive density of a probability measure 
p on an interval I = (a,  b)  c R corresponding to classical orthogonal polyno- 
mials. Then monk orthogonal polynomials have the following Rodorigues type 
representation: 

holds for n 2 0 where the conditions 
(PI) X (x) is a polynomial with deg X 6 2, 
(P2) k, is the leading coefficient of w (x)-  D: (X  (xr w (x)), 
(P3) D$[X(x)" w(x) ]  = 0 (0 < k < n) for x  = a and x = b y  
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are satisfied (see [9], p. 146). In general, a given function of the form 

could not be polynomials and not satisfy the condition (PI). 
The second purpose of this paper is to discuss such representations of the 

polynomials Pn(x) in terms of differential or difference operators for general 
probability measure p by using generating functions. This consideration pro- 
vides not only Rodrigues formulas but also is useful to know under what 
conditions on our generating functions and the Szegii-Jacobi a func- 
tion of the type in equation (1.6) becomes orthogonal polynomials. 

The present paper is organized as follows: In Section 2, we shall give a new 
method to directly obtain SzeggJacobi parameters from generating functions. 
In Section 3, we will discuss the relationships between our multiplicative renor- 
malizations of generating functions (pre-generating functions) and the differen- 
tial operator representations of orthogonal polynomials. In Section 4, the case 
of the difference operators will be examined. In Section 5, we will apply our 
method to particular examples including Gaussian, gamma, beta-type, Poisson 
and negative binomial distributions. We emphasize here that our approach is 
not based upon known formulas in the literature 191, [23]. 

2. SZEGO-JACOBI PARAMETERS AND GENERATING FUNCTIONS 

In the previous section, we have introduced generating functions and di- 
scussed how to use them to compute the Szego-Jacobi parameters an and m,. 
As we mentioned, Theorem 1.1 has no problem from the viewpoint of the 
general theory, but it has practical dficulties for certain particular examples. 
So we shall introduce another way to calculate them directly from a given 
generating function. 

2.1. General properties. Throughout this paper, p is supposed to be a prob- 
ability measure on R with finite moments of all orders such that the linear 
span of the monomials xn, n 2 0, is dense in L? (p) and the additional assump- 
tions will be stated if necessary. 

Suppose that $It ,  x) is a generating function for monic orthogonal poly- 
nomials (P,(x)) given by 

converging absolutely around (t, x) = (0, 0). 

Remark. It is known [9] that there exists a positive integer N such that 
R, = 0 for all m > N + 1 if and only if the measure p is supported by the finite 
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set (0, 1, . . ., N). For instance, the binomial distribution is exactly the case. We 
are not interested in such situations in this paper and they can be treated with 
some modifications if necessary. So we will consider situations under the con- 
dition an > 0 for any n 2 0 in this paper, which is equivalent to the condition 
An > 0 for any n 3 0. See [2], [4] and the condition (Hz) in Section 2.2. 

In order to derive the Szegli-Jacobi parameters directly from a generating 
function (2.11, let us define functions A (x), B (t), C(t) and sequences {b,] , (c,) 

by 

Since B (I) = Enm==, an P, (0) t" and C (t) = x:=o an PL (O) tA, we obtain easily 

Then it is easy to see the following by the recursion formula for Pn(x) in 
equation (1.1). 

PROPOSITION 2.1. Suppose that $(t, x) is a generating function of the form 
(2.1) for p. Suppose bn c,  - # bn - c,, . Then the Szeg&Jacobi parameters {ctn , con) 
are the unique solution of the system of the linear equations 

2.2. Special cases of pre-generating functions. In Section 5, we shall discuss 
particular examples associated with well-known probability measures to ap- 
peal that our general approach provides a more efficient algorithm to obtain 
Szego-Jacobi parameters from generating functions than the method through 
Theorem 1.1. For this purpose, consider a pre-generating function of the form 

and the associated multiplicative renormalization given by 
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under the following analytic conditions (HI) and (H2): 

(HI) g (t) = C,"=, en P i s  an analytic function near t = 0 and gl # 0. 
m (H2) h ( x )  = Enyo h, Y' is an analytic function near x = 0 such that h ( tx)  is  

analytic in x on the support of p for It1 < tl  with some t ,  > 0, ho = 1 and 
hn # 0 for any n 2 1. Furthermore h(x )  satisfies 

(2.7) Iim sup (lh.1 I I X ~ I I ~ + J ' "  < m . 
n- m 

- 

We can easily see that the condition (2.7) is equivalent to 

for some to,  0 < to < t,. I f  hn > 0 for any n 2 0, then the condition 
E, Ih(& to x)12 < c~ for some to > 0 implies (2.7). 

THEOREM 2.2. Assume that h(x)  and Q (t) satisfjl the conditions (HI) and 
m2). Then we have the following assertions: 

(1) cp ( t ,  x )  = h ( ~ ( t ) x )  is a pre-generating function for p. 
(2)  Its renormalization +( t ,  x )  is a generating function for p if and only ij 

E, [$ ( t ,  a )  $ (s ,  -)I depends only on ts. 

P r o  of. We see that 

1 an+l 
lim - - @ ( tY+l q(t, x )  = lim- 
t-+O tn ,xn+l cp ( t ,  x )  = 0, 

t-0 tn 

Therefore gn(x) in equation (1.2) is a polynomial of degree n with the leading 
coefficient ~vln !. Since 

holds, the condition (2.7) implies (1.3). Thus we have the assertion (1). The 
second assertion is obvious by Theorem 2.5 in €67. H 

Since E, [h ( Q  (t) -)I is a function in t with Q (0) = 0 by ( H I )  and p is a prob- 
ability measure, it is easy to see that 

lim 
I 

= 1. 
t-o E,  [h (e ( t)  '11 
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Hence we get 

Therefore we have 

PROPOSITION 2.3. Suppose that a pre-generating function cp (t, x) is given by 
(2.6) under the conditions (HI) and (H2). Then 

(2.8) A ( x ) = h ( p l x ) ,  B ( E ) =  
1 

and C ( t )  = h l ~  ( t )  B (E), 
E ,  [h (@ (4  91 

where p, = ~ ' ( 0 )  and hl = h' (0). In addition, a, = p? h, and cn = hi zi=, Q, b,-,. 

By Proposition 2.1, we have 

THEOREM 2.4. Suppose that a pre-generating function q ( t ,  x) is given by 
(2.6) ~rader the conditions (HI) and (H2) and bncn- # b,- c, fur any n 2 1. 
Then the Szegii-Jacobi parameters (a,, w,,) are the unique solution of the system 
of the linear equations 

where en = hl C;=, ek bn-,. 
It is well known that the measure p is symmetric if and only if a, = 0 for all 

n 3 0 .  In this case, if ~ ( t )  is an odd function, then B ( t )  is even and C ( t )  is odd. 
Therefore, the above equations become the following: 

Examples will be given in Section 5 to use results in this section. 

3. ORTHOGONAL POLYNOMIALS A N D  DIFFERENTIAL OPEXATORS 

In this section, we discuss representation of orthogonal polynomials as- 
sociated with continuous measures similar to (1.5) for the classical cases in 
connection with generating functions. In general cases, we cannot assert the 
condition (PI). In the next section, we shall consider the corresponding case of 
discrete measure. 
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THEOREM 3.1. Suppose that a probability measure p on an interval (a ,  b) 
has a smooth density function w(x)  and $( t ,  x) is a generating function of the 
form in equation (2.1). Furthermore, suppose that a smooth function q, (x) satisfies 
the conditions 

1 ' 

-0: (4. (4 w b ) )  E b) 
w (4 

and 
Dk,(q,(x)w(x))=O at x = a  and x = b  

- 

for any k ,  0 < k < n. Then P,(x) can be represented as 

with some constant kn if and only if 

with same constant dn. In this case, d ,  and kn are related by 

Pro of. By the boundary condition, the n iterations of the iiltegration by 
parts provide 

b 1 b 

J $ ( t ,  XI D: ( q n  ("1 w ( X I )  & ( X I  = Cl (f, Dl, (qn OC) w ( X I )  d~ 
a a 

Hence, by the relation 

we see that (3.2) is equivalent to 

which means 

since (P,) is a complete system of orthogonal polynomials. Thus we have (3.1). FA 

5 - PAMS 23.2 
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Remark.  We make an important: remark on Theorem 3.1. The fact, 
a function 

is a polynomial of degree n, is not an assumption but a conclusion. If we know 
this fact a priori, then the assumption, it belongs to I? b), is automatically 
satisfied. However, when the above Rodrigues type expression is given first, it 
cannot tell in general if the condition (Pl) is fulfilled or no&. 

Now we consider the special case when ~p ( t ,  x) = h (e( t )x)  as given by equa- 
tion (2.6). In tbis case, the generating function is given by $ ( t ,  x) = B(t) h (e (t) x)  
and equation (3.2) becomes the following equation: 

Next, we apply Theorem 3.1 to this special case with q,(x) of the form 
qn (x )  = W, (x)/w (x). We derive the following theorem. 

THEOREM 3.2. Suppose that p is a probability measure on an interval (a, b) 
with density function w(x) and $ ( t ,  x)  is a generating function for p arising 
from p (t)  and h (x) satisfying (HI) and (H2), respectively. Assume that w, (x )  is 
a smooth function with support in [a,  b] such that 

and 
~ : (w , ( x ) )=O at x = a  and x = b  

for any 0 < k < n. Then the orthogonal polynomials ( P ,  (x ) )  for the measure 
p can be represented by 

1 
(wn (XI) '" = kn w (x)  

with some constant k ,  if a d  only if the equality 

b 

j htn) (p (t)  x) w, (x) dx = 
a 

holds for some constant d,. In this case, d,  and k, are given by 

n ! 
(3.61 d n = n ! e v h ,  and k=(-1)"-. 

A n  
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Pr  o of. The equivalence of the conditions in equations (3.4) and (3.5) follows 
from Theorem 3.1 and the remark preceding the statement of the theorem. To 
find the value of d,, note that the left-hand side of equation (3.5) has the limit 

lim j h(") (e  (t) x)  w, (x) d x  = J hen) (0) w, ( x )  dx = hrn) (0) = n ! h,. 
t + O  fl a 

On the other hand, note that B (0) = 1 and lim,,, p (t)/t = g,. Hence the right- 
-hand side of equation (3.5) has the limit 

Therefore, we get n! h, = d,,/g", and so d ,  = n! Q",". With this value of d ,  we 
can use equation (3.3) to find that 

This theorem wiIl be useful to study particular examples in Section 5. 

4. 0RTHQC;rONAL POLYNOMIALS AND DIFFERENCE OPERATORS 

Analogously to the case of continuous measure in Section 3, one can 
represent orthogonal polynomials associated with a discrete probability mea- 
sure with positive point masses w ( x )  at x E No : = (0) UN in terms of difference 
operators. For this purpose, we need to introduce the forward difference 
A ,  and the backward difference A- by 

A+ u(x)  = u ( x + 1 ) - u ( x )  and A -  u ( x )  = u ( x ) - U ( X - I ) ,  

where we use the convention u ( x )  = 0 for x  < - 1 for any function u. It is not 
hard to see the formulas 

(4-4.1) A", (x - n) = A! u  ( x )  

and 

(4.2) A",u(x)v(x)] = A$ u ( x + n - k )  A y k v ( x + n - k ) .  
k = O  

Then the following theorem is derived. 

THEOREM 4.1. Let $ (t, x )  be a generating function for a probability meamre 
p O R  NO and w (x)  = p ( { x ) )  for x  E No. Suppose that a function q,, (x )  on No satis- 
fies the conditions 
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and 

A$(q,w)(x)=O a t x = O a n d x = m  

for any 0 < k < n. Then P, can be represented as 

with some constants k ,  if and only $ 

with some constant d,. In this case, d, and k, are related by d,, = (- l)"A,, a, k,. 
Pro of. By the same reason as in the continuous case, for a function 

Q, E L2 (p) the condition 

is equivalent to Q, = P,. (It means that a function Q, is a monic orthogonal 
polynomial with respect to the measure p.) Therefore, 

holds if and only if 

holds with the help of the formulas in equations (4.1) and (4.2). This completes 
the proof. 

For the discrete measure case, we shall restrict our consideration to the 
case of h(x)  = ex from now on, which can cover the cases of Poisson and 
negative- binomial distributions discussed in Section 5. Similarly to the con- 
tinuous cases, we have the following theorem. 

THEOREM 4.2. Let p (w (x )  = p ({x))) be a probability measure on No such 
that 

$ ( t ,  x)  = B (t)  edoX, where B (t)  = 
1 

E p  [ee(')"] ' 

gives a generating function for p with ~ ( t )  satisfying (HI). Suppose that there 
exists a family of probability measures p,, (w,(x) = ~({x))) on No such that 
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and 

A'; (w, (x)) = 0 at x = 0 and x = cc 

for any 0 < k < n. Then the orthogonal polynomials {P,(x)) for the measure 
p can be represented as 

1 
P, (x) = - kn ,,, dl (w. (XI) 

with some constant k, i f  and only if the equality 
m d" tn C edtlX qn (x) w (XI = 

X = O  B (t)  (&*' - 1 y' 
holds for some constant d,. In this case, d ,  and k,, are given by 

I 5. EXAMPLES 

5.1. Conthuons measure ease. 

EXAMPLE 5.1 (Gaussian distribution). Let us consider first the case of 
Gaussian measure with mean 0 and variance a2 with density 

It has been proved in [5 ]  and [6] that a generating function $( t ,  x) for p is 
given by a pre-generating function cp (t, x) = etx with e (t)  = t and h (x)  = 8. 
Then A (x )  in equation (2.21, B (t)  in equation (2.3) and C (t)  in equation (2.4) are 

1 
A (x) = 8, a n = h  n =-  

n! ' 

by equation (2.8), and then a generating function for p is given by 

$ ( t ,  x) = exp (tx-+a2 t2). 

Since p is symmetric and el = 1, we have 

a,=O, w,=a2n and &=cr2"n! 

for n 2 1 (o?, = 0, oo = 1, Lo = 1) by equation (2.10). 
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Now let us apply Theorem 3.2. Equation (3.5) is satisfied with w, = w and 
Ilk, = (- 17 AJn! = (- 1)" u2" by the second equality in (3.6). Therefore we have 

P,(x) = (- a2r exp - D: exp - - 
(:z) ( ;:z) 

by equation (3.4). 

Example 5.2 (gamma distribution). Let A be the gamma distribution with 
parameter u > 0 and let 

be its density on (0, a). We have shown in [5 ]  and [6] that a generating 
function $n(t, x) is given by 

= k, h  (x) = ex and B, ( t )  = (1 + E)-". 

So we have 

Then we car, see that 

A (x) = ex, 
1 

a , = h  =-  
" n!' 

B, (t) = (1 + t)-", 
r ( n  + a) 

bn = (-1y- r (a) n! ' 

Therefore equation (2.9) becomes 

(n+a-l )an-an = (n+u)(n+a-I), 

n(n+a-l)an-(n-l)on = n(n+a+l)(n+a-1).  

Then we have 

Since we have 

and 
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the equality in equation (3.5) is satisfied with wn+,. Hence by Theorem 3.2 we 
have the representation 

Pn(ay x) = (- l)"x-"'l E?D;(X~+~-' e - 7 .  

EXAMPLE 5.3 (beta-type distribution). Let pa be the beta-type distribution 
with parameter 8 > -1/2 and the density 

~~P+l)(1-x2)f l -1,2 wa ( x )  = - J;; r(P+!l 
- 

on (- 1, 1). In [53 and [6] we have proved that a generating function $@ (t , x) is 
given by 

2t 
@(t) = 3' h , ( ~ ) = ( l - x ) - ~  and Bg(t)=(1+t2)-P. 

So we have 

I,bfl ( t ,  x) = (1 - 2tx + t Z ) - 8 ,  

A, (x) = (1 - 2x)-#, a,, = 2" h, = 
2"r(n+j)  
n!r(fi) ' 

B, (t) = (1 + t2)  - 8, b2, = ( - 1)" 
r(rni-81 
r(B)m! ' b2"tl = 0, 

Since p, is symmetric, a, = 0 for all n 2 0. By equation (2.10), we have 

Since el = 2, we have 

So the equality in equation (3.5) is satisfied with wn+#. Therefore by Theo- 
rem 3.2 we get 

5.2. Discrete measure case. 

EXAMPLE 5.4 (Poisson distribution). Let p be the Poisson measure with 
parameter k > 0; 
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on No.  In [5] and [6] it is proved that a generating function $(t, x) is given 
by 

e(t )  = log(l+t), h(x) = ex and B(t) = e-". 

Hence we have t,b (t, x) = e- " (1 + t)" and 

- - 
A-- 

C(t)=e-"log(l+t), c,=(-1)" C 
k = O  k! (n-k)' 

Applying the first equality in (2.9), we have the relation 

From the second equation in (2.9) we have 

a,=R+n, m , = R n  and Il,=Ann! 

after the computations for simplification. 
Since ee(t)- 1 = t and pl = 1, we have the relation 

Hence the equality in equation (4.3) is satisfied with w, = w. Thus by Theo- 
rem 4.2 we have 

EXAMPLE 5.5 (negative binomial distribution). Let p, be the negative bino- 
mial distribution with parameter r > 0 and 0 < p < 1; 

on No, where p+q = 1. In [5] and [6] we have proved that a generating 
function $, ( t ,  x) is given by 

e (t) = log (1 + t) (1 + qt)- l , h (x) = ex and B, (t) = (1 + qt)-'. 
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Hence we have $,(t ,  x) = (1 + t)" (1 + @I-*-' and 

A(x)  = ex, P" a , = P h n = -  
n !' 

- 
Applying the first equality in (2.9), we have the relation 

From the second equation in (2.9) we have 

after the computations for simplification. 
Since c?(~)- 1 = pt/(l f q t )  and Q, = p, we have the relation 

Thus the equality in equation (4.3) is satisfied with wn+,. Consequently, by 
Theorem 4.2, we have the representation 

5.3. Remarks. It is possible to give another method to derive the Sze- 
g s a c o b i  parameters. In fact, by equations (3.6) or (4.4), and the first equality 
in (2.5), we obtain 

Actually, for all examples in Section 5, it is not hard to compute directly the 
leading coeficient k,, 

EXAMPLE 5.6 (leading coefficient and A,). For the negative binomial case, 
it is not difficult to calculate the Szegii-Jacobi parameters in principle, but a bit 
of a long calculation is required. However, since the leading coeficient of 
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is equal to (q  - 1)" = (- l)"pn, it is easy to see that the leading coefficient k, of 

is equal to 

By equation (4.41, we have - 

When we obtain orthogonal polynomials by applying the theory of [ 5 ]  
and 161, we have E, [ ~ 2  (t, x)] on the calculation. Hence A, is obtained rather 
easily from it [5 ] .  Then a, can be calculated from equation (5.1). 

EXA~ZPLE 5.7 (deriving a, from A,). For the Poisson case, it is not hard to 
get A,, = Ann! by equation (1.4) in Theorem 1.1 and w, = An. By equation (5.11, 
we have a, = n+i. 
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