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Let 5 ,  l f1) ,  . . ., t f n ) ,  . . . be independent identically distributed random vec- 
tors taking values in Rd, d > 1. Let us put Sn = t(')+. . . + 5(n)y n = l Y  2 ,  . . . 

If E /[I2 < a, then from the central limit theorem it follows that for any 
A c Rd, being the set of continuity of the Lebesgue measure, the relation 

holds. Here a = E[  while rp,(u) denotes the density of a mean-zero Gaussian 
vector with the covariance matrix B = E (5  - a)(( - a )T .  

If, furthermore, S,, for some no 2 1 has a uniformly bounded density 
p,,(x), then the local limit theorem holds, that is, 

(2) sup Ind/' Pn (x )  - rpB (a- 'I2 (X - m))l = o ( I ) ,  n + rn . 
XER" 
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A value x = x, in the range of S, is called a Iarge deviation if 

That is why P, (A) = P (S,  - nu E A), where A = A, is such that 

is called a large deviation probability. It is convenient to refer to r,,(A) as the 
order of large deviation. In view of (I), a large deviation probability converges 
to zero while in view of (2) the term nd12 pn (x) converges to zero when x enjoys 
a large deviation. One of the basic problems of the large deviations theory is to 
establish a precise asymptotic behaviour of P, (A) or p, (x) when x enjoys 
a large deviation. Another class of problems unites those related to so-called 
rough asymptotic behaviour of a large deviation probability, that is, the asymp- 
totic behaviour of In P,(A) (see, e.g., [6]-[g]). 

Let P be the distribution of r. In what follows we assume that it has 
a bounded convex support X, which is an essentially d-dimensional open set 
containing the origin. Moreover, we suppose that X can be written as 

where h(e) is a positive continuous function on the unit sphere Sd-' in Rd. 
Let f (s) be the moment generating function corresponding to P, that is 

f (s) = J e<"vX> P (dx) , 
X 

where {-, *) denotes the inner product in R ~ .  It is easily seen that f (s) is finite 
for all S E  Rd, that is 

For any S E  R~ and any Bore1 set A c Rd we define 

Ps (A) = (f (5))-  j e('qX> P (dx) . 
A 

The distribution P, is called the Cram& transformation of the distribution P or 
the conjugate distribution with respect to P (see, e.g., [4], Section 1, § 1). Then 
(P,, S E  Rd) is called the family of the conjugate distributions or the natural 
exponential family of distributions generated by P. From now on we assume 
that P is absolutely continuous and denote its density by p(x). 

The classical method of treating large deviations is based on the conjugate 
distribution techniques. First general results on the topic can be found in [ 5 ] .  
Among them we can find a local limit theorem (see also Theorem I in [4], 
Section 1, $3). Let y (s) and B(s)  be the gradient and the hessian of lnf (s), 
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respectively. As known, y (s) and Bls) are the mean vector and the covariance 
matrix of the distribution P,, respectively. Moreover, the function y (-1 estab- 
lishes a one-to-one correspondence between R* and y ( ~ b )  c R ~ .  Denote by s (x) 
the inverse function with respect to y (s). 

PROPOSITION. Suppose thatfor no 2 1 there exists a uniformly bounded den- 
sity p,,(x) of s,,. Then 

and F is any closed bounded set in Rd. 

The function 

H ( x )  = -In e (x) = sup ((s , x) - In f (s)) 
=Rd 

is called the Fenchel-Legendre transformation of In f (s) (see, e.g., [6] ,  pp. 26 
and 134, or [4], Section 1, 81). This function is also known as the deviation 
function being the rate function of the large deviation probabilities, so that 

It is worth noting that in the case considered rn(A) = O(nli2) and the 
higher order of large deviations does not arise. 

The question arises : under what additional conditions can the statement of 
the Proposition be extended to the whole set y (Rd)? In other words, under what 
conditions does the relation 

hold? 
In the case when S is a bounded open set containing the origin, the answer 

was given in [12] and [13], where P was taken to be the gamma-like distri- 
bution in Rd. Here we consider a distribution with a bounded convex support 
X. In this case it is expected that y (Rd) = X. It will be confirmed in the next 
section. 

In general, we follow the scheme proved to be effective in [I21 and [13]. We 
start with establishing the asymptotic behaviour off  (s) when fsl+ a, that is, 
with establishing the Abel type theorem (see, e.g., [9], Section 13, $5). We make 
use of the Laplace method for its proving. Possible non-degenerate limit laws 
for the natural exponential family of distributions are discussed in Section 3. 
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The results obtained are also of interest from the viewpoint of searching for the 
so-called stable multivariate exponential families (see L2-J). Section 4 contains 
our main result: the strong form of the local limit theorem for large deviations. 
Some remarks are given in Section 5 while proofs are gathered in the Appendix. 

2. A THEOREM OF THE ABEL TYPE 

To find an asymptotic expression for f (s) when Is1 -, a,, we have the need 
for assumptions on the distribution P. First, we assume a regular behaviour of 
its density in a neighbourhood of the boundary BX. 

(A) The density p ( x )  of the distribution P is bounded in- any closed subset 
of X .  In a neighbourhood of ax it satisfies the codi t ion  

where the function r,- (u), u > 0, is (or - 1)-regularly varying at in$nity (cf. [14], 
Section 5.4.2), ct  > 0, while Ate) is a positive continuous function on S d - l .  

Assumpiion (A) is not very restrictive. It means some regularity of the 
underlying distribution in a neighbourhood of the boundary dX but allows 
even tending the density to infinity when a ~ ( 0 ,  1). For instance, a uniform 
distribution on X satisfies (A) with a = 1, r0 (u) = 1 and A (e) = const. 

We also need an assumption on the boundary 8X. It is formulated in 
terms of the function a(e), which is the support function for X,  that is 

The relation (3)  can be rewritten as (see, e.g., [12]) 

For convenience, we partition the assumption onto two parts. 

(B)  For any e E Sd- l the set argmaxeEsa- I h ( E )  (8, e )  consists of a single 
point E' = E' (e). 

Since both functions a(e) and h(&) are positive and continuous, from (3)  
and (4) it follows that {~'(e), e €Sd - ' }  = Sd-'- Moreover, if (B)  holds, then each 
point of the boundary aX is regular (see, e.g., [lo], p. 20) and X is a strictly 
convex set. 
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(C) For any e E Sd-I the function h (8) {E, e ) ,  8 E Sd- l ,  in a neighbourhood of 
sf(e)  admits the representation 

where A, is a non-negative definite symmetric matrix of rank d - l  which is 
continuous on e E Sd-l and such that A,&'(e) = 0 while 

The above representation plays a key role in the proof of the Abel theorem 
by means of the Laplace method. 

Moreover, if (C) holds, then X is a rotund body (see Section 10.1 in [2])  
with a sufficiently smooth boundary. 

Let us put 

Aka) = diag (1, (e), . . ., Ad- , (e), O), ;ilP1 = diag (A1 (e) ,  . . ., 1,-, (e)), 

where Ilj(e), j = 1, . . ., d- 1, are non-zero eigenvalues of A,. 

THEOREM 1. If (AHC) hold, then 

sup Irp (t) e-"("'f ( te)  -g, (ell = Q (I), t 4 GO, 
4 d -  1 

where #I = u + (d - 1)/2 and 

g. (e) = (27~)'~ - -')I2 r (a) (h  (e'))" - ' i (E') (E' , e )  -" (de t ;i!P1) - '1'. 

SimiIarly, one can establish that for s = te as t + c~ it follows that 

Let p(')(x) be the density of the conjugate distribution P,, that is 

,<s.x> 

p(") (x)  = p(x) ,  X E X ,  S E R ~ .  
f (4 

Obviously, the distribution P, is supported by the set X. Since y (s) = gradln f (s) 
is the mean vector of P,, we infer that y (s) EX. 

From Theorem 1 and (5) it follows that 

sup ly (te) - h (E') e'l = o ( I ) ,  t oo . 
e ~ S d -  1 

Therefore, if Is1 + oo, then y (s) ax. That is why y ( R ~ )  = X since both sets are 
bounded, open and convex with the same boundary. 



320 A. Zaigraev 

3. LIMIT LAWS FOR CONJUGATE DISTRI5UTIONS 

Let ts be a random vector having the distribution P,. As we know, P,, is 
concentrated in a neighbourhood of h (st)  E' as t -+ co . Therefore, in order to 
find a non-degenerate limit law for P, when Is1 + m, one should transform (, in 
a proper way. 

One transformation follows immediately from the proof of Theorem 1 (see 
the Appendix). If (AHC) hold, then the density p,(x) of the random vector 

where C, is the orthogonal matrix reducing A, to the diagonal matrix A;'), 
satisfies for any S > 0 and for s = te, t + m, the relation - 

Here ~(ZI,O),- I (xi , . . ., xd- stands for the density of a mean-zero (d - 1)-dimen- 
sional normal distribution with the covariance matrix (XiO))-l, and q,(z) de- 
notes the density of r ( a )  distribution. 

However, the transformation ns is rather useless from the viewpoint of 
appIications since it is non-linear and centering in the last component depends 
on a random factor. The question arises: dues there exist a linear transformation 
of Ss having a weak non-degenerate limit when t + m? 

It turns out that the answer to this question is positive. Let q = (q,, . . ., %) 
be a random vector having the density 

where xd > ~ ~ B - l % / ( 2 a )  and 2 = (xi, . . ., x ~ - , ) ~ .  It  is easy to see that 
ij = (qi , . . . , qd- has a mean-zero (d - 1)-normal distribution with the covari- 
ance matrix B while aq, has T (/I) distribution. The conditional distribution of 
aqa, given i j  = z, is r(a) distribution shifted by zT 3 - I  zj(2a). 

In what follows, we denote by e(" the i-th unit vector in Rd, and 

THEOREM 2. If (AHC) hold, then the density &(x) of the random vector 

71s (5s) = Ds C,T (Ss - h (E') E') 

satisjes for any 6 > 0 and for s = te, t -, co , the relation 
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where H (3 = (h (8 '1 )~  (A!')) while the rows of the matrix D, are tl" e"], . . ., 
t1j2 eCd-I), - ( t / ( ~ ' ,  e)) C,T e,  respectively. 

The linear transformation 7i,(t,) can also be written as 

EXAMPLE. Let d = 2 and h(e)  = 1. Thus X is a unit ball centered at the 
origin. Let P be the uniform distribution on X. Then condition (A) holds with 

- 
a = 1, r, (u) - 1, AIe) = TC I. One can easily see that a(e)  = 1, conditions (B) 
and (C) hold and E' (e) = a. - 

Let s = te, e = e('), t + m. As we know, the conjugate distribution P, is 
concentrated in a neighbourhood of e. The transformations ns (ts) and il,(e,) of 
the random vector (, = (tsl, ts2) with the distribution Ps look like 

while the densities of the limit distributions are 

(27~)-~~~exp(-(xf/2+x,)),  xl E R ,  x2 > 0 ,  

and 

(6)  n2,1 ( x ;  1, 1 )  = (27~) - l i2  exp ( - x,), x, E R, x2 > x:/2, 

respectively. 

4 LOCAL LIMIT THEOREMS 

Our method of proving the strong form of the local limit theorem for large 
deviations of sums consists in establishing, firstly, the local limit theorem for 
conjugate distributions. 

One can easily calculate the mean vector ye and the covariance matrix 
Ze of the l i d t  distribution from Theorem 2: 

where, as before, 

d-1 
p=ol+- 

2 ,  H (e) = (h (6'))' (ALO)) - , eCd' = (0 ,  . . . , 0, 

From Theorem 2 it follows that the density Fs(x) of the random vector 

EL iis (5,) = Z, ' I 2  Ds C: (ts - h (8') E') 
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satisfies for any 6 > 0 the relation 

lim sup lii, (x)  - nd,4 ( x ;  pl t2 ,  I)] = 0 ,  
Is l+m X E A ~ ( P ~ ~ ~ , I )  

where I denotes .the identity matrix. 
Thus, the random vector E; D, C: (r, - h (8') 8') converges in distribution 

to a limit vector with the density K ~ , ~ ( x ;  p l t2 ,  I).  From the next lemma it 
follows that the random vector B-'IZ (s) (cs- h (E') E') also converges in distri- 
bution to the same limit vector. Here B(s)  denotes, as before, the - covariance 
matrix of the distribution P,. 

LEMMA 1. If (AHC) hold, then there exists a matrix B1I2 (s )  with the prop- 
erty B ~ ~ ~ ( ~ ) ( B ~ ~ ' ( S ) ) ~  = B(s) such that for any S > 0 

lim sup I $ " ] X )  -nd,, (x; jli2, 1)I = 0,  
Is1 ~ e A ~ ( f l ~ / ~ , I )  

where 

jP (x) = (det B (s))"' p(s) ( ~ ~ 1 ~  (s) x + k (6') 8')  

is the density of B-'/' (s) (t3- hi&') E') .  

Let <:'I, . . ,, {PI ,  . . . be &dependent identically distributed random vectors 
in Rd with the distribution Ps. By pns(x) we denote the density of the sum 
lj l)+ ...+tp), n = 1 ,  2 ,  ... 

THEOREM 3. If (AHC) hold, then as n + rn 

sup sup 1(2~n)~/' (det B (s))"' p, (nli2 Bu2 (s) x + ny (s)) - enp (- lx12/2)1 = o (1) ,  
seRd x€Rd 

where the matrix B1i2(s) is that $-om Lemma 1. 

Now we can establish the main result concerning the large deviations of 
sums. 

THEOREM 4. If (AHC) hold, then 

where $,(x) and ~ ( x )  are as in the Proposition. 

Due to the CramCr identity we have 

pn (nx) = (f (s))' e-"<"."> pn, (nx) , s E R ~ .  

For x = y (s) we obtain 

The assertion of Theorem 4 follows then from Theorem 3. 
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5. SOME REMARKS 

1. One could note that after the obvious small modifications the main 
results hold even if the support X of the underlying distribution P is not convex 
but compact and an essentially d-dimensional set. In this case y (Rd) f X but 
y (Rd) = conv (X). 

2. Last time there has been increased an interest in the theory of multi- 
variate exponential families on the one hand and exponential families which 
are invariant under a group of &ne transformations on the other. If there 
exists a linear transformation of the random vector (, with the disGbution P,, 
SEX, such that it converges in distribution to a non-degenerate limit vector 
[ when s + dS (or Is1 + m), then the exponential family {Pi ,  t~ T} generated by 
the distribution of < is said to be stable in the sense that all distributions Pi are 
of the same type. The latter means that for any t~ T there exists a linear 
transformation n, such that 7~~ (5) has the distribution Pi (see [2]). In this case it 
is also said that the distribution of is stable. To the contrary with the uni- 
variate case (see [ I ] ) ,  in the multivariate case a complete description of the 
stable distributions still is not available. 

One example of the stable distribution was obtained in [I21 and [ I 3 1  as 
the limit distribution for the exponential family generated by the gamma-like 
distribution. The density of this stable distribution takes the form 

for some B > 0 and a diagonal positive-definite matrix 3,. 
Another example is given in Theorem 2, where the density of the stable 

distribution is of the form %,=(X; a ,  B). In fact, the same examples were also 
given in [2]. 

It is of interest to remind that in the univariate case any stable distribution 
is either normal or, possibly shifted, gamma (see [I]). 

3. It is of interest to compare the transformations z, (eJ and 5, (ts) aiming 
to answer the question: why does there exist a sh$ in the East component of the 
limit distribution aBer the linear transformation 5,? Note that 

As we know, if t -t GO, then ers is in a neighbourhood of E', and due to (C) and 
the proof of Theorem 1 we get 

(cry  e )  h(d)  = h(ess) (et6, e )  + i ~ ~ A L ~ ) i ! + o ( t - ~ ) ,  

where 2 is the vector that consists of the first d- 1 components of C,T eS6. Then 
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From the proof of Theorem 1 it follows that 

Therefore, 

4. The next example shows what can happen if (B) or (C) does not hold. 
Let d = 2 and h (el, e2) = (lell + le2l)', (el, e2) E S1. Thus, X i s a  square cen- 
tered at the origin whose vertices are at points (1, 01, (0, I), (- 1, O), (0, -1). By 
a direct calculation it can be shown that a (el, e2) = max {lell, 1e21). 

Take e = (l/$, l/,,h). Condition (B) does not hold at this point; any 
point {el, e2) with el  2 0, e, 2 0 can be taken as el(e). Let P be the uniform 
distribution on X. Then condition (A) holds with a = 1, ro (u) = I, A(e) = 1/2. 

By direct calculations one can show that f (te) = et'@/($t) (1 + o (1)) as 
t + a. The conjugate distribution P,, is concentrated in a neighbourhood of 
the boundary 8X lying in the first quarter-plane (xl > 0, x2 > 0). 

A linear transformation of r, having a noa-degenerate limit when s = te, 
t + co, takes the form 

The density of the limit distribution is of the form 

(7) g(x,, x,) = exp(-x2), 0 < xl < 1, x2 > 0. 

The limit distribution has two independent components: the first component 
has a uniform distribution on (0, 1) while the second one has r (1) (exponential) 
distribution. 

Consider also the second case when e = (el, e2) is such that e2 > lell. Then 
(B) holds with E' (e) = e(') and a (e) = e,. However, in a neighbourhood of E' we 
have 

and (C) does not hold. 
By direct calculations one can show that 

The conjugate distribution P,, is concentrated in a neighbourhood of e(2). 
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A linear transformation of (, having a non-degenerate limit when s = te ,  
t + oo , takes the form 

The density of the limit distribution is of the form 

Again we see that the second component has gamma distribution (it is r (2)  
distribution). 

It is of interest to note that in all examples considered we have obtained 
the densities of the same form but with different supports (see (6H8)). 

APPENDIX 

From now on, c  denotes any positive constant whose concrete value is 
of no importance. This means that c+c  = c, c2 = C, etc. As before, C, de- 
notes the orthogonal matrix reducing A, to the diagonal matrix A;'), that is, 
A, = C, A:) C,'. By w (t) we denote any non-negative function such that 
lim,,, o ( t )  = 0 while 0 varies within [- 1, 11. 

Proof  of Theorem 1. Let e € S d - l  be arbitrary but fixed,s = te, t -, oo. 
First, we prove the theorem in the case when the coordinate axes are associated 
with the main axes of the matrix A, and the normal direction to the boundary 
at the point h (E') E', i.e., we assume that E' (e) = e(d) and C, is the identity matrix. 

Let us put 

where M is arbitrarily large while 6 > 0,6' > 0 are arbitrarily small. Obviously, 

where 

fi(s)= Se<".")p(x)dx, i = 1 , 2 , 3 , 4 .  
xi 

We estimateJ(s) one after another. Let us start with f, (s) and let XI take 
the form 
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where 

and N is arbitrarily large. Define 

If X E X ~ ,  then Id = O ( t l t 2 )  and 1-E, = O(t-I) ,  where E =  @,, ..., E,~,)'. 
Changing variables 

2 ) l / 2  xi = mi, i = I ,  . . ., d- 1, xd = sign (x,) r I E , ~  = sign (x,) r (1 -e$ - . . . - E,-, 

with Jacobian flu' 1 ~ ~ 1 ~ '  yields 

It is worth noting that x, > 0 in a neighbourhood of E' = e(d). 
Next the change of variables u = h(~)-r  leads to the relation 

f11(s)= j I&rlpl 1 (h(&)-uyl-lexP(th(&)<e,e>-t<e,~)u) 
t1/21q 4 M h r < N  

x p ((h (e) - u) E) dudE. 

Therefore, as t  + cr, we obtain 

due to (A) and (C), where l(t), t > 0, varies slowly at infity. Since 
(e, E) = ed+O(t-112) and (E-E')~A~)(E-E')  = FJikO)E, we obtain as t + c~ 

eta") (h (EX- ' a (8') 
f l l ( ~ )  = 1 ( t )  t" t ~ / ~ l q  I < M  e x p ( - ~ ? ~ ~ ~ ) E ) d E ( r ( a ) / e ~ + ~ + o o )  

and finally 
. . 

(12) h1 (s) = 

= - (g. (e) + 8 0  (min (My N)) + o (1)). 
rk? (4 
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Similarly, for f l , (s)  we get as t + a, 

x p ((h (e)  - u) E )   dud^ 

From (10H13) we obtain 

Before estimating f,{s) we note that for xeX2 we have t112 Iq 2 2 M ,  

Then, by (A) and (C) we obtain 

Partitioning the interval (0,  61 as {u  E (0, 61: tu < N )  and {u E (0,  81: tu 2 N ) ,  
and treating both integrals similarly as we did during the investigation off,, (s) 
and fi2(s), we obtain 

Before estimating f3 (s) we note that for X E X ~  again (15) holds and 
( e ,  E )  > ed-a'. Then, by (C), we have 

h(e) - d 

(17) fs(s) d ce"(") 1 exp ( - ct Id2 - St ( e ,  E ) )  1 p ( r ~ )  drd2 
~q i a' o 

c exp (ta (e) - td (e, - S f ) )  
d t I d - l ) / z  

At last, we get 

(18) f4 (s) < c exP (t (a (e) - c (a))) p (x) dx = c exp (ta (e) - tc (a1)), 
X 

where c ( S t )  > 0 is such that 

a (e) - max h ( E )  ( E ,  e )  c (af) for all e E Sd- . 
e ~ S ~ - l : l a - & ' 1  >a' 
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Since M, N, 6 and 6' are arbitrary, from (9), (14), (16H18) it follows that 

ga (e) eta(e) 
f (s)  = 

r@ (t) 
(1 + t + m,  

uniformly in e E Sd- l . 
Let us turn to the general case. Clearly, Cedd) = ~'(e).  We can write 

If C, E is in a neighbourhood of ~'(e),  then E is in a neighbourhood of e(d) 
and by (C) we obtain 

h (Ce E )  (C, E, e) - a (e) = - $ ( E  - dd)IT A:") (E  - dd)) + W ,  (C, E ) .  

The remainder of the proof repeats that given above. H 

P r oof of T h eo re  rn 2. In contrast to the proof of Theorem 1, from the 
very beginning we consider the general case since the particular one gives no 
special simplifications. 

The transformation y = C, D; x + h (83 E' is inverse with respect to 
D, Cg (X - h (E') E'). Thus 

where the matrix D,' is such that its first d-1 rows are 

- l i 2  e(l) t- 112 e(d - 11, 
1 . . ' I  

while the last row is 

(-(t-'I2/{&', e))(Cze)l, ..., -(t-'I2/{&', e))(Cze)d-l, -t-I). 

Given 6 > 0 let us define 

Z = sap sup IY,(x)--~E~,,(x; <dl  e), ~ ( e ) ) l  = sup max(Zll 221, 
eeSd- xeAa(<e'.e),H(e)) e~Sd-  f 

where 

Z1 = sup (t -cd + l)Iz pel (C,  DL x + h (E') E') - nd,, (x; (E', e), H (e))(, 
XEY nAa((~',e),Hte)) 

Zz = SUP It-(d + ')I2 pis) (Ce D; x + h (E') E') - nd,, (x; (E', e), H (e))l, 
X E Y ~ ~ A ~ ( ( E ' . ~ ) . H ( ~ ) )  

Y = ( x E R * :  121 < M ,  xd < N ) ,  

Yc is the complement of and M and N are arbitrarily large numbers. 
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We have 

By (22) we obtain as t + co 

From (211, (23) and (C) it follows that, as t + a, 

Therefore, if x E Y n As ((E',  e) , H (e)), then y E X1 (XI is from the proof of 
Theorem 1). 

From (20H223, (24) and Theorem 1 it follows that, as t + a, 

exp ((y, s) - ta (e)) t a - I  
(25) Ps(x )  = sol (el 

l ( t)pw(l  + 0 (1)) 

- - <E' ,  e)' (x, -iT H (e)- ' ~ / ( 2  (E', e>)).-' exp (- ( E ' ,  e) xd) (det /T!"))'I2 

r (LX) (2?t1(~ - 1112 (h  ( E ~ ) ) ~  - l 

x (1 +oil)), 

8 - PAMS 23.2 
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and therefore 

uniformly in e E Sd-l . 
As to Z 2 ,  it is easily seen that 2, d Z , , + Z , , ,  where 

Zaz = SUP t - ( d +  ' ) I 2  pts) (ce D: x + h ( ~ 7 8 ' ) .  
r~QnA~(<s ' . e ) ,H(e) )  

Clearly, 

2 2 1  < c sup x:-'exp(-xd)+c sup exp(-zTH(e)-'~/2) = w ( N ) + o ( M ) .  
x ~ B I V  I q > M  

Before estimating Z,,,  let us define 

X ' =  { x € R d :  121 < M, xd 2 N } ,  

X" = {X E Rd : 121 2 M }  n Ad ( { E ' ,  e), H (e)) 

and note that 

Since y 4 XI yields x 4 Y n A, ( {E ' ,  e) , H (e)), we have 

ZZ2 Q cmax(Z', Z"), 

where 

By (24) we obtain 

exp ( - xd) ta- 1 (t) (h (e,) - 1yI)"- 
Z' Q csup Q c sup exp(-xd)x!-l = w(N) ,  

X€X' X d > N  

while 

tu-' 1 (t) (h (e,,)- lvl)a-l 
Z" Q c exp (- cM2) sup ,< c exp (- cM2) Ma-' = o(M). 

-,, 1 ((h (ey) - IY I) - I) 
This completes the proof of the theorem. ra 
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Proof  of Lemma 1. We start with estabIishing an auxiliary result. 

LEMMA 2. If (AHC) hold, then for s = te 

where 1 1  - 11 stands for any matrix norm. 
P r o  o f. In view of Theorem 2 the random vector 7E, (5,) = D, Cz(t, - h (E') $1 

having the covariance matrix D,C,TB(s)C,D,T converges in distribution to 
a limit vector with density K,,, (x; (E', e), H (e)), the covariance matrix of which 
is X,. Thus, fcr proving the lemma it is enough to establish that 

It is easy to see that 

I E 18.(t)12 = (f(s))-' IDs Cf I+ th (8') e(d)12 s"lX' p (x) dx 
X 

t 

= (f (S))-'J(S), 

where e" = CFe and 2 = (x,, . . ., x,-,)~, as before. 
Let Xi, i = 1, 2, 3 ,4 ,  and XI,, k = 1, 2, be the same sets as in the proof of 

Theorem 1. Denote byA(s), &,(s) the parts of the integral T(s) corresponding 
to those sets. One can show that the ratios J(s)/f (s), i = 2, 3, 4, and 
5, ( s ) / f  (s) can be made arbitrarily small while TI (s)/ f (s) < oo when s = te , 
t + oo. Note that the integralsx(s), 5, (s) are estimated in the same way asJ (s), 
fik (s) in the proof of Theorem 1. Let us estimate, for example,& (s). For x = rE, 
where E = (E', . . . , E ~ ) ~ ,  we have 

t li12+t2(h(~)-(I, E)/(E', e))' = tr2~ij2+t'(h(~')-r{c, E)/(E', e))'. 

Thus (cf. (16)) 

Cefn(e) 

72 (s) G - 1 (t112 ]E/)2 exp (- ct 14') d~ 
(t) to: t1/21q 3 2M 

d 
+ Cet~(e) j exp (-ct lq2) J t2 u2exp (- tu (e, C, E ) )  

t1/ZIq32M 0 

x p ((h (C, E) - U) C, E) dudE 
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From Theorem 1 it follows that 

$2 ((s/,f (4 G 03 (MI .  

Similarly one can estimate all other ratios. s 

Now we come back to the proof of Lemma 1 .  Define R(s) = Z,112 D, C z .  
From Lemma 2 it foIlows that for Is1 + m 

and 

R (s) B(s) RT (s) = 

lim (det B (s))'I2 det R (s) = 1. 
Idt m 

,- 

l + o ( i )  o(1) ... o(1 )  

o(1) l+o( l )  ... o(1)  

. . *  . . . . . . , . . . . . . .  
o(1)  o (1 )  ... l + o ( l )  

'. 

Let B~~~ (s) be any matrix with the property 

(27) B1I2 (s) ( B " ~  ( s ) ) ~  = B (s) 

1 and let W be the set of all orthogonal d x d-matrices while V,  c % consists of 
I those matrices whose last column is d d ) .  Note that the density nd ,u  ( x ;  /j1I2, I )  is 

invariant with respect to the transformations from Gfl,. Clearly, 

We have a degree of freedom in choosing B1I2 (s)  since for any C E %? the matrix 
B1/' (s) C also satisfies (27). Therefore, there exists B'/' (s) such that 

lim min llR (s) B1j2 Is)- Cl1 = 0. 
Is\ + m C ~ l o  

Finally, by (26), (28) and Theorem 2 we obtain 

Iim sup IF(") (x) - n d , ,  ( x ;  /j1/2, I)J 
Isl-'* x ~ A a ( B ' ~ ~ , l )  

$ lim sup l(de t B (s)) 'I2 de t R (s) (de t R (s)) - ' p(") (R  - (s) R (s) B1j2 (s) x 
Isl-' x~Ag(f l ' /2 , I )  + h (r') E' )  

- (det B (s))'" det R (s) n,,= (R (s)  311' (s) x; pl", I)[  

+ lim sup ~(detB(s) )"2detR(s)rrd ,u(R(s)B112(s)x;~112,1)  
I s I *  X E A I ( ~ ~ ~ I ~ , I )  

-ndVor (x; b1j2, I) /  = 0. 
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P r o of of T he o re m 3. Consider the characteristic function 

$s(u) = 1 e i ~ " ~ " > ~ ) ( x )  d x ,  U E R ~ ,  
~d 

corresponding to the density jji3 (x) from Lemma 1. From this lemma it follows 
that: 

(i) for any C > 0 

(29) sup sup I$:(u/fi)-exp (-lu12/2)I = o(l), n + m; 
s€Rd IuI-=C 

- 

(ii) for any sufficiently small 6 > 0 there exists c, > 0 such that 

(iii) for any 6 > 0 

It remains to show that there exists no > 1 such that I$, (u)In0 is integrable 
uniformly in SE Rd. Let s = te. Since 

(x) = (det B (s)) 
112 exp (ta (e) + t ( e ,  B1/2 (s) x)) p (B1IZ (s) x + h ( E ' )  E') 

f Cte) 
3 

from (A) it follows that for any C > 0 

sup sup sup $"' (x) < 00. 
esSd-1 t<C X E R ~  

Hence, for any C > 0 

sup sup 1 l$,(~)1~du < oo. 
esSd- 1 t < C Rd 

Let us s_et 

Arguing as in the proof of Theorem 1, one can show that 

(32) sup l t q ( ~ -  l )+ (d+  1)12 (1 (t)j4 e-t"(e)4 I~ (te) - (e)l = o (I), t + oo , 
e,Sd - 1 

where 
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Furthermore, for q ~ ( 1 ,  2) we have 

I (jits) (r))' dx = (det B (3))"- l'" (/ (s))-' I p  (s).  
R d  

From Theorem 1, (26) and (32) it follows that 

lim J ( jP) (x) )4dx < co. 
Is1 m Rd 

- 

Therefore (see, e.g., [3], 4 191, 

lim I$, (nr)lq/(q-l)du < a. 
Isl4m Rd 

Thus for no 3 q/(q- 1) we obtain 

sup J I$s (u)lno du < CO . 
seRd Rd 

The assertion of the theorem follows from (29)-(31) and (33) (see, e.g., [lo], 
Section 4, § 3). 
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