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Abstract. In the article we consider accumulated values of an- 
nuities-certain with yearly payments with independent random interest 
rates. We focus on general annuities with payments varying in arith- 
metic and geometric progression which are important varying annui- 
ties. We derive, via recursive relationships, mean and variance for- 
mulae of the final values of the annuities. Special cases of our results 
correct main outcome of Zaks [4]. 
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1. INTRODUCTION 

An annuity is defined as a sequence of payments of a limited duration 
which we denote by n (see, e.g., Gerber [2]). The accumulated or final values of 
annuities are of our interest. Typically, for simplicity, it is assumed that under- 
lying interest rate is fixed and the same for all years. However, the interest rate 
that will apply in future years is of course neither known nor constant. Thus, it 
seems reasonable to let interest rates vary in a. random way over time, cf. e.g. 
Kellison [3]. 

We assume that annual rates of interest are independent random variables 
with common mean and variance. We apply this assumption in order to com- 
pute, via recursive relationships, fundamental characteristics, namely mean and 
variance, of the accumulated values of annuities with payments varying in 
arithmetic and geometric progression. These important varying annuities can 
be reduced to the cases considered by Zaks [4].  

In Section 2 we introduce basic principles of the theory of annuities. 
Under the fixed interest assumption we consider accumulated values of stan- 
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dard and non-standard annuities. Finally, we introduce the ones with pay- 
ments varying according to arithmetic and geometric progression. It appears 
that all important types of annuities (cf. Kellison [3]) can be obtained as 
examples of the introduced ones. 

In Section 3 we drop the assumption of fixed interest rates and we study 
the find values of the varying payment annuities under stochastic approach to 
interest. We consider annual rates of interest to be independent random varia- 
bles with common mean and variance. Using recursive relations we compute 
the first and second moment as well as variance of the accumulated values. 
Special cases of the derived results correct main outcome of Zaks [4], which 
was pointed out in. Burnecki et al. [I]. 

In Section 4 we illustrate variance results comparing them with computer 
approximations obtained by means of the Monte Carlo method. 

2. ANNUITIES UNDER FIXED INTEREST RATES 

First let us recall basic notation used in the theory of annuities. Suppose 
that j is a positive annual interest rate and fixed through the period of n years. 
The annual discount rate d is given by the formula 

and the annual discount factor v is given by the equation 

Hence we have 

In the article we concentrate on final or accumulated values of annuities. 
We assume that k < n throughout, unless otherwise specified. The accumulated 
value of an annuity-due with k annual payments of 1 is denoted by i.qj and given 
by the formulae 

and 

(5 )  i~~~ = (l+j)k+(l+j)k-l+...+(l+j) = (l+j)(l++ilj), 

where the latter defines the recursive equation for iElj. 
Let us now consider a standard increasing annuity-due. The accumulated 

value of such an annuity with k annual payments of 1, 2, . . . , k, respectively, is 
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The accumulated value of un increasing annuity-due with k annual pay- 
ments of 12, Z2, . . ., k Z ,  respectively, is denoted by (I2 s ) ~ ~  and calculated by the 
formula 

The following two equations give the recursive formula for (12shlj and set 
the relationship between (12Shlj and & l j :  

The latter corrects Corollary 2.1 from Zaks [4]. 
In the sequel we will need the following two relations: 

Standard decreasing annuities are similar to increasing ones, but the pay- 
ments are made in the reverse order. The accumulated value of such an an- 
nuity-due with k annual payments of n, n- 1, . . ., n- k+ 1 ,  respectively, is de- 
noted by (Di)n,Alj and given by the formulae: 

and 

The sum of a standard increasing annuity and its corresponding standard 
decreasing annuity is of course a constant annuity. 

Now let us consider the accumulated value of an annuity-due with pay- 
ments varying in arithmetic progression (see, e.g, Kellison [3]). The first pay- 
ment is p and they subsequently increase by q per period, i.e. they form a se- 
quence (p, p + q ,  p + 2 q ,  . . ., p+(k- 1) q). We note that p must be positive but q 
can be either positive or negative as long as p + (k - I) q > 0 in order to avoid 
negative payments. The accumulated value of such an annuity will be denoted 
by and is defined by 

Simple calculations lead to the following relationship: 
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Important special cases are the combinations of p = 1 and q = 0, p = 1 
and q =  1, and p = n  and q = -1. 

EXAMPLE 2.1. If  p = 1 and q = 0, then (S~)$;~~ becomes the acculnulated 
value of an annuity-due with k annual payments of 1, namely 

(16) (5 )Q.W = 
a k l j  $11. 

EXAMPLE 2.2. If p = 1 and q = 1, then (&)I;') becomes the accumulated 
value of an increasing annuity-due with k annual payments of 1, 2,  . . ., k ,  respec- 
tively, namely 

(17) ( i ) < l S l ~  a k l j  = ( l 4 ~ ~ . j .  

E X A ~ L E  2.3. I f  p = n and q  = -1, then ($$;) becomes the accumulated 
value of a decreasing annuity-due with k annual payments of n, n- 1, . . ., n - k + 1, 
respectively, namely 

f 18) (s.)& " = (DS)jlj. 

Let us finally consider the accumulated value of an annuity-due with 
k annual payments varying in geometric progression (see, e.g., Kellison [3]). 
The first payment is p and they subsequently increase in geometric progression 
with common ratio q (q  # l+j) per period, i.e, they form a sequence 
(PI pq, pq2, pq3, . . ., pqk-I). We note that p and q must be positive in order to 
avoid negative payments. The accumulated value of such an annuity will be 
denoted by (&)&I and is expressed as 

(19) (5)gpq) s k l j  = p ( ~ + j ) k + p q ( ~ + j ) k - 1 + p q 2 ( 1 + j ) k - 2 +  ...+pqk-I( 1+j)  

Important special cases are the combinations of p = 1 and q = 1 (cf. Ex- 
ample 2.1), and p = 1 and q = 1 +u, where u (u + j )  denotes a fixed rate of 
increase of the payments. 

EXAMPLE 2.4. If p = 1 and q = 1, then (ig)$P) becomes the accumulated 
value of an annuity-due with k annual payments of 1, namely 

(20) 
(s.)r_l.l) .- 

g klj = SElj.  

EXAMPLE 2.5. If p = 1 and q = 1 +u, then (ig)zy1 becomes the accumulated 
value of an annuity-due with k annual payments of 1 ,  1 + u, (1 + u)',. . . , (1 + u ) ~ - ' ,  
respectively. Moreover, it is easy to see that 

where t is deJined as the solution of 
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3, ANNUITIES UNDER RANDOM INTEREST RATES 

Let us suppose that the annual rate of interest in the kth year is a random 
variable ik. We assume that, for each k, we have E (ik) = j > 0 and Var (i,) = sZ, 
and that i l ,  i2, . .., in are independent random variables. We write 

(23) E ( l + i k )  = 1 f j  = p 

and 

(24) E[(1+i32] = ( l + j ) 2 + s 2  = l + f  = m, 

where 

(251 

Obviously, 

(26) 

Next we define r to be the solution of 

and using (25) we have 

For a k-year variable annuity-due with annual payments of c, , c,, . . . , c,, 
respectively, we denote their final value by Ck. 

3.1. Payments varying in arithmetic progression. In the case of payments vary- 
ing in arithmetic progression we have c, = p  + (k - 1) q, where k = 1 ,  2 ,  . . ., n. 

The final value of an annuity with such payments is given recursively: 

(29) ck = ( l + i k ) [ ~ k - l + ( P + ( k - I ) q ) ]  for k  = 2, ..., n. 
We can easily find pk = E (CA) as 

(30) ~ ( c , )  = ~ ( ( 1  +&) [ck1 + ( P + ( ~ -  l)q)]) 

= ~ ( l + i ~ ) ~ ( ~ , - ~ + ( p + ( k - l ) q ) )  

from independence of interest rates. Thus we have the recursive equation for 
k = 2, . . ., n: 

We note that p, = p( l  +j )  = pp. The following lemma stems from (31) 
and (14). 
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LEMMA 3.1. If Ck denotes the final value of an annuity-due with arznual 
payments uarying in arithmetic progression: p,  p + q ,  p + 24, . . . , p + (k - 1) q, re- 
spectively, and if the annual rate of interest during the kth year is a random 
variable ih such that E(1 + ik) = 1 +j .and Var(1 +i,) = s2, and i l ,  i,, . . ., i, are 
independent random variables, then 

Similarly, for the second moment E (Ci) we have the recursive equation for 
k = 2 ,  ..., n: 

(33) mk = E(Ck2) = m [ m k - l + 2 ( p + ( k - l ) q ) p h - 1 + ( p + ( k - l ) q ) 2 ] .  

We note that m1 = p2 m. In order to compute the second moment we need 
the following lemma. 

LEMMA 3.2. Under the assumptions of Lemma 3.1 we have 

(34)  mi^ =  MI^ + 2M2kI 
where 

(3 5)  M I ,  = p2mk+(p+q)'mk-'+ . . .+(p+(k-l)q)2m 

and 

(36) M2k = ( P + q ) m k - 1 ~ 1 + @ + 2 q ) r n k - 2 p 2 +  ... + ( ~ + ( k - l ) ~ ) m ~ ~ - ~ .  

P r o  of. We proceed by induction. When k = 2, this follows on the equa- 
tion (33), since p1 = p (1 + j )  = pp and m1 = p2 m. Assuming our result is true 
for a given k (2 < k $ n- 1), it stems from formula (33) that it is also true for 
k + 1. This concludes the proof by induction. a 

Since, by (23), 1 +f = rn, we can easily find that 

(37) MI, = ~ ~ ~ ~ ~ ~ + 2 p q ( I ~ ] ~ ~ ~ + q ~ ( I ~ ~ ] ~ ~  f. 

Now we can apply (10) and (11) in order to derive an equivalent expression 
for MI, .  

LEMMA 3.3. We have 

Now we shall determine M 2 ,  using [l5), (36) and the fact that 1 +f = m. 
Writing 
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+2@+2q)(1 + f ) k p 2 + . . . + (  k - l ) ( p + ( k - l } q ) ( l + f ) ]  
I and applying (27) we obtain the following results. 

LEMMA 3.4. Under the assumptions of Lemma 3.1 we have 

LEMMA 3.5. Under the assumptions of Lemma 3.1 we have ~ 
I 

I 1 
(41) m* = ; i i [ ( q -~ ) (d@-q) ( l+~ )+2qv )h -2q (d (p -q ) ( f  +v)+qv)( i i ) i l ,  

I 

We have thus reached a formula for E (Cz). In order to compute Var(Ck) 
we need yet an expression for E ( C , ) ~ .  

LEMMA 3.6. Under the assumptions of Lemma 3.1 we have 

+ - ((Ii)';)zi;l - 2 ( 1  + kd) j - k2). (pi)' 
Proof. It is easy to show that 

$- - 2 6  
(43) ( ~ z , j ) 2  = 2 k l l  kII 

d 

and 

(44) 
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cf. Lemmas 3.3 and 4.3 from Zaks [4]. From (15) we may write 

(45) P: = ((P - 4) G,j + 4 (Wndl 
2 

= (p-4)' (j~lj)' +2q (4-P) G1.j (J$islj + q ( )klj- 

Substituting from (43), (44) and (6) completes the proof, H 

Now, we are allowed to state the following theorem. 

THEOREM 3.1. Under the assumptions of Lemma 3.1 we have 

(46) (ck) = (ia)$), 

(47) Var (C,) = m, - p i ,  

where mk is given by Lemma 3.5, and pz by Lemma 3.6. 

Let us now consider the situation when p = 1 and q = 0. We know, from 
Example 2.1, that it is the case of an annuity-due with k annual payments of 1. 
Then we obtain the following corollary, cf. Zaks [4]. 

COROLLARY 3.1. I f  Ck denotes the #nu1 value of an annuity-due with k an- 
nual payments of 1 and if the annual rate of iilzterest during the kth year is 
a random variable i, such that E (1 + ik) = I +j and Var (1 + ik) = s2, and . , 
21, a 2 ,  . . ., in are independent random variables, then 

2(1 +j)k+1iElr-(2+j)iElf-(l  +j)i3j4j+2(1 +j)GIj 
(49) Var (Ck) = 

j 

Another important case is the combination of p = 1 and q = 1, see Exam- 
ple 2.2. It is an annuity-due with k annual payments of 1, 2, . . ., k. The fol- 
lowing corollary is a direct consequence of Lemmas 3.1 and 3.3-3.5, cf. Burne- 
cki et al. [I]. 

COROLLARY 3.2. If Ck denotes the final value of an increasing annuity-due 
with k annual payments of 1, 2, . . ., k,  respectively, and if the annual rate of 
interest during the kth year is a random variable ik such that E (1 +id = 1 + j  and 
Var(1 + i k )  = sZ, and il, i2, .. ., i, are independent random variables, then 

(dl ink = 
2 (1 + j)k+Z (I~')E~, -2 (1 +j) (likl -j (2 +33 (12ili';)kl 

j2 

These results can be summarized in the following corollary, cf. Burnecki et 
al. [l]. 
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COROLLARY 3.3. Under the assumptions of Corollary 3.2 we have 

(51) Var (Ck) = 
2 (1 +jIk+ (J$kIr -2 (1 + j) ( J i l ~ ~ ~  - j  (2 +j) (12i)LlJ 

j2 

- (Ii]z, - 2 (1 + kd) - k2 
d2 

Let us finally consider the situation when p = n and q = - 1, see Exam- 
ple 2.3. Then we obtain the following corollary, cf. Burneclu et al. [I]. 

COROLLARY 3.4. If Ck denotes the final value of a decreasing annuity-due 
with k annual payments of n, n - 1, . . . , n- k + 1, respectively, and $ the annual 
rate of interest during the kth year is a random variable ik such that 
E (1 + i,) = 1 + j and Var (1 + i,) = sZ, and ii , i2, . . ., in are independent random 
variables, then 

(53) 
iEll 2 (n - l/jI2 (1 +j)k szl. Var (Ck) = - - 

d2 l + r  

- 
1 +f 

where 1 = (s/(l +j))2. 

3.2. Payments varying in geometric progression. In the case of annuities- 
due with payments varying in geometric progression we have ck = pqk-', 
where k = 1, 2, . . ., n. We assume that p and q are positive, q # 1 f j ,  q2 # 1 + f 
and q St l+ r .  

The final value of that annuity is given recursively: 

As in the case of payments varying in arithmetic progression, we easiIy 
find that for k = 2, ..., n 

The second moment E(C$ is given by 

We note that p1 = p (1 +j) = pp and m1 = p2 rn. By analogy with Lem- 
ma 3.1 we obtain a pleasing form of E(Ck). 
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LEMMA 3.7. If Ck denotes the final value of an annuity-due with k annual 
payments varying in geometric progression: p, pq, pq2, . .., pqk-l, respectively, 
and if the annual rate of interest derring the kth year is a random variable ik such 
that E (1  + ik) = 1 + j  and Var (I + i,) = s2, and ii , i, , . . . , i, are independent ran- 
dom variables, then 

(57) /dk = E(Ck) = (s~)$:). 

As in the previous subsection, in order to find a formula for Var (C,) we 
are about to compute mk and pz. We commence by calculating mk. 

LEMMA 3.8. Under the assumptions of Lemma 3.7 we have 

(58) 
2 2 ( k - 1 )  mk = pZmk+p2q2mk-1+...+p q 

+2Cpqmk1p1+pq2mk-2p2+...+pqk-1mp1:-i1. 

Proof. The assertion follows by induction, applying (56) and the fact that 
l + f =  m. a 

Let 
I 

159) M~~ = p 2 m k + p 2 q 2 m k 1 +  . . .+p2q2(k-1)m 

1 and 

Hence 

(cf. Lemma 3.2). Since 1 +f = m, we can easily obtain an elegant expression 
for MI,.  

LEMMA 3.9. We have 

(62) 
(1 +f I k  - qZk = (i )Q2,q2) 

M1k = p2 (l +f +f-  q2 g klS . 

NOW we rewrite (60) applying 1 i- f  = m and 1 +f = (1 + j )  (1  +r) ,  giving 

( 1  +j)-q 
(63) ~ ~ , = ~ q ( l + f ) * - ~ ~ ( ~ + j ) ~ + ~ - ~  

(1 +I]" q2 
+ ~ q ~ ( l + f ) ~ - ~ ~ ( l + j )  1+jAq +... 

(1 +j)k-l-qk-l 
+pqk- ' ( l+ f )p ( l+ j )  l+ j -q  

- - p 2 ( ~ + j ) ~ ( q : ( q ( ~  + f ~ - l ( l  +j)+q2(1 +flk-' (1 +jI2+. . . 
l+.l-q 
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Therefore we may write the following lemma. 

LEMMA 3.10. We have 

By virtue of Lemmas 3.9 and 3.10, and the fact that mk = M I ,  + 2M,,, we 
have the following lemma. 

LEMMA 3.11. Under the assumptions of Lemma 3.7 we have 

Thus, we have reached a formula for E (C;). Now we need to derive an 
expression for E (Cd2. 

LEMMA 3.12. Under the assumptions of Lemma 3.7 we have 

Proof.  From Lemma 3.7 and (19) we have 

! which using (19) completes the proof. H 
i 

Since Var(C,) = mk-,u2, we have the following theorem. 

1 THEOREM 3.2. Under the assumptions of Lemma 3.7 we have 
I 
I 

2p(1 + j ) k +  1 (5 )'P'q' + j  + q)  (g )lP2*q2) 
(68) Var (C,) = 

g klr g k l f  

l + j - q  
I 
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An important case (see Example 2.4) is the combination of p = 1 and 
q = 1. Then we obtain an annuity-due with k annual payments of 1 and Theo- 
rem 3.2 yields Corollary 3.1. 

Another important case is the combination of p = 1 and q = 1 + u, where 
u (u # j )  denotes a fixed rate of increase of the payments. This defines an 
annuity-due with k annual payments of 1, 1 + u, (1 + u)' , . . ., (1 + u ) ~ -  l, respec- 
tively (see Example 2.5). We assume also that 1 + u = (I + j )  (1 + t), 
1 + f = (1 + u)' (1 + h) and 1 +f = (1 + j)' (1 + t )  (1 + w). This leads to the follow- 
ing corollary, cf. Burnecki et al. [I]. 

COROLLARY 3.5. If'Ck denoles the final value of an annuity-due with k an- 
nual payments of 1,  1 + u ,  (1 + u ) ~ ,  . . . , (1 + u ) ~ -  ', respectively, and if' the annual 
rate of interest during the kth year is a rundom variable i, such that 
E (1 + ik) = 1 + j  and Var (1 + ik) = sZ, and il , il, . . ., in are independent random 
variables, then 

(1 + u ) ~ ~  (2 + t) ixIh-- 2 (1 +j)2k (1 + tIk griw 
Var (Ck) = 

t 

4. FINDING NUMERICAL SOLUTION 

In this section we approximate mean and variance of the final values of 
different annuities applying numerical approach. This tool can be very useful 
for verifying analytical results. The procedure is as follows (cf. Kellison [3]) .  

( 1 )  Make an appropriate assumption about the probability function for i k .  
This uniquely defines the parameters j and s2.  

(2) Using standard simulation techniques compute m sets of values for 
i 1 7  iz7 . . ., i k .  

(3)  For each of the rn sets i l ,  i2, . . ., ik compute the required accumulated 
value. 

(4)  The rn outcomes are used to compute sample mean and variance. 

As a result we obtain an approximation for E (Ck) and Var (C,). We may 
compare them with analytical results. 
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In order to apply the procedure let us assume that random variables 
ik have common normal distribution with parameters p = 0.08 and G = 0.02. 
This yields that j = 0.08 and sZ = 0.0004. Moreover, we set n = 10 and 
m = 100000. We shall focus on the variance results. We will plot Var (C,) as 
a function of k for three different types of annuities, discussed also by Zaks [4], 
using the analytical and numerical outcomes. 

Figure 1 depicts variance results for an increasing annuity (see Exam- 
ple 2.2). In the left panel we can see the graph of the sample and analytical, 

Increasing annuity 

Fig. 1. Comparison of the analytical (+) and numerical (0) results on variance of the final value of 
an increasing annuitydue. The right panel applies to Theorem 4.3 from Zaks [4] and the left one 

to Corollary 3.3. 

obtained via Corollary 3.3, Var(C,). Markedly, the outcomes coincide. The 
right panel presents the results in the light of Theorem 4.3 from Zaks 141. 
Evidently, now the numbers are approximately 1000 times bigger. 

Similarly, Figure 2 depicts the comparison for a decreasing annuity (see 
Example 2.3). The left panel presents the outcomes obtained by means of 
numerical approximation and of Corollary 3.4. As in the previous case, the 
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results tally. The graph in the right panel of Figure 2 was plotted using the 
formula from Theorem 4.5 by Zaks [4]. We can clearly see that the results 
differ dramatically from the ones presented in the left panel. 

Decreasing annuity 

+ Numerical approximation 

Fig. 2. Comparison of the analytical (+) and numerical (0) results on variance of the final value of 
a decreasing annuity-due. The right panel applies to Theorem 4.5 from Zaks [4] and the left one 

to Corollary 3.4. 

Finally, Figure 3 depicts the comparison for an annuity with payments 
varying in geometric progression with p = 1 and q = 1 +u (see Example 2.5), 
where we set tc = 0.1. As before, we can observe in the left panel that our 
analytical (see Corollary 3.5) and numerical results agree while the correspon- 
ding Theorem 4.6 from Zaks [4] yields outcome which is essentially smaller 
(right panel). It is even negative for k = 1. 

We conducted similar tests for general annuities with payments varying in 
arithmetic and geometric progression (see Theorems 3.1 and 3.2). Since they do 
not have an equivalence in the paper by Zaks [4], we only compared analytical 
outcomes with numerical approximations. The results have always, as in the 
foregoing special cases, coincided. 
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Payments varying in geometric progression 

+ Numerical approximation 

x 1 0-= 
4 I I + Zaks results I 

Fig. 3. Comparison of the analytical (+) and numerical (0) results on variance of the final value of an 
annuity-due with payments varying in geometric progression with p = 1 and q = 1 +u. The right panel 
applies to Theorem 4.6 from Zaks [4] and the left one to Corollary 3.5. See also Bumecki et al. [I]. 
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