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Abstract. We study the equation of a motion of a passivc tracer 
in a time-independent turbulent flow in a medium with a positive 
molecular diffusivity. In [6] the authors have shown the existence of 
an invariant probability measure for the Lagrangian velocity process. 
This measure is absolutely continuous with respect to the underlying 
physical probability for the Eulerian flow. As a result the cxistence of 
the Stokes drift has been proved. The results of [6] were derived under 
some technical condition on the statistics of the Eulerian velocity field. 
This condition was crucial in the proof in [6]. However, in applica- 
tions it is d51cuIt to check whether the velocity field satisfies this 
condition. 

In this note we show that the main result of [q can be stated also 
without the above-mentioned technical assumption. A somewhat simi- 
lar result, but for time-dependent flows with different statistical prop- 
erties, has been shown in [5]. 
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1. INTRODUCTION 

Consider the following It6 stochastic equation describing the motion of 
a passive tracer in a turbulent flow 

dx (t) = u (x(t))dt+&dw(t), 

x(0) = 0, 

where a: R x Rd x i2 + Ed, the so-called Eulerian velocity, is a stationary, strong- 
ly mixing, d-dimensional random field given over a certain probability triple 

* This research was supported by the KBN grant No 2P03A 031 23. 
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(8, K F) and w(t ) ,  t 2 0, is a standard d-dimensional Brownian motion in- 
dependent of u, given over TI := (E, &, W). The parameter K > 0 charac- 
terizes the strength of the intrinsic molecular diffusivity of the medium. 

We are interested in the long run behaviour of the tracer. One of the 
questions is whether the trajectory process x ( - ) obeys the law of large numbers, 
i.e, if there exists v, (called the Stokes drgt) such that 

x ( t )  Iim - = u, almost surely. 
t + m  t 

It has been proved in [6]  that for suficiently regular velocity fields u - )  
with a finite-dependency range (see condition (FDR) below) and satisfying 
a certain regularity condition in the measure theoretic sense (see (RAC) below) 
there exists an absolutely continuous change of measure such that the Lagran- 
gian process is stationary and ergodic with respect to the new measure. The 
proof of this result is based on an application of the Lasota-York theorem, 
which provides the existence of invariant densities for Markov operators satis- 
fying a certain lower bound condition, see Theorem 5.6.2 of [7]. 

A certain result on a-algebra factorization due to Skorokhod (see [9]) has 
been applied in the proof of the main result in [6] .  In order to be able to use 
the factorization result the authors needed some technical condition on the 
velocity field. This condition is presented below (see (RAC)). In many applica- 
tions this assumption becomes cumbersome. Here we show that the result of 
[6] is valid also without this assumption. The main idea is similar to the one 
used in [5]. We approximate velocity fields that do not satisfy (RAC) with the 
fields which do satisfy this condition. 

2. NOTATION AND FORMULATION OF THE MAIN RESULT 

We will assume that IC = 1 in (1.1). 
For any L > 0 we denote by X, : = C([O, L]; Rd) and X : = C([O, + a); Rd). 

These spaces are equipped with the standard topology of uniform convergence 
on compact sets. For any t 2 0 we denote by 17(t): 3 + Rd the canonical pro- 
jection 27 ( t )  (n) : = x (t), x E 3. Let d,  : = a {I! (s): s Q t ) ,  t 2 0, be the canonical 
filtration on 3. We let d  : = V,, , A,. By 9 and PL we denote the spaces of all 
Borel probability measures on 3 and XL, respectively. By Wand WL we denote 
the standard Wiener measure on (X, A) and its restriction to A,, respectively. 
For any h 2 0 we have the shift operator Oh: X + 3 given by 0, (n) (t) : = 71 ( t  + h) 
for all t 2 0,  EX. 

Let (52,  d) be a Polish space with a Borel probability measure P on it. We 
denote by 93 (52) the c-algebra of Borel sets on 52 and by E [ . I  the correspon- - 
ding mathematica1 expectation. Let Jf be the o-ring of P-null sets in 93 (a), the 
completion of B(S2). Unless otherwise stated, we will assume that any sub-a-alge- 
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- 
bra of B (52) contains A'-. For abbreviation sake we write @ : = LP (So), where 
F o  := (52, qq, P). 

~ e i  w ( . )  be a standard d-dimensional Brownian motion given over a cer- 
tain probability space Fl : = (2, sf, W). 

We suppose that 11: Rd is a random vector over F satisfying the 
following conditions: 

(A) Existence of a dr$. We assume that In1 > I(iiIJLm, where u := EU and 
1? = u - v .  

This assumption guarantees that the mean drift dominates fluctuations, i.e, 
there exists 6 > 0 such that 

(2.1) u (x) . v" 2 26 > 0 P-a.s. 

for all x E Rd. Here ij = u/ (u( .  

(S) u is stationary, i.e. for any finite collection x, , . . . , xN E Rd and any 
x € R d  the laws of (u (xl), . . ., a (xN) )  and (u(x l  +x), . . ., ~k ( x N t  x)) coincide. 

(FDR) Finite dependence range. For any r > 0 we denote by F: and the 
D-algebras generated by u (x), 1x1 d r and u (x), 1x1 2 r, respectively. We assume 
that there exists r ,  > 0 such that for any r > 0 the G-algebras 9: and Pt+,, 
are independent. 

(RH)  Regularity. For any o E O the field u t ;  o) is of class C1 and there 
exists a deterministic positive constant U such that Ilu"(=; ~ ) I I ~ l , r n ( ~ d )  < U.  Here 
1 1 .  llw~,m(Rd, denotes the norm in the Sobolev space wl," (JZd). 

In 161, in addition to the condition (RH), the following regularity (in the 
measure theoretic sense) condition has been imposed: 

(RAC) All distributions of vectors (u(x, ) ,  . . ., u (x,)), where N 2 1, xi # x j ,  
i # j E (1, . . ., N), are absolutely continuous with respect to the N - d-dimen- 
sional Lebesgue measure. 

In [4], conditions (RH) and (RAC) were denoted together by (R) .  The 
absolute continuity assumption (RAC) is somewhat restrictive. The purpose 
of this note is to show that the main result of 161 holds also without this 
assumption. Before we state the main result, define a stochastic process V over 
( a x  g, rn@& Po) 

Let Q,,, be the martingale solution of (1.1) for a fixed realization of o E 52 
and subject to the initial condition x(0) = 0. Denote by M,,, the respective 
mathematical expectation. 

Let IT,: Q + fi, x E Rd) be an additive group of transformations, satisfying 
the following conditions : 

13 - PAMS 24.1 
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(M) Measurability. The mapping (x, o) w 1 (T, w), (x, w) E x 52, is joint- 
ly measurable for any A E &? @). 

(MP)- P-preserving, i.e. P (T, A) = P (A)  for all x E Rd, A ~ m .  
(SC!) Stochasxic continuity. We have 

lim B[I , (T ,w) - l , (w)  3 q ]  = 0 Vq > 0, A E ~ .  
1 ~ 1 ~ 0  

The main result of the present paper is the following theorem. 

THEOREM 2.1. Suppose that u ( - )  is a stationary uelocity Jield satisfying (A), 
(FDR), (RH), and the trajectory x (t), t 2 0, is given b y  (1.1) with 7c > 0. 7hen 
there exists a probability measure p on (51 x T ,  m j @ d )  for the Lagranyian 
velocity process U (t) : = u (x (t)), t 2 0. This process is stationary and ergodic 
with respect to p. 

Ergodicity of the above measure is understood in the following sense. Any 
set A E B ( X )  such that 

must be p-trivial, i.e. 

Obviously, the above theorem yields the existence of the Stokes drift under 
the assumptions of Theorem 2.1, i.e. 

Remark  2.2. It should be noted that establishing the above theorem in 
the present setting is more diflicult than in the case of time-dependent flows 
considered in [ 5 ]  and 161. In these two results the velocity field is supposed to 
be time-space stationary. Moreover, the field is supposed to decorrelate as the 
time passes. This means that it is enough to wait sufficiently long fixed time and 
the velocity field will be independent of its history. In the present situation we 
have the condition (FDR), but it alone does not imply that the moving particle 
will see new realizations of the environment independent of what it has seen in 
the past. We should also impose some condition which guarantees that the 
particle will see new parts of the environment. This is achieved with the con- 
dition (A). Due to diffusive character of the flow, the tracer has to travel for 
some random time in order to see new realizations of the environment, in- 
dependent of the past. 
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3. APPROXIMATION OF GENERAL FLOWS 
BY VELOCITY FIELDS SATISFYING (RAC) 

In this section we will construct a sequence of velocity fields (s,) satisfying 
the condition (RAC), which approximates the velocity field u. 

Without loss of generality we may assume that the probability space To is 
sufficiently rich to support a stationary Gaussian random field g: Rd x CJ -+ Rd, 
which satisfies the following conditions: 

(GO) g and u are independent. 

(GI) g is centered, i.e. Eg (0) = 0. 

(G2) g (x) and g (y) are uncorrelated if Ix -yl > ro (ro appeared in con- 
dition (FDR)). 

This condition implies (see [$I) that the field g ( . )  satisfies (FDR) with 
Bf and ?3,"+,, in place of e' and *+,,, respectively. Here 9f and 9 f F  are defined 
analogously as 9: and c. Namely, for any r > 0, Bf and 3: denote the 
a-algebras generated by g (x) with 1x1 < r and 1x1 3 r, respectively. 

(G3) Realizations of g are Cm-regular P-a.s. 

(G4) g satisfies (RAC). 

Let us show the construction of such a field. Let W ( d x )  be the R-valued 
white noise over Fo, which is independent of u. Let g:  Rd + R be a compactly 
supported function of class Cm. Its support is contained in some ball B,(O) of 
radius R > 0 centered at 0. Define 

where x = (x,, . . ., x,). Let g,, .. ., gd be independent copies of gl .  The field 
g = (g,, . . ., gd) satisfies (GOHG4). 

Let us now define the velocity field s, by 

where #: Rd -+ Rd is given by 

and 

By the conditions (GOHG4) it is easy to check that the field u, satisfies all the 
conditions (S), (RH), (FDR), (RAC). Moreover, recalling (2.1), we see that the 
mean drift dominates its fluctuations: 
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for d l  x E Rd and nE N .  It is also easy to check that u,, a, converge to u, Vx u, 
respectively, as n -+ + clo, uniformly on compact sets, P-a.s. 

Analogously as Q,,,, we define Qtk as the martingale solution of (1.1) 
(with the obvious substitution of u, for u) for a fixed realization of WEL? and 
subject to the initial condition x(0) = 0. By M z  we denote the respective 
mathematical expectation. 

Since the fields u and g are homogeneous, without any loss of generality 
we may assume that there exists a group T,: 52 + W, x E Rd, satisfying the as- 
sumptions (MP), (M), (SC) of Section 2, such that 

Hence, in particular, 

(3.3) u, (x; w) = u, (0; T, o) Vn 1 and VX E Itd. 

4. NON-RETRACTION TI-S 

Let us introduce some more notation after [6]. We want to introduce 
a family of random variables, called non-retraction times. They describe times 
after which no retraction of the diffusion can occur in the direction pointed out 
by the mean velocity. These are not stopping times. The notion appeared first, 
in a discrete setting, for random walks on a random lattice in [Il l .  

For any n ~ 3 ,  1 ~ 1 0 ,  +cu) we let 

(4- 1) D(i; n):=min[t 20: 4.n(t) < - l + l ] .  

For abbreviation sake we write D : = D fv" . n (0)), 

U,(n):=min[t>O:d.k(t)>u], ov(n):=min[t>O: $ .n ( t )<u]  

and 

(4.2) M,(n) := sup [i.(n:(t)-n(0)): 0 < t < ~ ( n ) ] .  

The last random variable is defined for those n for which D ( n )  < + CQ. 

For any t 2 0 we define also 

(4.3) A(t):= [n: inf (n:(s)*i--n(O).4)>, -11. 
sa[O,tI 

We introduce the sequence of (A,)-stopping times (Sk)k30, (Rk)k20 and the 
sequence of maxima (Mk)k20 letting 

So := 0, Ro := 0, Mo := n^.n(O), 

(4-4) S1:= U M , + , ~ + ~  < +a, R1 := DoBs,+S1 < +CQ, 

M I : =  max[d.n:(t), 0 < t < R1] < +a, 
where r, > 0 is as in (FDR). 
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By induction we set for any k 2 1 

The following summarizes the properties of the above-defined stopping 
times and random variables (see Lemmas 3.1 and 3.2 of [6]). 

LEMMA 4.1. There exists a deterministic constant y such that for all n E lV 

(4.61 Qk:h, [D = co] 2 y P-a.s., 

(4.7) Qgh, [Rk < 031 6 (I - Y ) ~  Vk 3 1, P-a.8. 

for all x EP, 
Re mark  4.2. In fact, in Lemmas 3.1 and 3.2 of [6], the path measures 

Qt!, do not depend on n. The careful inspection of the proof of the mentioned 
results in [6] shows that the constants appearing in Lemma 4.1 are uniform for 
all  EN. 

Define, after [6], K : = inf [k 2 1: Rk = + a], with the convention that 
K = rn if the set over which the infimum is taken is empty. 

We have (see Corollary 3.3 in [6]) the following lemma which is a con- 
sequence of Lemrna 4.1. 

LEMMA 4.3. For all  EN and x € R d ,  we have 

The above corollary allows us to define the first non-retraction time as 
z1 := S ,  < oa, Pg)-a.s. The subsequent times are defined recursively: 
z, := z,+z, 0 8 , ~  for rn > 1. 

The folIowing lemma summarizes important properties of the non-retrac- 
tion time zl. 

LEMMA 4.4. There exist constants yl ,  y2 ,  y 3 ,  y4 and y ,  (independent of w )  
such that for call x E Rd and n E N  

and, in consequence, 

(4.12) E t ) [ z : ,  D =  co] < co. 

The proof of this lemma will be postponed till the Appendix. 
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5. THE CONSTRUCTION OF THE INVARIANT MEASURE 

For any a,  b E R u ( - co, + co}, a < b,  we let be the 0-algebra gen- 
erated by a (x), g (x) ,  where a s x . I? < b. We write for K ,,,. Let 
25 := (n, "ya, P), 

Q;) [D = + a] 
Pi;) (do) : = PP) [D = + a] P (do), 

P$)(dw, dn) : = 
I [ D ( r ) =  + m ]  Pb"' (do, dx) 

P',"' [D = + co] 
and FD:= (a, Yo, P,). Note that in the light of (4.6) of Lemma 4.1, Bf? is 
equivalent to P. Analogously we define 

QoCD = +a1  I[D{z)= + W I  PD (dm) : = P(dw), P D ( d o , d 7 t ) : =  Po (dm, dx). 
P o  [D = + CO] Po[D= +a] 

Also, for any probability triple 5 the symbol B (9) denotes the set of all 
probability densities with respect to the relevant probability measure, i.e, the 
non-negative elements of C (F) whose integral equals 1. 

An important role in the proof of the main result of [6 ]  is played by 
a certain transport operator (see Section 4.2 in [6]). For any  EN, the field 
U, (. ) has absolutely continuous finite-dimensional distributions (see condition 
(RAC)), i.e. for any x,, x2, . . ., x,, rn 2 1 (xi # x j  for i # j), the random vector 
(IC, (xi), . . . , U, (x,)) is absolutely continuous with respect to the rn d-dimen- 
sional Lebesgue measure. According to Section 4.2 of 161, there exists a density 
preserving operator 9,: L! (Fz) -, C(F$) satisfying the condition 

for any F and G that are correspondingly Yo- and %,,-measurable. We call 
this operator a transport operator. 

Let us recall the construction of the operator 9, in more detail. Since u, ( a )  

satisfies the condition (RAC) in addition to (RH), the filtration (K),,, admits 
a factorization with respect to "yb, i.e. for any t 2 0 there exists a a-algebra 92' 
such that Yo and 9' are P-independent and Vt is generated by -yb and 3'. Let 
a?:= Vr$09t. 

The factoring property has an important consequence. Let us put 
F 3 : = ( i 2 , % ! , P )  and let Y2@F3:=(fixSZ, %@9, POP). The condition 
(RAC) implies (see Section 4.1 in [6]; see also ibidem, Appendix B) the existence 
of an isometric isomorphism 
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such that 

(Z1) 3 F  2 0  for F a 0  and 9 1  = I ;  
(22) for any F 1 ,  . . ., FN EE (Fl) and @: RN + R bounded and continuous 

we have 
3'(@(Fl, ..., FN)) = @ ( T F I ,  ..., ZEN); 

(Z3)  3 F  (w,  w f )  = F (cu) for all F E E  (F2), $"G (o, of) = G (a') for all 
G E I!' IF3); 

(24) b F  is "Yo@9t-measurable if F is <-measurable for any t 2 0. 

Let Yw : = (I, A, w, where W denotes the standard Wiener measure. 
Then 

l L  
v t l ( n ,  W) := exp w ) d x { s ) - - j  lu,(n(s), w)12ds 

2 0 

is the Radon-Nikodym derivative of Q$"?, with respect to W,, the restriction 
of W to X,. Here Q$!L denotes the restriction of Qt' to AL for L > 0. Let 
J: u. (a  (s), w) dn(s)  denote the stochastic integral with respect to the Wiener 
process 7~ ( - 1  over the probability space Yw. The Radon-Nikodym derivative of 
Q,,, with respect to WL, denoted by v,, can be defined analogously. Let Fk de- 
note the law in Rd of the random vector n(&) over Fw. 

One can show that 

(5.2) d (vp) (n; a)) (w , w') = ij") (a ;  w , w'), 

where 

Here 

U,(X) = 3 un(x)€Lrn  ( Y 2 @ F 3 ) .  

Rernar k 5.1. In fact, we can find a modification of U ,  defined over 
Y 2 @ T 3  that is of C1-class of regularity and such that I I ~ , ( - ;  w ,  w ' ) I I ~ I , ~ ( ~ ~ )  < 
U f l  for all ( w ,  o'), where on(.; o,  of):= U,(.; w ,  w')-v and Uis as in (RH). 

The linear operators 2, satisfying (5.1), whose existence has been an- 
nounced above, are defined in the following way. For any bounded and 
%-measurable function F define 

(5.3) 9, F (w') : = X'"' (w , 0') F (o) P (dm), 

where 
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and 

15-51 Agk,x  ( ~ 1  w') : = m k , L , r  [$; (71, W ,  o'), A (Sk), L- 1 < Sk < L ] .  
Due to Proposition 4.4 of [6] this operator can be extended to a density 

preserving operator 9, : (Fa + LI (Ti). 
We will show that 2, has an invariant density. Precisely we will show the 

following lemma: 

LEMMA 5.2. For any  EN, there exists a Yo-measurable, strictly positiae 
element IT(,") E 9 (9;) n L2 (9;) such that 2, H$') = H$).  In addition, for any 
F E 3 (F;) 

(5.6) lim j I(9,Jrn F (w) - H(,"] @)I Pf? (dm) = 0. 
m+m 

We will begin with the following lemma: 

LEMMA 5.3. Let p E (1, 2). There exists u constant C > 0, independent of n, 
such that 

I5-7) 119, GIIL~(P~I) G C IlGlI~p(ag)) VG E E (Pj)). 
Proof. Let q be the coefficient adjoint to p, i.e. l/p+l/q = 1. By the 

definition of the operator 9,, the square of the left-hand side of (5.7) can be 
majorized by 

Applying the definition of X ( " ) ( w ,  w'), we see that the right-hand side of the 
inequality in (5.8) equals 



D~ffusions in compressible enuironrnents 201 

where the passage from (5.9) to (5.10) follows from Jensen's inequality. Using 
the properties (23) and (24) of the operator 3, and recalling the definition of 
the stopping time TI, we conclude that (5.10) equals 

(5.11) IIGllt(') (1 [D = m , T, < m])9 P (dm))'" 
yP$" [D = ao] 

where the last inequality follows from the definition of Pg) and the lower bound 
for Qt) [D = m] . 

Before we proceed with the proof of Lemma 5.2 we observe the following. 

LEMMA 5.4. Fur every  EN, there exists an L1(P$))-weakly compact set 
R, r 9(9'') such that 

(5.12) lim infII(9,)mG-Kll,l(pb-~)=0 V G E B ( T ~ ) .  
m+ m KER,, 

P r o  of. Observe that there exists C1 > 0 such that, for all G E 9 (Fs) n 
2 (Pbn)), 

lim sup II(9,)" G I IL~ (P~ )~  < CI . 
rn+ m 

Indeed, the application of Lemma 5.3 yields that, for O E ( O ,  1) (such that 
6+(1-0)/2 = l/p), 

(5.14) llI%Jm + Gll~2cr~1) d C 11(2nIrn GIIu(rg)) 

6 c ll(9n)" GIIZ~(P~)) II(2n)"' G11&&) = C II(%Jm GIIZ.!!ir")), 

where the last equality follows from Proposition 4.4 of [6]. Iterating (5.14) we 
get 

(5.15) ( 1 - e ) m - 1  11(2n)m+ ' GIIL2~rg)) 4 c ~ ~ J ~ - " I I G I I ~ ~ ~ ~ ~ ~ ~  - 
Hence (5.13) follows. Notice that C, does not depend on n. 

The set whose existence has been proclaimed in Lemma 5.4 can be defined 
as R, : = {IIGIILz(pg)) < CI}. 

P roo f  of  Lemma 5.2. The existence of H ~ ) E  $3 (9;) satisfying (5.6) has 
been shown in [6], Theorem 4.7. It is a consequence of Theorem 5.6.2 of [7] 
and the existence of the uniform (with respect to o) lower bound for 2, F (see 
Lemma 4.8 in [6]). 

It remains to prove that H',"' is an eIement of L2 (P$)). Due to (5.13), for 
any G E 9 (F:) n L2 (PJ;)) and suficiently large m E N, the sequence ((9,)" G) is 
bounded in I.? ( ~ $ 1 ) .  Hence we can extract an I?-weakly convergent subsequence 
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((9Jrnk Gf. On the other hand, due to (5.13) and by virtue of the Komlbs theo- 
rem, k-' C=, ((2n)mi~G) as. converges to iY2' (see [3]). Fatou's lemma and 
(5.1 3) yield that 

After [6] (see Theorem 2.2) we define the measures 

where 

and Z, is the corresponding normalizing constant, i.e. 

(5.19) Z ,  := 11 [I j %k'(x, s ,  w ,  x ) d s d x ]  ~ $ ) ( d w ,  dn). 
m - 1  O R "  

For the sake of convenience write 
m ro 

(5.20) htn'(n, w):= C [ J  Zg)(x ,  s ,  w, njdsdx]. 
m = l  O R d  

Due to Lemma 5.5 of [6] we have 

According to Theorem 2.2 of [6] these measures are regular measures for 
processes T/, ( - ) (where (. ) are defined by (2.2), with an obvious substitution 
of u, for u). 

The main idea of the proof of the main theorem relies on a subtraction of 
a suitable subsequence (p,) which weakly converges to some measure p, being 
the desired measure, whose existence has been announced in Theorem 2.1. We 
will define the measure ,u by analogy with p, (see (5.17) and 5.18)). To do this we 
will identify a suitable limit H ,  of the sequence (H:)) of invariant densities of 
the transport operators (9,). 

LEMMA 5.5. There exists a square integrable function H , :  G? + [0, oo) and 
a subsequence (ni) such that for any further subsequence (nij) of (ni) 

lim 1 C H$"d (a) = H ,  (a) P-as. 
m + w  Wl j=l  

The set of a's, on which the above convergence takes place, does not depend on 
the choice of the subsequence (nij). 
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Proof.  According to the definition of the measure Pg) we have 

H$) (w) 
J H$!' ( w )  P (dm) 6 Pb"' [D = m] J P',"' (dw).  

QZ, CD = m l  

Applying (4.6) of Lemma 4.1 we can write 

1 1 
(5.24) j H t )  ( w )  P (do) < -J H',"' (w) Pg) (dm) = - Vn E N ,  

Y Y 

wbere the last equality follows from the fact that H$" are Pg)-densities. Ap- 
plication of the Komlos theorem (see [3]) yields the existence of an integrable 
function H ,  and a subsequence (ai) such that (5.22) holds. Square integrability 
of H ,  is a consequence of the Fatou lemma, (4.6) and (5.16): 

I 
(5.25) 123: ( w )  P (dm) )S lirn inf - I ( ~ $ ~ ) ( w ) ) '  P ( d o )  

k-cc  k i = l R  

1 1 c1 < -1im inf- 5 ( H ( , . ~ ) ( w ) ) ~  Pgi) (dm) < - < a. s 
7 k-fm k i = l  12 Y 

By analogy with &'t)(-, a ,  ., ,), given H,,  we can define %',,(A, -, ., a )  

(see (5.18)). Similarly, we can define h ( n ,  w )  (see (5.20)). Now, let us define the 
measure p: 

where, by analogy with (5.21), we define 

T 1 

(5.27) 2 := 1 M , [ [  F ( s ) ~ s ,  D = w ] H , ( u ) P ( ~ u ) .  
R 0 

Let n be a positive integer, 0 < t l  < . . . < t ,  and F 1 ,  . . ., F,E Cb(Rd). For 
any  EN, define 

LEMMA 5.6. There exists a subsequence (ni) such that 
1 k 
1 - -  

(5.29) lim - j 1 F , ~  (w ,  n) (o, x) Pti) ( d o ,  dn) 
k + m  k j =  

P r o  of. Without loss of generality we may assume that F , ,  . . ., F, are 
non-negative. For any  EN, set 
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In view of Lemma 5.5 of [ 6 ] ,  we have to show the existence of a sequence Ini) 
such that 

(5.30) lim I j F., (s) ds, D = m] H $ i ) ( o )  P (do) 
k+m k i = ~ ~  0 

We have 

6 lim 1: C ~ ( M Z  [I ~.,(s)ds,  D = m] 
k-tm k i l l n  0 

1 21 

+ Iim - C S M":J F,, (s) ds, D = co] IHti) (w)- H ,  (w)l P (dw). 
k - r m  k i = l  a 0 

Z l  

- M ,  [ j F (s) d s ,  D = a]) Ht') ( ~ 1  
0 

Let us denote the first and the second expression on the right-hand side of 
(5.31) by I ,  and I,, respectively. First let us consider I ,  : 

P 

Due to Theorem 11.1.4 of [lo], Q$") converges weakIy to Q,. Moreover, this 
convergence is uniform for all w E 52. This is a consequence of the uniform (with 
respect to w) convergence of (u , ( . ) )  to u ( - ) .  Since H P )  are integrable (see 
(5.24)), we conclude that I1 = 0. 

Now consider I,. We have 

To see that the right-hand side of (5.33) vanishes observe that (If$)),, is bound- 
ed in I? (P). Indeed, it is enough to perform calculations similar to the ones in 
(5.25). Thus we can choose a subsequence of (H$") which weakly converges in 
I? (P). To simplify the notation, without loss of generality, we may assume that 
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this subsequence coincides with (Hz'))  chosen in Lemma 5.5. This lemma al- 
lows us also to identify the weak L2-Limit of ( k - ' ~ : = = ,  H f l  as H , .  Since 
E g ) [ z i ,  D = oo] EJ!? (see (4.12)), the result follows. ra 

Setting F,,(o,  TC) = F ( o ,  n) = 1 in Lemma 5.6, we get 

(5.34) Z = lirn I Z,, = lim A C j M",'c~, , D = m] H',"" (a) p (da) 
k - tm  k i Z l  k+m k i E l  

1 < lim - E t i ) [ ~ , , D  = m ] - j ( ~ ~ ~ ) ( o ) ) ~ ~ ( d a )  < a. 
k 4 . 9  k i = l  n 

The last inequality foIlows from the Cauchy and Jensen inequalities. The finite- 
ness of the outmost right-hand side of the expression above is a consequence 
of (4.12) and the boundedness of (H',")) in L2(P). 

6. THE PROOF OF THE MAIN THEOREM 

We will show now that p defined in (5.26) is a regular invariant measure. 
Let us show first stationarity. 
Let n 3 1, F 1 ,  . . ., F ,  E Cb (Rd) and 0 < t l  < . . . < t,. Since a, ( .) satisfies 

the condition (RAC), we can use Proposition 5.8 of 163, i.e. for any h 2 0 we 
have 

Choosing a suitable subsequence as in Lemma 5.5 and taking the Cesaro 
means on both sides of the above equation we obtain 

1 -  1 
(6.2) - - j F, (u,, (n (t, + h))) h("') (w , TC) QF) (dn) P (dm) 

ki=lZni p=l 

l k  1 " 
= - C - j 1 fl I$ (uni (n (tp))) h("') (w , n) QZi) (dn) P (dm). 

ki,lZni p = l  

Applying Lemma 5.6 and letting k  + co we get 

Hence p is stationary. 
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Now we proceed with the proof of ergodicity of p. We have to show that 
for any bounded and Bore1 measurable F: 3 + R satisfying 

we have F (V  ( - )) p-a.s. 
For any E > O  we can find N >  1, O <  tl  <.. .< tN and a bounded con- 

tinuous function F(N): (RdIN + R approximating F in the following sense: 

This yields in turn that 

Let q 3 q,  be arbitrary integers. Set V Q a ) ( t )  : = V( t  A z,,), t  2 0. Using (6.4) 
we conclude that 

Applying (6.5) we can approximate the right-hand side of (6.7) in the following 
way: 

Lemma 5.6 together with (5.34) yield that 

(6.9) 1 j F ( ~ ( v  (z, + t,), . . . , V (z, + t,)) PN) (Vqo) (t . . . , VtqO) ( tN) )  dp 

1 
= lim - C J ~ F ( ~ ( V ( Z ~ + ~ ~ ) ,  ..., V(zq+tN)) 

k+ao k i = l  

By virtue of Proposition 4.5 of [ti], the above expression equals 
1 k 

where Y,, are Yo-measurable functions satisfying 

j j mi dpni = J 1 ~ ( ~ ) ( v , ! p " ) ( t ~ ) ,  . . ., K ~ O )  ( tN))  dpni. 

Due to Lemma 5.2, for any ni there exists 4,; such that for q 2 qni 

(6'11) 11 IF'N' (VI t l ) ,  * - 7  V(tN)) ( % I ~ ) ~ - ~ ~  xi 
- , f jF ' " (v ( t l ) ,  ..., V(tN))dpniJ[~(N)(~~)(tl), ..., ~ , P ) ( t ~ ) ) d , u , ~ l  < E .  
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Hence, we can choose an increasing sequence (q,,) such that 

Due to Lemma 5.6, without loss of generality we may assume that (n,) is such 
that 

- 1 j F'N' (v ( t i ) ,  . . . , V ItN)) dp 5 F("3 (v''') (tl), . . , , l/'qO) (tN)) dpl < E. 

Hence 

1 
(6.14) lim - C j J F(N1 (V(tl), . . ., V (t,)) (2,i)qn;-q0 Xl dpai 

k + m  k i = r  

= ~ [ F t N ' ( ~ ( l l ) ,  . . . , V(tN)) dpj~F(N)(V'qn'(tl), . . ., F/'qa'(tN))dp. 

Combining (6.7H6.14) we get 

(6.15) 15 1 FtN)  (V (t,), . . . , V (t,)) F(N' (V(40) (t 1), . . . , (tN)) d p  

I - jp"){~( t , ) ,  ... , ~ ( t , ) ) d ~ ~ [ ~ ' ~ ) ( ~ ~ ~ ) ( t , ) ,  ..., v('~)(t,)}dpJ < ~ E S U ~ J F ( ~ ) J .  

Letting q,  -, co, we see that (6.15) becomes 

(6.16) I j j ( ~ ( ~ ) ( v ( t , )  , . . . , ~ ( t ~ ) ) ) ~ d ~  

- ( ~ I F ( ~ ' ( V ( ~ ~ ) ,  .... v(tN))dP)')ll < 2 ~ s u p I F ( ~ I .  

By (6.5) and (6.6), the above equality implies 

(6.17) I J ~ C F ( V ( . ~ ) I ~ ~ P - C ~ ~ F ( V ( . ) ) ~ ~ I ~ ~  < ~ E ( ~ ~ ~ P I F I + ~ ~ ~ P I F ' ~ ' I ) .  

Observe that FN) in (6.5) can be chosen in such a way that, for all N E N ,  

(6.18) sup lF(N)J 4 2 sup (FI . 

Due to an arbitrary choice of E > 0, we conclude that F (V (. )) = const p a s .  ar 

APPENDIX k THE PROOF OF LEMMA 4.4 

Inequality (4.8) is proved in [6] in the Appendix (see (A.ll) therein). State- 
ment (4.9) follows easily from (4.8). 

A.1. P r o  of  of (4.10). With no loss of generality we suppose that x = 0. 
We can write 

K - 1  

9.7c(zl) < r o + l +  ( ro+ l  + ~ ~ - v ^ . n ( S ~ ) ) ,  
k =  1 
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with random variable K defined before the statement of Lemma 4.3. Using the 
Holder inequality we get 

where qk : = ro + 1 + Mk- 6 .  7c(Sk). The right-hand side of (A.1) can be esti- 
mated by 

Since RE - = DoOg-,  $ S k  upon a multiple application of the strong Markov 
property of Qg)  and (4.6) it follows that the expression above is less than or 
equal to 

By virtue of (4.9) and (4.7) we conclude that the right-hand side of (A.2) is 
less than or equal to 

k2. P r o  of of (4.1 1). Again, we let x = 0. Note that 

By virtue of (4.10) and Chebyshev's inequality the second term on the right- 
hand side of (A.4) is less than or equal to C/u4 for some constant C that can be 
chosen independently of co. On the other hand, the first term there can be 
estimated as follows: 
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Here 2L = 6u and UL(x) is a cylinder centered at x with width 2L in the 
direction 6 and radius 2L(2+ U)/6 in the directions normal to O, i.e. 

UL(x):= { z E R ~ :  )i-(z-x)I < L, le.(z-x)l <(2+UU)2L/6 for any e I v ,  lei = 1 ) .  

Here U is as in the condition (RH). The proof will be completed when we show 
that the right-hand side of (A.5) vanishes as L+ a. 

Let UL : = UL (0). We divide dUL(+) into three subsets: 

The following lemma characterizes the exit times from UL(x). 

LEMMA A.1. There exist deterministic constants c,, c, 3 0 independent 
of L, a and o such that for call X E  Rd 

P r o of. The process 

is a d-dimensional standard Brownian motion starting at x over (X, A!, Q$',',) 
for any o. On the event [T,, > 2L/6] 

Hence 

Q g )  [T- > 2L/6] Q Qg' [ I w ~  (2L/6)1 B Ll < exp {-6L/4)- 

On the other hand, 

Q Qg)  C sup Iw, (t)l 2 Ll + Qg1 C sup Iw, @)I 2 2L/61. 
o a t ~ z ~ j s  O < ~ S Z L / ~  

Using elementary estimates on the law of the maximum of a Brownian 
motion, we bound the right-hand side of (A. l l )  from above by exp { - S ~ / 4 d ) .  

14 - PAMS 24.1 
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Using (A.9) and (A.lO) of Lemma A.1 we conclude that the right-hand side 
of (A.5) is less than or equal to 

and (4.11) follows. rn 
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