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Abstract. We study the equation of a motion of a passive tracer
in a time-independent turbulent flow in a medium with a positive
molecular diffusivity. In [6] the authors have shown the existence of
an invariant probability measure for the Lagrangian velocity process.
This measure is absolutely continuous with respect to the underlying

: physical probability for the Eulerian flow. As a result the existence of

i the Stokes drift has been proved. The results of [6] were derived under

! some technical condition on the statistics of the Eulerian velocity field.

‘ This condition was crucial in the proof in [6]. However, in applica-
tions it is difficult to check whether the velocity field satisfies this
condition.

In this note we show that the main result of [6] can be stated also
without the above-mentioned technical assumption. A somewhat simi-
lar result, but for time-dependent flows with different statistical prop-
erties, has been shown in [5].
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1. INTRODUCTION

Consider the following It stochastic equation describing the motion of
a passive tracer in a turbulent flow

dx (£) = u(x () dt+ /21 dw (2),
x(0) =0,

where u: Rx R* x Q — R, the so-called Eulerian velocity, is a stationary, strong-
ly mixing, d-dimensional random field given over a certain probability triple

(1.1)
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(2, 7, P) and w(t), t =0, is a standard d-dimensional Brownian motion in-
dependent of u, given over 4, := (2, &/, W). The parameter x > 0 charac-
terizes the strength of the intrinsic molecular diffusivity of the medium.

We are interested in the long run behaviour of the tracer. One of the
questions is whether the trajectory process x (-) obeys the law of large numbers,
ie. if there exists v, (called the Stokes drift) such that

lim EQ = v, almost surely.
t— 0

It has been proved in [6] that for sufficiently regular velocity fields u(-)
with a finite-dependency range (see condition (FDR) below) and satisfying
a certain regularity condition in the measure theoretic sense (see (RAC) below)
there exists an absolutely continuous change of measure such that the Lagran-
gian process is stationary and ergodic with respect to the new measure. The
proof of this result is based on an application of the Lasota—York theorem,
which provides the existence of invariant densities for Markov operators satis-
fying a certain lower bound condition, see Theorem 5.6.2 of [7].

A certain result on ¢-algebra factorization due to Skorokhod (see [9]) has
been applied in the proof of the main result in [6]. In order to be able to use
the factorization result the authors needed some technical condition on the
velocity field. This condition is presented below (see (RAC)). In many applica-
tions this assumption becomes cumbersome. Here we show that the result of
{6] is valid also without this assumption. The main idea is similar to the one
used in [5]. We approximate velocity fields that do not satisfy (RAC) with the
fields which do satisfy this condition.

2. NOTATION AND FORMULATION OF THE MAIN RESULT

We will assume that x =1 in (1.1).

For any L > 0 we denote by X, := C([0, L]; R%) and X:= C([0, + ); R%).
These spaces are equipped with the standard topology of uniform convergence
on compact sets. For any ¢t > 0 we denote by II (£): ¥ - R the canonical pro-
jection II (t)(7) := n(t), ne X. Let A, := o {II(s): s < t}, t = 0, be the canonical
filtration on X. We let .# := \/ i>0H- By 2 and 2, we denote the spaces of all
Borel probability measures on X and X, respectively. By Wand W, we denote
the standard Wiener measure on (X, .#) and its restriction to .#, respectively.
For any h > 0 we have the shift operator 6,: X — X given by 0,(n)(t):= n(t +h)
for all t =0, neX.

Let (2, d) be a Polish space with a Borel probability measure P on it. We
denote by % (Q) the o-algebra of Borel sets on Q and by E[ -] the correspon-
ding mathematical expectation. Let .4 be the o-ring of P-null sets in % (Q), the
completion of £ (Q). Unless otherwise stated, we will assume that any sub-c-alge-
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bra of % (Q) contains 4. For abbreviation sake we write I? : = I7 (), where
To:=(Q, B(Q), P). _

Let w(-) be a standard d-dimensional Brownian motion given over a cer-
tain probability space J;:= (2, o7, W).

We suppose that u: Q — R? is a random vector over J satisfying the
following conditions:

(A) Existence of a drift. We assume that |o| > ||i]|,=, where v:= Eu and
#=u—v.

This assumption guarantees that the mean drift dominates fluctuations, i.e.
there exists 6 > 0 such that

2.1 u(x)v>=20>0 P-as.
for all xeR‘ Here 6 = v/|v|.

(S) w is stationary, ie. for any finite collection x, ..., xyeR? and any
xeR? the laws of (u(xy), ..., u(xy)) and (u(x;+%),..., #(xy+x)) coincide.

(FDR) Finite dependence range. For any r > 0 we denote by %, and %7 the
o-algebras generated by u(x), |x| < r and u(x), |x| > r, respectively. We assume
that there exists ro > 0 such that for any r > 0 the g-algebras % and %54,
are independent.

(RH) Regularity. For any we the field u(-; ) is of class C! and there
exists a deterministic positive constant U such that ||i (-; ©)|lw1.@rae < U. Here
|- [lwt,ray denotes the norm in the Sobolev space W1 (RY).

In [6], in addition to the condition (RH), the following regularity (in the
measure theoretic sense) condition has been imposed:

(RAC) All distributions of vectors (u (xy), ..., u(xy)), where N > 1, x; # x;,
i#je{l, ..., N}, are absolutely continuous with respect to the N -d-dimen-
sional Lebesgue measure.

In [4], conditions (RH) and (RAC) were denoted together by (R). The
absolute continuity assumption (RAC) is somewhat restrictive. The purpose
of this note is to show that the main result of [6] holds also without this
assumption. Before we state the main result, define a stochastic process V over
(QxZ, B Q) M, Py) :

2.2) V(t; 0, m):=u(n(t), w), t=0.

Let Q, ., be the martingale solution of (1.1) for a fixed realization of we Q
and subject to the initial condition x(0) = 0. Denote by M, , the respective
mathematical expectation. .

Let {T,: Q - Q, xe R%} be an additive group of transformations, satisfying
the following conditions:

13 — PAMS 24.1
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(M) Measurability. The mapping (x, @) 1(T, w), (x, w)e R? x Q, is joint-
ly measurable for any AeZ(%Q).

(MP). P-preserving, ie. P(T,A) = P(A4) for all xeR?, Ac#(Q).

(SC) Stochastic continuity. We have
I}m P (T.w)—14w)=n]=0 Vn>0,AcRB()
{x{—~0

The main result of the present paper is the following theorem.

THEOREM 2.1. Suppose that u(-) is a stationary velocity field satisfying (A),
(FDR), (RH), and the trajectory x(t), t = 0, is given by (1.1) with k > 0. Then
there exists a probability measure j on (2 x %, m)gut) for the Lagrangian
velocity process U (t):= u(x(t)), t = 0. This process is stationary and ergodic
with respect to p.

Ergodicity of the above measure is understood in the following sense. Any
set AeZ# (%) such that

(E) Loy (V()—14(V())du=0 VhR=0
must be u-trivial, ie.
(2.3) o, n): V(-; 0, m)eA] =0 or 1.

Obviously, the above theorem yields the existence of the Stokes drift under
the assumptions of Theorem 2.1, ie.
(24 lim %t) = [u(0)du Pyas.

t— o0

Remark 2.2. It should be noted that establishing the above theorem in
the present setting is more difficult than in the case of time-dependent flows
considered in [5] and [6]. In these two results the velocity field is supposed to
be time-space stationary. Moreover, the field is supposed to decorrelate as the
time passes. This means that it is enough to wait sufficiently long fixed time and
the velocity field will be independent of its history. In the present situation we
have the condition (FDR), but it alone does not imply that the moving particle
will see new realizations of the environment independent of what it has seen in
the past. We should also impose some condition which guarantees that the
particle will see new parts of the environment. This is achieved with the con-
dition (A). Due to diffusive character of the flow, the tracer has to travel for
some random time in order to see new realizations of the environment, in-
dependent of the past. ;
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3. APPROXIMATION OF GENERAL FLOWS
BY VELOCITY FIELDS SATISFYING (RAC)

In this section we will construct a sequence of velocity fields (u,) satisfying
the condition (RAC), which approximates the velocity field a.

Without loss of generality we may assume that the probability space 7 is
sufficiently rich to support a stationary Gaussian random field g: R? x Q — RY,
which satisfies the following conditions:

(GO) g and u are independent.

(G1) g is centered, ie. Eg(0) =0.

(G2) g(x) and g(y) are uncorrelated if |x —y| > r, (ro appeared in con-
dition (FDR)).

This condition implies (see [8]) that the field g(-) satisfies (FDR) with
%! and 9., in place of &' and #5%,,, respectively. Here 4! and %¢ are defined

analogously as % and %7 Namely, for any r > 0, 4. and %¢ denote the
o-algebras generated by g(x) with |x| <r and |x| > r, respectively.

(G3) Realizations of g are C®-regular P-as.
(G4) g satisfies (RAC).

Let us show the construction of such a field. Let W (dx) be the R-valued
white noise over J,, which is independent of u. Let g: R? — R be a compactly
supported function of class C®. Its support is contained in some ball Bg(0) of
radius R >0 centered at 0. Define

x1

g1, 0)i= [ . | ga—p) Wiy,

—

where x = (xy, ..., Xg. Let g;, ..., go be independent copies of g,. The field
g=1(91, ..., g satisfies (GO)}HG4).
Let us now define the velocity field u, by

1
u,(x):= u(x)+m¢(g(x)),
where ¢: R > R is given by

x 1
————— and —<.

(1+]Ix]1%)'2 no

By the conditions (G0){G4) it is easy to check that the field u, satisfies all the
conditions (S), (RH), (FDR), (RAC). Moreover, recalling (2.1), we see that the
mean drift dominates its fluctuations:

¢ (x):=

(3.1) u,(x)-4>06>0 P-as.
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for all xeR? and ne N. It is also easy to check that u,, V. u, converge to u, V, u,
respectively, as n — + co, uniformly on compact sets, P-a.s.

Analogously as Q. ,, we define Q%, as the martingale solution of (1.1)
(with the obvious substitution of «, for u) for a fixed realization of weQ and
subject to the initial condition x(0) = 0. By MY, we denote the respective
mathematical expectation.

Since the fields # and g are homogeneous, without any loss of generality
we may assume that there exists a group T.: Q@ — Q, xeR?, satisfying the as-
sumptions (MP), (M), (SC) of Section 2, such that

(3.2) u(x; 0)=u(0; o), gkx; w)=g0; o) VxeR"
Hence, in particular,
(3.3) u,(x; 0) = u,(0; T,0) Vn>1 and VxeR’.

4. NON-RETRACTION TIMES

Let us introduce some more notation after [6]. We want to introduce
a family of random variables, called non-retraction times. They describe times
after which no retraction of the diffusion can occur in the direction pointed out
by the mean velocity. These are not stopping times. The notion appeared first,
in a discrete setting, for random walks on a random lattice in [11].

For any neX, 1[0, + o) we let

4.1) D(; n):=min[t > 0: &-
For abbreviation sake we write D := D(3-x(0)),

U,):=min[t>0: $-n(t) =u], U,(@):=min[t>0: 6 n(t) <u]

n@) < —1+1].

and

4.2) M, (n):=sup [ (x()—=(0): 0<t<D(m)].

The last random variable is defined for those m for which D(zn) < + o0.
For any t > 0 we define also

4.3 A(@):=[=: itéf](n(s)-ﬂ—n(O)-ﬁ)B —1].
se[0,¢

We introduce the sequence of (.#,)-stopping times (S )k 0, (Rikz o and the
sequence of maxima (M,),s¢ letting -

S0:=0, R0:=0, M0:= 137'5(0),
(44) S1:=UMO+,.0+1< +CO, R1:=D0631+Sl-<\ +CD,
M :=max[#-n(t), 0 <t<R;] < + o,

where ro > 0 is as in (FDR).
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By induction we set for any k> 1
.5) Sk+1:=Upmpsrot1, Rivr1:=Dobs  +Sk1
' My i=max[§-7(f), 0 <t < Rex ]

The following summarizes the properties of the above-defined stopping
times and random variables (see Lemmas 3.1 and 3.2 of [6]).

LEMMA 4.1. There exists a deterministic constant y such that for all ne N
(4.6) QW [D=c] 2y Pas,
4.7) QP [Ry< 0] <(1—y*¢ Vk=>1, Pas.
for all xeR4,

Remark 4.2. In fact, in Lemmas 3.1 and 3.2 of [6], the path measures
Q" do not depend on n. The careful inspection of the proof of the mentioned
results in [6] shows that the constants appearing in Lemma 4.1 are uniform for
all neN.

Define, after [6], K :=inf[k > 1: R, = +00], with the convention that

K = oo if the set over which the infimum is taken is empty.
We have (sece Corollary 3.3 in [6]) the following lemma which is a con-
sequence of Lemma 4.1.

LemMA 4.3. For all neN and xeR%, we have
QM [K<®©]=1 P-as, QU [Sk<x]=1 P-as.

The above corollary allows us to define the first non-retraction time as
T,:=8Sg < oo, P{-as. The subsequent times are defined recursively:
Ty'=1Tp+T,00, for m>1.

The following lemma summarizes important properties of the non-retrac-
tion time 7;.

LEMMA 4.4. There exist constants ¥, Y2, Va, V4 and ys (independent of )
such that for all xeR* and neN

(4.8) QW [2" < M, <2™*1, D < 0] < yaexp(—752™),
4.9) Mz [M%, D < o] <9y,
@10) M, [6:m(@)]* <72
’ y?
4.11) 00 [ty >ul < T a for u>0

and, in consequence,
(4.12) EQ [}, D= 0] < 0.
The proof of this lemma will be postponed till the Appendix.
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5. THE CONSTRUCTION OF THE INVARIANT MEASURE

For any a, beRu{— 0, +©}, a <b, we let ¥, be the g-algebra gen-
erated by u(x), g(x), where a < x -9 <b. We write ¥, for v_,, Let
= (Qs ,.,/‘0’ P),

09 [D = + 0]

PB (@) = b D =+ o]

P (dw),

1pm=
") i [D(m)= + ] ()
PP (dw, dr): POD = + 0] P (dw, dm)
and Jp:= (R, ¥,, Pp). Note that in the light of (4.6) of Lemma 4.1, P§) is
equivalent to P. Analogously we define

Q,[D = +x]

1 w) =+ 0
oD = Foo ]P(dw), Ppdw, dn):= —2®=*=1 _p (dw, dr).

Py (dw):= Po[D = + 0]

Also, for any probability triple 4 the symbol 2 (J") denotes the set of all
probability densities with respect to the relevant probability measure, ie. the
non-negative elements of I' (7) whose integral equals 1.

An important role in the proof of the main result of [6] is played by
a certain transport operator (see Section 4.2 in [6]). For any ne N, the field
u,(+) has absolutely continuous finite-dimensional distributions (see condition
(RAQ)), i.e. for any x4, x5, ..., Xn, m = 1 (x; # x; for i # j), the random vector
(#,(x4), ..., u,(xy)) is absolutely continuous with respect to the m-d-dimen-
sional Lebesgue measure. According to Section 4.2 of [6], there exists a density
preserving operator 4,: I! (73) — L' (7)) satisfying the condition

(5.1 [MP[G(Tyey (@), D = 0] F(w) P(dw)
=[G () 2,F (@) QW [D = 0] P(dw)

for any F and G that are correspondingly ¥,- and ¥, ,-measurable. We call
this operator a transport operator.

Let us recall the construction of the operator 2, in more detail. Since u,(-)
satisfies the condition (RAC) in addition to (RH), the filtration (¥7),> admits
a factorization with respect to ¥, i.e. for any t > 0 there exists a o-algebra #'
such that ¥, and #' are P-independent and 7} is generated by ¥, and #*. Let
R:=\/ 5, %

The factoring property has an important consequence. Let us put
T3:=(Q,Z,P) and let T,0753:=(QxQ, ¥,®%, PQP). The condition
(RAC) implies (see Section 4.1 in [6]; see also ibidem, Appendix B) the existence
of an isometric isomorphism

. J,)-LE(7,87;) (pell, ©])
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such that
(Z1) ZF 20 for Fz0 and 21 =1;

(Z2) for any Fy, ..., FyeI?(7,) and &: RN — R bounded and continuous
we have
Z(P(Fy, ..., Fy) = O(ZF,, ..., ZFy);

(Z3) ZF (0w, 0') = F(w) for all FeI?(7,), ZG(v, 0') = G(w') for all
GeI’(73);

(Z4) ZF is ¥,®@%A'-measurable if F is ¥;-measurable for any ¢ > 0.

Let Iy := (%, #, W), where W denotes the standard Wiener measure.
Then

L
VW(n, w):= exp {j’ u, (7 (s), )dn(s)——j |#a (7 (5), @) ds}

0
is the Radon—Nikodym derivative of Q% with respect to W, the restriction
of Wto Z,. Here Q, denotes the restriction of Q% to . for L > 0. Let
fo u,(n(s), w)dn(s) denote the stochastic integral with respect to the Wiener
process 7 (-) over the probability space . The Radon-Nikodym derivative of
0., with respect to Wy, denoted by v;, can be defined analogously. Let F K de-
note the law in R? of the random vector n(S;) over Ty.

One can show that

(5.2) Z (P (m; (0, ) = (n; 0, @),

where

L
W (n; 0, ) 1= exp {j‘ U,(x(s); o, w’)dn(s)——;?[U,,(n(s); o, o)? ds} VL > 0.
o

0
Here
Uns(x) = Zu,(x)e L (T,873).

Remark 5.1. In fact, we can find a modification of U, defined over
T,®T that is of Cl-class of regularity and such that [|U,(*; @, @)||lw1.ome <
U +1 for all (w, '), where U, (-; o, @) := U,(*; o, @)—vand U is as in (RH).

The linear operators 2, satisfying (5.1), whose existence has been an-
nounced above, are defined in the following way. For any bounded and
¥ ,-measurable function F define

(5.3) 2,F () := [ A" (0, ) F(w) P (dw),
where
(54) A0, @)= Y [ ML) (@, T-p ) Fo(dx),
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and
(5.5  MPL(0, @)= My, [75) (1, 0, @), A(S), L-1 <8 < L].

Due to Proposition 4.4 of [6] this operator can be extended to a density
preserving operator 2,: I} (J3) —» L' (73).

We will show that 2, has an invariant density. Precisely we will show the
following lemma:

LEMMA 52. For any neN, there exists a ¥ -measurable, strictly positive
element H® € (TP NI (TF) such that 2,HP = HP. In addition, for any
Fe2(Ip)

(5.6) lim [|(2,)" F (0)— H ()| PY (dw) = 0.

We will begin with the following lemma:

LEMMA 5.3. Let pe(l, 2). There exists a constant C > 0, independent of n,
such that
(5.7) 12, Gliawgy < CllGllLogy VG (PF).

Proof. Let g be the coefficient adjoint to p, ie. 1/p+1/g = 1. By the
definition of the operator 2,, the square of the left-hand side of (5.7) can be
majorized by

(5.8) ([ ™ (0, @) Q% [D = 0] G (o) P(dw))* P(de')

yPP[D = OOJI

|GllZe ey
PP D = 0]
Applying the definition of 2™ (w, w’), we see that the right-hand side of the
inequality in (5.8) equals

(i 3 .m0, 0)
yPE[D = o] kL=1 e

- X sy di-1.n (Sx) Q(T",),(sk)m' [D = ] W(dn))q P (dw))Z/qP (do'),

IGlIZ>p)
yP§ [D = 0]

§§ (™ (0, ) Q@ [D = ] P(dw)*" P(dw).

(5.9)

x [(f (ki M, [0F) s o [D = 01, A(Sy), S < 00]) P (dw))*"* P (do),
=1

Gl Zeee)

(5.10) POID =0

x(f j(i Mg o [OP s 0 [D = 01, A(Sy), Si < c0])* P(dw) P (dow'))™",
k=1
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where the passage from (5.9) to (5.10) follows from Jensen’s inequality. Using
the properties (Z3) and (Z4) of the operator %, and recalling the definition of
the stopping time t,, we conclude that (5.10) equals

IGlIZo)

(5.11) _yPg') TS

(.[ (Q&',') [D=o00,1 < oo])‘lp(dw))Zlq

”G”%p(p) “G”%P(Pg))
S9PPD=c0] = TR

where the last inequality follows from the definition of P§}’ and the lower bound
for QW [D = 0]. =

Before we proceed with the proof of Lemma 5.2 we observe the following.

LEMMA 5.4. For every neN, there exists an I! (PJ)-weakly compact set
K], < 2(IP) such that

(5.12) lim inf [(2)" G—Kllueg, =0  VGeD(TP).

m— oo Kefy,

Proof. Observe that there exists C; > 0 such that, for all Ge 2(Ip)n
L (Pp),

(5.13) lim sup [[(2,)" Gll 2 < Ci-

Indeed, the application of Lemma 5.3 yields that, for 6(0, 1) (such that
0+(1—-6)/2=1/p),

(53.14) (2" Gl < C(20)" GllLeegy)
< C (2" Glis g (20" Glizabgy = C (2,)" GllLzpg)s

where the last equality follows from Proposition 4.4 of [6]. Iterating (5.14) we
get

(5.15) (2™ Gll2pg) < CZT=°(1_9)M||G||§}:&%'S_I-

Hence (5.13) follows. Notice that C,; does not depend on n.
The set whose existence has been proclaimed in Lemma 5.4 can be defined
as R" = {”G”LZ(pgn)) < Cl} B

Proof of Lemma 5.2. The existence of HY € & (J7) satisfying (5.6) has
been shown in [6], Theorem 4.7. It is a consequence of Theorem 5.6.2 of [7]
and the existence of the uniform (with respect to w) lower bound for 2, F (see
Lemma 4.8 in [6]).

It remains to prove that H® is an element of IZ? (P$). Due to (5.13), for
any Ge D (TH)NI?(PY) and sufficiently large me N, the sequence ((2,)" G) is
bounded in I? (P¥). Hence we can extract an I7-weakly convergent subsequence




202 G. Krupa

((2,y™ G). On the other hand, due to (5.13) and by virtue of the Komlds theo-
rem, k_lzi;l((,@,,)'”" G) as. converges to HY (see [3]). Fatou’s lemma and
(5.13) yield that

<C1. 4]

516 H|| 2 pen < liminf
(5.16) lH 3l 2 e P L2P)

1 k
7 2 (2)™G
i=1

After [6] (see Theorem 2.2) we define the measures
1 [+ o] [e o]
(5.17)  p,(dw, dn):= A Y [f | #9(x, s, w, n)dsdx]P§ (dw, dr),
nm=1 0O R4
where
(5.18)  H#R(x,s, @, 7 ¢
= Lp@-i)=+ 01 (M) P (5, X, 0) Qﬁ:’;'“[fl (8), S < 5 < Sp+1] H&?’(Tl w),

and Z, is the corresponding normalizing counstant, i.e.

(5.19) Zo=[[ Y [[ | #D(x,s, o, n)dsdx] PP (dw, dr).
m=1 0 R4
For the sake of convenience write
(5.20) W, w):= Y [[ | #£P(x, s, o, n)dsdx].
m=1 0 R4

Due to Lemma 5.5 of [6] we have
(5.21) Z,=[ML[ [ F(s)ds, D = 0] HP (w) P (dw).
Q 0

According to Theorem 2.2 of [6] these measures are regular measures for
processes V, () (where V,(+) are defined by (2.2), with an obvious substitution
of u, for u).

The main idea of the proof of the main theorem relies on a subtraction of
a suitable subsequence (u,) which weakly converges to some measure u, being
the desired measure, whose existence has been announced in Theorem 2.1. We
will define the measure u by analogy with p, (see (5.17) and 5.18)). To do this we
will identify a suitable limit H, of the sequence (HY") of invariant densities of
the transport operators (2,).

LEMMA 5.5. There exists a square integrable function H,: Q — [0, o) and
a subsequence (n;) such that for any further subsequence (n;) of (n;)

m

1
(5.22) lim — % H$Y(w) = Hy (0) P-as.

m— %0 mJ-=1

The set of @’s, on which the above convergence takes place, does not depend on
the choice of the subsequence (n;).
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Proof According to the definition of the measure P§’ we have

) (n) HP (@) b
Applying (4.6) of Lemma 4.1 we can write
1
(5.24) [ H? (@) P (dw) < % JHY @) PR (da) =~ VneN,

where the last equality follows from the fact that HY are P{-densities. Ap-
plication of the Komlos theorem (see [3]) yields the existence of an integrable
function H, and a subsequence (n;) such that (5.22) holds. Square integrability
of H, is a consequence of the Fatou lemma, (4.6) and (5.16):

(5.25) [HZ(w)P(dw) < hmmf Z [ (HE ())* P (doo)

k-

1 102
1 : D N2 Pl Cy
yhm inf— Z JHS (w))* PE? (do) < - <. m
i=10

‘By analogy with #®(-,-, -, "), given H,, we can define #,(",",",")
(see (5.18)). Similarly, we can define h(n, w) (see (5.20)). Now, let us define the
measure yu:

(5.26) p(dow, dr):= Z~ ' h(w, ©) Q, (dn) P (dw),
where, by analogy with (5.21), we define

(5.27) Z:=[M, [}1 F(s)ds, D = o] H, () P (dw).

Let n be a positive integer, 0 <t; <...<t,and Fq, ..., F,eC,(R%. For
any meN, define

(528) F(w,m):= ﬁFp(u(n(tp))), Fo(w, )= ljFp(um(n(tp))).

"LEMMA 5.6. There exists a subsequence (n;) such that

1 k
(5.29) lim Z Y [ Fp(w, )i (w, 7) P§? (do, dm)
k— o0 j=1
= [[F(w, m)h(w, ©) Py (dw, dr).
Proof Without loss of generality we may assume that F,, ..., F, are
non-negative. For any meN, set

Fal®= T E(un(0.00) and F9:= [] BB )

p
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In view of Lemma 5.5 of [6], we have to show the existence of a sequence (n;)
such that

k
(5.30) lim E Y M
ki=1!2

k—

(s)ds, D = oo | H2(w) P (dw)

ot_ﬁ,_

=M, [}IF(s)dS, D = 0] H,(w) P (dw).
[p] 0
We have

(3:31)  lim \% 2 !{M?J [Zf: E,(s)ds, D = oo ] HY” () P (dw)

i=1

—{M, [“ F(s)ds, D = 0] H, () P(dco)\
Q

§
0

1 k T

E > j(M‘;‘u[I E, (s)ds, D = o0
Q )

i=1

2

-M, [I (s)ds, D = oo])H("')(a))‘ (dw)
0
+ lim — Z jM"‘[j E, (s)ds, D = o0 | |H$? (w)— H . (w)| P (dw).
k=0 ki Sip
Let us denote the first and the second expression on the right-hand side of
(5.31) by I, and I,, respectively. First let us consider I,:

k m

(532) I =lim Ly IJ‘TIM(s)lw_m] 1) [T Fp (a8, +9)) 45082 (dm)

i= =

| j. 110,¢,3(8) Lp =7 () H F ( (m(t +S)))dSQn,(dn)|H‘"') () P (dw).

Due to Theorem 11.1.4 of [10], Q% converges weakly to Q.. Moreover, this
convergence is uniform for all we Q. This is a consequence of the uniform (with
respect to w) convergence of (u,(*)) to u(-). Since H{" are integrable (see
(5.24)), we conclude that I, =0.

Now consider I,. We have

(533) I, < 11m1nfu*|| Y. [M$%[ty, D = 0] |HY? (w)—H, (w)| P (dw).

k i=1802
To see that the right-hand side of (5.33) vanishes observe that (H%),y is bound-
ed in I? (P). Indeed, it is enough to perform calculations similar to the ones in
(5.25). Thus we can choose a subsequence of (HY) which weakly converges in
I2(P). To simplify the notation, without loss of generality, we may assume that
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this subsequence coincides with (H®?) chosen in Lemma 5.5. This lemma al-
lows us also to identify the weak I?-limit of (k“Z’i‘:lHE;”)) as H,. Since
EP[72, D = wo]eI? (see (4.12)), the result follows. =

Setting F, (w n) =F(w,n)=1 in Lemma 5.6, we get
k

(5.34) Z = lim - Z Z,, = lim - ! Y [ Mii[ty, D = 0] HY? () P(dw)

k—>cn i —>ookl 10

< lim — k2 Z E®[1,,D = w]- _[( H (o))’ P(dw) < .
k—wo
The last inequality follows from the Cauchy and Jensen inequalities. The finite-

ness of the outmost right-hand side of the expression above is a consequence
of (4.12) and the boundedness of (HP) in I*>(P). =

6. THE PROOF OF THE MAIN THEOREM

We will show now that u defined in (5.26) is a regular invariant measure.

Let us show first stationarity.

Letn>1, Fyq,..., F,eCy(RY) and 0 < t{ <... < t,. Since u,(-) satisfies
the condition (RAC), we can use Proposition 5.8 of [6], i.e. for any A > 0 we
have

6.1) Zi 1] ﬁ F,(u, (n(t, + 1)) h® (0, 7) Q% (dm) P (de)

= 01 11 B () B (@, 7) 0 @) P(do)
n  p=1

Choosing a suitable subsequence as in Lemma 5.5 and taking the Cesaro
means on both sides of the above equation we obtain
1 k

62 1Y m (i (1 1)) B (@0, 7) Q2P (@) P (dco)

=% i " (40, (7 (£,))) ™ (w0, ) Q% (d) P (dw).
1

Applymg Lemma 5.6 and lettmg k— oo we get

p=1

(6.3) = j § 1:[1 F,(u(n(t,+h))h(w, n) Q, (dn) P(dw)

= %I J ﬁ E, (u(x (t,))) (@, 7) Qo (dm) P (do).

Hence p is stationary.
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Now we proceed with the proof of ergodicity of u. We have to show that
for any bounded and Borel measurable F: Z — R satisfying

(6.4) Fof,(V(:)=F(V(") Vt=0, pas.

we have F(V(-)) p-as.
For any ¢ >0 we can find N > 1, 0 < t; <... <ty and a bounded con-
tinuous function F™: (R)N — R approximating F in the following sense:

(6.5) [SIF(VE)—F® W (), ..., Vw)|du < e
This yields in turn that
66  [[[FWC)F@E)—F™(V(ty, ... V(w))| du < 2esup|F.

Let g > g, be arbitrary integers. Set V4 (¢):= V (t A 1,,), t = 0. Using (6.4)
we conclude that

6.7 [[F(VC)FM V@ (ty), ..., Ve (ty)du
= [[F (0., (V) FO (V@ ty), ..., Ve (1)) dp.

Applying (6.5) we can approximate the right-hand side of (6.7) in the following
way:

©68)  [[|(F 0 (V) =F™(V(tg+ty), ..., V(e +1n)
x FM (V@ (t,), ..., V& (tN))l dp < 2esup |[F™).

Lemma 5.6 together with (5.34) yield that
69) [JF™(V(, +t1) V (5g+ i) F® (VOO (1), ..., V9 (1)) dp

= lim — Z IIF(N)( T +t1), ceey V(Tq+t1v))

k= o0 k
X FO (199 (2,), ..., V8 (ty) i,

By virtue of Proposition 4.5 of [6], the above expression equals
1 k
(6.10) fim 2 3 [PV @), s V (00) (20" Yo,
k=K =y

where Y, are ¥,-measurable functions satisfying
§§ Yoy, = [T F® (V89 (21), ..., V29 (tx) iy,
Due to Lemma 5.2, for any n; there exists 4, such that for g > 4,
6.11) [[fF™(V (1), ..., V(tn)(2e) " Y, dpy,
—[[FM(V(t1), ..., V(tn) Aphn, § JF® (VIO (21), ..., Vi (tx)) dpi| < €.
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Hence, we can choose an increasing sequence (g,) such that

(6.12) % 5 FF OV er)s oo Vo)t § (V09 21, . Vi (1) it
i=1

—f[F®WV (), ..., V() (2,) Y, d,u,,‘.| <&

Due to Lemma 5.6, without loss of generality we may assume that (n;) is such
that

(6.13) % 2 [[FOV(2y), ..., View) dpa, f fFV (VO (E0), oo Val® (n)) dpi,
—[[F™V(ty), ..., Vtn)du[ [ FM (VO (1), ..., VI (ty)) dy| < e.
Hence

1 k
6.14)  Tim o Y [IFV(V ), .o, V() (20)™ % Y i,
k2o K y=g

=[[F™V(ty),..., Ven)au[ | FP VO (ty), ..., VO (ty)du.
Combining (6.7)+6.14) we get
6.15)  [ffF™(V (), ..., VEn) FO (V9 (ty), ..., VO () dp
—[[F™WV @), ..., View)du[ [FO (VD ), ..., Ve (ty))dp| < 2esup [FD).
Letting go — o0, we see that (6.15) becomes
©16) |[J(F™ VD, ... V(tw) du
—([fF™(V (t1), ..., V(ty)du)’| < 2esup|FD).
By (6.5) and (6.6), the above equality implies
6.17)  |[ff[F(V )1 du—[f§F(V()dul’| < 2¢(2sup F|+3sup [F™)).
Observe that F™ in (6.5) can be chosen in such a way that, for all NeN,
(6.18) sup [F™| < 2sup|F|.

Due to an arbitrary choice of ¢ > 0, we conclude that F (V(+)) = const y-as. =

APPENDIX A. THE PROOF OF LEMMA 44

1nequa1ity (4.8) is proved in [6] in the Appendix (see (A.11) therein). State-
ment (4.9) follows easily from (4.8).

A.l. Proof of (4.10). With no loss of generality we suppose that x = 0.
We can write
K—1

6-m(t) Sro+1+ Y (ro+1+My—5-7(Sy),
k=1
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with random variable K defined before the statement of Lemma 4.3. Using the
Holder inequality we get

A1) MO [ m(e)]* < 8 {(ro + 1+ MO [K® ¥ nf1},
k=1

where 9, :=rq+1+M,— % (S). The right-hand side of (A.1) can be esti-
mated by

8{(ro+1*+ Y MP[Kn g, <+ w0,Doss,= + o1}
1<k’ <k

Since R;_; = Dofs,_,+8;_,, upon a multiple application of the strong Markov

property of Q™ and (4.6) it follows that the expression above is less than or

equal to

A2) 8{ro+ '+ Y A9 MO Ly <+ ]}

1<k’ <k

<8{ro+1)*+ Y K-yt t¥

1=k <k

x MY [Mg?sk'),m [(ro+1+M)*, D < 4+ 0], S < +OO]}

By virtue of (4.9) and (4.7) we conclude that the right-hand side of (A.2) is
less than or equal to

A3)  8{(ro+1*+8[(ro+1*+7f1 Y K3(1—p 1}
15k <k

=8{(ro+ )*+8[(ro +)*+7{1 X K* A —7F"1} < + 0.
k=1
A2 Proof of (4.11). Again, we let x = 0. Note that

(A4) QO [r: > u] < 0P [rl >, §m(e) < gu]wss’ [ﬁ'n(rl) > gu]

By virtue of (4.10) and Chebyshev’s inequality the second term on the right-
hand side of (A.4) is less than or equal to C/u* for some constant C that can be
chosen independently of w. On the other hand, the first term there can be
estimated as follows:

(A.5) Qg') I:T1 >u, #-m(ry) < g“:| < QY [Tou2 > u]

< QY [Ty, > ul+ Q9 [Ty, < u, n(Ty,)¢ 0" UL].
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Here 2L = 6u and U (x) is a cylinder centered at x with width 2L in the
direction ¢ and radius 2L(2+ U)/é in the directions normal to ¥, ie.

Up(x):={zeR* |6-(z—x)| < L, |e-(z—x)| < 2+ U)2L/d for any e L v, |¢| = 1}.

Here U is as in the condition (RH). The proof will be completed when we show
that the right-hand side of (A.5) vanishes as L— co.
Let Up:= U.(0). We divide dU.(x) into three subsets:

(A.6) 0" Uy (x) : = {z€0U, (x): $-(z—x) > L2},
(A7) 0" Up(x):= {zedU.(x): 8-(z—x) < —L/2},
(A8) U, (x) : = JUN@* Uy (x) U 8~ U (x)).

The following lemma characterizes the exit times from U (x).

LemMA A.l. There exist deterministic constants c;, ¢, > Q0 independent
of L, n and w such that for all xeR?

(A.9) Q0 [Ty > 2L/6] < cyexp(—Lfcy),
(A.10) Qgcn)w [Ty < 2L/, n(Ty ) €0 UL (x)] < cexp(—Ljc,).

Proof. The process
t
wo(t; m)i= () — [ u,(n(s), w)ds, =0,
0

is a d-dimensional standard Brownian motion starting at x over (%, .4, Q%)
for any w. On the event [Ty, > 2L/d]

2L}8
[wo (Ty,) = In(TUL)— j By (ﬁ (), CU) dS| 2 L.
0
Hence
0O [Ty, > 2L/5] < 0P [Iw,, (2L/8)| > L] < exp {—5L/4}.

On the other hand,
(All)  QP[Ty, <2L/6, n(Ty,)¢0%UL]

< O[Ty, < 2L/8, n(Ty)ed™ U]+ QY [Ty, < 2L/3, n(Ty,) € d°U ]

<QPL sup |wo(@) = L1+QP[ sup |w, () > 2L/3].

0<t<2L/ 0<r<2L/8

Using elementary estimates on the law of the maximum of a Brownian
motion, we bound the right-hand side of (A.11) from above by exp {—JL/4d}.

14 — PAMS 241
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Using (A.9) and (A.10) of Lemma A.1 we conclude that the right-hand side
of (A.5) is less than or equal to

ou ou
Cy exp —2_c1 +c, exp —2—02

and (4.11) follows. =
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