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ON THE FRACTIONAL RECORD VALUES
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Abstract. We define the record-values process which may be
considered as the collection of record values with non-integer or frac-
tional indices. The alternative construction from the sample as well as
the basic properties of the defined process are shown,
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1. INTRODUCTION

Let {X,, n > 1} be a sequence of independent identically distributed ran-
dom variables with a common distribution function (cdf) F and probability
density function (pdf) f. Moreover, let X;.,, ..., X,., denote the order statistics
of a sample X, ..., X,.

For a fixed k > 1 we define the k-th (upper) record times U, (n), n > 1, of
the sequence {X,, n> 1} as

U.(1) =1,
Up(n+1) =min{j > Uc(): Xpjrx-1> Xvopoum+k-1)> n=1,
and the k-th (upper) record values as
Y® = Xy mvum+r—1 for n>1

(cf. [5]). Note that for k = 1 we have ¥’ = Xy, 5,5 := R, — the upper record
values of the sequence {X,,n > 1}, and that Y¥ = X, = min(X, ..., X}).

Similarly, for a fixed k > 1 we define the k-th lower record times L,(n), n > 1,
of the sequence {X,,n> 1} as

L) =1,

Li(n+1)=min {j > Ly (n): Xy;jex—1 < Ximm+r-1}> 121,
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and the k-th lower record values as
Zglk) = Xk:Lk(n)+k—1 fOI‘ n ? 1

(cf. [11]). Note that for k = 1 we have Z{" = X ., := R, — the lower record
values of the sequence {X,,n> 1}, and ZP = X, = max (X, ..., X).

Stigler [13], by means of Dirichlet process, defined order statistics process,
which may be considered as fractional order statistics, i.e. order statistics with
non-integer index. A different approach to fractional order statistics is presen-
ted by Rohatgi and Saleh in [12]. Using Newton’s binomial series expansion
they defined a class of distribution functions F,., which may be interpreted as
the distribution of the r-th order statistic with non-integral sample size o > 0.
Jones [8] gave an alternative construction of Stigler’s uniform fractional order
statistics. Namely, ordinary order statistics of a sample U4, ..., U, from uni-
form distribution are used to construct random variables with the same joint
distribution as Stigler’s order statistics. Some applications of fractional order
statistics are given in [7].

In this paper we define the record-values process, which can be considered
as a family of k-th record values Y, with n replaced by a positive number t. In
Section 2 we define the exponential record-values process by means of a gam-
ma process. Next, we define the record-values process for an arbitrary dis-
tribution function F by a quantile transformation of the exponential record-
values process. Then in Section 3 we establish that the record-values process is
a Markov process. In Sections 4 and 5 we give an alternative construction of
exponential fractional record values. Similar results for the k-th lower record-
values process are summarized in Section 6. In Section 7 we give examples of
evaluation of moments of fractional record values from special distributions.
Finally, in Section 8 we give an application of fractional record values to the
problem of point and interval estimation of the values of the inverse to hazard
function of F.

2. RECORD-VALUES PROCESS

We start with a brief review of the distribution theory of k-th record
values. It is known (cf. [5]) that if F is an absolutely continuous distribution
function with pdf f, then the pdf of Y,® is

st‘k)(x) = (n—l)!
where H(x) := Hp(x) = —log(1 — F(x)) is the hazard function of F. The joint
pdf of the random vector (Y{®, ..., ¥,®) is
= f(x)

@O oo, o ) =R [T =

H) '(1-F®PF1f(x), xeR,

(1—F () f (%)
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for —o0 < x; <... < x, < 00. Moreover, if 0 = j, <j; <... <, then the vec-
tor (Y9, ..., Y¥) has the joint pdf

(22) fY(k) ..... Y(") (xl [RERE xn)

for —o0 =x < x; <...< x, < 00, where h(x) = H' (x).

In this note W%, neN, stands for the k-th record value from standard
exponential distribution. It is known (see e.g. [2]) that for each ke N the
sequence {W,®, n > 1} of k-th record values from exponential distribution has
the following property: for all m, ne N such that n > m, the random variables
W and W, — W, ¥ are independent (and this property characterizes the ex-
ponential distribution). Moreover, we know that W& and W® — W® are gam-
ma I'(m, k) and I"(n—m, k) distributed, respectively, where I'(x, f) denotes
a gamma distribution with pdf

Japx)= P “le™h* x>0, a pf>0.
(06)

The above facts motivate the following definition.

DerFINITION 1. Fix keN. Let W® = {W®(¥), t > 0} be a stochastic pro-
cess such that:

i) W®(©0)=0 as.,

(i) W® has independent increments,

(iii) if t > s >0, then W® ()—W®(s) is gamma I'(t—s, k) distributed.
Then {W®(¢), t > 0} is called the exponential k-th record-values process. The
random variables W® (¢), t > 0, are said to be exponential fractional k-th record
values.

Note that W® (), ¢t > 0, is I'(t, k) distributed. Moreover, if neN and
0=ty<t; <...<t, then the joint pdf of the random vector

W= (W®(t,), WO (1) — WP (ty), ..., WO () - WP(t,_,))

H(e)—H ) " " hix)
(]l_]l 1_1)'

(1—F (x,))"

is
n xti“ti 1—1

fﬁ,(xl,...,x,,)=k‘"1—[ - exp(—k Y x), Xi,...,% =0
i F(ti—ti-1) i=1

Therefore, the joint pdf of the random vector W= (W®(t,), ..., W® () is

)ti—ti—1—1

(2.3) S (X1, oony Xp) = ki 1‘[ iy exp (—kx,)

ie1 T(ti—ti—q)

for 0=x<x; <... < x, < 00.
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Also, (W® (1), ..., WR@n) £ (WP, ..., W), where £ means equality in
distribution. More generally, if ¢, =j,eN and 1 <j, <...<j,, then

(WO, ..., WO L (WP, ..., WH),

This can be stated by comparing (2.1) with (2.3) and (2.2) with (2.4) below. This
explains the name for the process W%, which has the same finite-dimensional
marginal distributions as the sequence of k-th records from exponential dis-
tribution.

Let F be a distribution function and let G(x) =1—e™*, x = 0, be the
standard exponential distribution function.

DErINITION 2. The stochastic process Y® = {Y®(z), t > 0}, where
Y®O@) =F 1 (G(W®(@), t=0,

is called the k-th record-values process for distribution function F. The random
variables Y® (z), t > 0, are said to be fractional k-th record values from F.

Suppose that F is absolutely continuous with the pdf f. Using the above
definition one can easily show that Y®(t), ¢t > 0, has the pdf
1

F(t)(H( X)) (1-F&) (), xeR,

Syoop (x) =
where H denotes the hazard function of F. Moreover, if 0 = t, < t; <...<t,,
then the random vector Y:= (Y®(ty), ..., Y®(z,)) has the joint pdf

n )— . t—ti-1—1 .
(24) fY (-xl 5 aeey xn) = ktvl l:[l (H (x‘) H]Ef;—_l)z_ 1) h (x,)

for —0 =x9<x; ... < x, < 00, Where h(x) = H'(x).

Moreover, by (2.1) and (2.4) we have (Y® (1), ..., Y® (n)) L(Y®, ..., W),
and using (2.2) and (24) we get (Y®(jy), ..., Y®(j,)) < (Y, ..., Y¥) for
1<j; <...<jn ji€N. Therefore we can cons1der y® (t) as Y® w1th index
n replaced with arbitrary positive t.

(1—F (x,)

3. THE MARKOV PROPERTY
Suppose that F is absolutely continuous with pdf f. Using (2.4) one can
show that the conditional pdf of Y®(t+s), given Y®()=x, t,s >0, is

K [1—F@)\* o
Froogs iz 1) = F(S)<1_ . g;) (HO)—H@)™ ho)

for y > x. Moreover, the conditional pdf of Y®(z), given Y® (t+5) =y, is

_ 1 (HEY ™'/, HE\ 'hx
Sroogireoe+s(x|y) = B(t, s) (H(y)) (1 H(y)) H(y)
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for x <y, where B(t, s) denotes beta function determined by

1
B(t,s)=[x""1(1—x)""dx, t,5>0.
0

Also, by (2.4),

fY”‘)(th)IY("’(n) ..... Y(ty,) (Gens1 | Xg,50ees JC,,) =f)'(k)(t,,“)|y(k)(tn) 1 | X0,
which gives the following result.
ProposiTioN 1. {Y®(¢), t > 0} is a Markov process with the transition
probabilities
1
GD  P{YPC+9>y | YO0 =x} = 15T (s k(HO)—H ()

for s >0, y = x, where

(3.2) T x)=[t*"1etdt, o>0,x>0,
0

denotes incomplete gamma function.

Note that if t =neN and s = 1, the equation (3.1) reduces to
1—F(y)>"

P{Y®(@n+1)>y| YO @n) =x} = (1—F(x)

for y = x, which agrees with the classical result (cf. [2], p. 97).

4. ALTERNATIVE CONSTRUCTION

In this section we show how to construct W® (¢) using exponéntial k-th
record values {W,®, n > 1}. For t > 0 we write {t} = t—[¢], where [¢t] denotes
the floor function and {t} is called the fractional part of t.

THEOREM 1. For t =2 0
@1 W® (1) = (1—B) W + BW{. 1,
where B is a beta B({t}, 1—{t}) distributed random variable, independent of the
sequence {W,¥®, n>1}.

Remark 1. We put B=0 as, if {t} =0.

Proof Ift =0, 1, 2, ..., then the right-hand side of (4.1) is simply W,®,
which is I' (¢, k) distributed. Now for te(0, c0)\N let us denote the right-hand
side of (4.1) by W®. If te(l, co)\N and n = [t], then the random vector
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(WP, W8, W#,) has the pdf

fWﬁk’-WS")'WE."L (u, v, W) = fwsk)|W£lk),Wl(qkll (u v, w) fwglk),ws’kll (u, w)
1 ¢ n+1
— (v_u){t)—l(w_v)— t}__un—le—kw
B({t}, 1—={t})

rm
for 0 < u < v <w < oo. Therefore

fWék)(U) = I"(n)B(I;}, 1_{t}):un—1(u—u)(t}—1 dun_f (w—u)—{t}e—kwdw
_ fnt1 T
=TwB@ o W e

kt

=—v""te™™, 020,
I'() g

which means that W® ~ I'(¢, k). Similar evaluations lead to (4.1) for t€(0, 1). =

Remark 2. Other methods of the construction of gamma distributions
and gamma processes can be found for instance in [4] and [6]. References [3]
and [9] are also recommended.

5. MULTIDIMENSIONAL CASE

In the previous section we show how to construct the single random
variable W® (t), t > 0, from the exponential k-th record values. Now we show
how to construct the random vector (W® (t,), W®(t,), ..., W®(t,)), where
0<t; <...<ty,< oo. We start with the definition of m-dimensional general-
ized arc-sine distribution.

DeriNITION 3. The random variables By, ..., B, are said to have m-dimen-
sional generalized arc-sine distribution with parameters a,, ..., Gy, Gp1 > 0 if
their joint pdf is of the form

m+1 m+1(ui_ui_1)a,-—1}
B U1y o Uy) =T a; —
Ll
for0=ug<uy; <...<Up<tpiqg=1.

Remark 3. Note that for m =1 we obtain ordinary one-dimensional
beta B(a;, as) distribution.

THEOREM 2. Let n =ty <ty <... <ty <tyiy =n+1. Define
WP =(1-B)WP+B,WH,, 1<i<m,

where (B4, ..., B,,) is a random vector with m-dimensional generalized arc-sine
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distribution with parameters a; = t;—t;_y, 1 <i < m+1, independent of the se-
quence {W,¥, n>1}. Then
(W, ... W) £ (WO (@), ... WO (t).
Proof. The joint pdf of W, = (W®, W¥, ..., W®, W&,) is of the form
1) fw.(wos - tms1)
= fwgo,...wpiweo,weq, U1, -y Un|Uos Um+1) fwgo,way  (Uos 1)

for 0<ug <u) <... <y < iy, <oo. Now, by (2.2), we get

n+1
(5.2) fwm weq (o, Ums1) = ——ud ' exp(—Kibms1), 0.<tg < tUpiy.

I'(n)

Moreover, the conditional pdf of W®, ..., W®, given W® = uy, W®, = u,,.4,
is the same as the joint pdf of the vector B’ = (4., — o) B+uy, where B =
(By, ..., By and ugy = (uo, ..., ug)e R™. Therefore

m+1 (ui’““ui—-i)ti*ti_l_l
(5:3) Swoo....wgorweo,wey, (e, .+, Um| o, Umt1) = ;1:—[1 T—tio))
for uyg <uy < ... <ty <uys,. Combining (5.1), (5.2) and (5.3) we obtain
kn+1 ui (ul__u(])tl to—1

I )% T

Jwpo....wo (g, ..., Un) = duy

—u;_ )tg ti-1—1 ao(um+1__u )th tm—1

1_[2 F(t L— 1) u{. F(tm+1— m)
e 1

e ~kttm+ 1 dum+1

. )ti—t(—]_—l
i—1 e_kum

i=1 F(t:’_ti—l) ’

which is the same as (2.3) with n=m. =

Theorem 2 allows us to construct (W®(t,), ..., W®(t,)) in the case when
[t1] = [tm]. Now we consider the general case. Let i= 1,0 <t;; <... <tjm <
tim+1=i+1,i=0,1, n, where n = [t,,]+1 and m; denotes the number of
W®(f) in Wwith i < £ - < :+1 Our aim is to construct the vector of the k-th
fractional record values

W=(W®@,;),1<j<m,0<i<n—1)
using the sequence {W®, n > 1}. This is done in the following theorem.
THEOREM 3. Under the above assumptions we define
WP = (1—BO) WP+ BOWH,, 1<j<m,0<i<n—1,

where B® =(BY,...,BY), i=0,1,...,n—1, is a random vector with m;-
dimensional generalized arc-sine distribution with parameters o\ =t ;—t;;_,,

3 — PAMS 24.1




34 M. Bieniek and D. Szynal

j=0,1,..., m+1. Suppose that B®, BV, ..., B* Y and {W,®, n > 1} are mu-
tually independent. Then

WL B, .., Wo  W®, L WE L LWE LR,

t0,1° 10,mo? t,m,? th-1,1° tn-1,mn-1
Proof. This easily follows from Theorem 2 and the independence of in-
crements of k-th record values {W®,n>1}. =

6. LOWER RECORD-VALUES PROCESS

We start with a brief review of the distribution theory of k-th lower record
values. It is known (cf. [11]) that if F is an absolutely continuous distribution
function with pdf f, then the pdf of Z® is

k == n—1 -1 '
6D = (AE)T FE)T @, xeR,

where H(x) := Hy(x) = —log F(x). The random vector (Z{, ..., Z¥) has the
joint pdf

n—lf(x_)
6.2 9,020 (15 - Xa) = K* [] =3
PR —
for x; > ... > x,. Moreover, if 0 = jo, < ji < ... <y, then the vector (Z%, ..., Z¥)
has the joint pdf

(Fee)) ™ f e -

T H (x;— 1)—H (f %1~ h(x)
63) Sagp..apy(5so o ) = ¥ ﬂ( Gi—ji-1=D)!
for 0 =xo>x; = ... = x, > —o0, where h(x) = H (x).

Let ¥®, neN, stand for the k-th record value from standard negative
exponential distribution with the cdf G* (x)} = €*, x < 0. Using (6.1) and (6.3) one
can show that for each ke N the sequence {V¥, n > 1} of k-th lower record
values from negative exponential distribution has the following property: for
all m, neN such that n > m the random variables V¥ and V® —¥® are in-
dependent. Moreover, ¥® and V®—V,® are negative gamma NI (m, k) and
NI (n—m, k) distributed, respectively, where NI («, f§) denotes a negative gam-
ma distribution with pdf

(F ()

ﬁﬂ
I' (o)

|x|*~tef*, x <0, «, f>0.

Jap (%) =

The above facts motivate the following definition.

DeriNiTION 4., Fix ke N. Let V® = {V®(z), ¢t > 0} be a stochastic process
such that:
@ V™) =0 as.,
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(i) V® has independent increments,

(iii) if ¢ > s = 0, then V® (1)—V® (s) is negative gamma NT (t—s, k) dis-
tributed.

Then {V®(z), t > 0} is called the negative exponential k-th lower record-
values process. The random variables V®(¢), ¢t > 0, are said to be negative
exponential fractional k-th lower record values.

Note that V®(p), t > 0, is NI (¢, k) distributed. Moreover, if ne N and
0=t0<t1 <...<tn, and

V=(V®(t), VP (t)—V®P(y), ..., VO ()= VP (t,- 1)),
then the joint pdf of ¥ is

n | ilt,-—ti—1 1

Sy %) = R T %, <0,
Jo ey Xy) il;llr(ti o 1)f’XP( ; ). X1 x

Therefore, the joint pdf of V= (V® (), V®(t,), ..., V¥ (s,)) is of the form

(g =)
6.4 X1y ooy Xp) = k™
©4 Jr ) i];ll ri—t-,)
for 0=xg=2x;=>...2x,> —00..

Note that by (6.2) and (6.4) we have (V¥ (1), ..., V®(n) Ly, ..., V)
and, more generally, if ¢, =j,eN and 1 <j; <... <j,, then using (6.3) and
(6.4) we get

exp (kx,,)

(VEGa)s - VO £ (0, ..., V).

This explains the name for the process V®, which has the same finite-dimen-
sional marginal distributions as the sequence of k-th lower record from nega-
tive exponential distribution.

Let F be a distribution function and let G* (x) = €*, x < 0, be the standard
negative exponential distribution function.

DermaTioN 5. The stochastic process Z® = {Z® (¢), t > 0}, where
ZW@H =FYHG*(V® @), ¢=0,

is called the k-th lower record-values process for distribution function F. The
random variables Z® (z), ¢ > 0, are said to be fractional k-th lower record values
from F.

Suppose that F is absolutely continuous with the pdf f. Using the above
definition one can easily show that Z®(z), ¢t > 0, has the pdf

t

F(t)(H( W (FE) TS (), xeR.

Sz (x) =




36 M. Bieniek and D. Szynal

Moreover, if 0 =1ty <t; <...<t,, then the joint pdf of the random vector
Z:=(Z%(,), ..., Z0(,) is

i (H(xi)_ﬁ(xif 1))“-“'1 -1 h(x;)

63)  febo.x) =k ]1 T(ti—tiy)

(F (x,)"

for o=xg>x;2...2x,> —0.
Note that by (6.2) and (6.5) we get (Z®(1), ..., Z¥ (@n) £ (ZP, ..., ZW),
and, more generally, for 1 <j, <... <j,, j;eN, by (6.3) and (6.5) we have
(Z®G), - Z9 () = 2P, .., Z8).

Therefore we can consider Z® (t) as Z® with n replaced with arbitrary positive t.
Now the following results hold true.

PROPOSITION 2. {Z®(t), t = 0} is a Markov process with the transition
probabilities

P{ZW(t+s)<y| ZM (@) =x} = 1—%()1“( k(H (y)—H(x))

Jor s>0, y<x

THEOREM 4. For t 20

V® (1) £ (1—B) VP + BV 1,

where B is a beta B({t}, 1 —{t}) distributed random variable, independent of the
sequence {V,®, n > 1}.

THEOREM 5. Let n=ty <t; <... <ty <ty+q =n+1. Define

V®=(1—B)VO+B,V®,, 1<i<m,

where (B, ..., B,) is a random vector with m-dimensional generalized arc-sine
distribution with parameters a; = t;—t;—,, 1 < i< m+1, independent of the se-
quence {V®, n > 1}. Then

V®, ..., ) £ (V®(ty), ..., VE(t,).
Let i=t o<ty <...<tbjm<tim+1=i+1,for i=0,1,...,n, and
V=V®(t,;), 1<j<m,0<i<n-1).
THEOREM 6. Under the above assumptions we define
VO = (1—BP) VO +BP VY, 1<j<m, 0<i<n—1,
where BY = (BY, ..., BY),i=0, 1, ..., n—1, is a random vector with m-dimen-
sional generalized arc-sine distribution with parameters a‘i’ =t j—tij—1,

j=0,1,..., m+1. Suppose that B®, BV, ..., B®~V and {V;,‘"’, n > 1} are mu-
tually independent. Then

d (3 k k k k ()
VEWS, s Ve Vo Vi Vs VR L)

tn- 1,mp-1
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The proofs .of Proposition 2 and Theorems 4, 5 and 6 are similar to the
proofs of Proposition 1 and Theorems 1, 2 and 3, respectively, with obvious
modifications.

7. MOMENTS OF FRACTIONAL RECORD VALUES

In this section we present some examples of evaluations of moments of
fractional record values.

ExampLE 1. Uniform distribution.

Let '
0, x<0,
F(x)=<x, xe(0,1),
1, x>=1.

Then for x€(0, 1) we have f(x) = 1, H(x) = —log(l—x) and h(x) = (1—x)"".
Therefore the pdf of Y®(¢), t >0, is

£

f;(k)(,)(x) = L(—log(l—x))l_l(l—x)"'l, xe(0, 1),

')
and for neN
E(Y® (t))" = Flf(t?); x"(—log(1 —x))t—1 (1—x)"*dx
K o® o —kz o1
=r(t)£(1_e AR

Using Newton’s binomial formula we get

. n n Y n —k_ t
o= o))

ero-1-(L,)

For instance,

k+1

and
E(Y® ()2 =1— L t_|_ L t
( ()(t)) 1 2(k+1) <k+2>'

Kt (k+ 1)% — k2 (k+ 2)
k+ 1" (k+2f

Therefore

Var Y® (1) =
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Similarly, for 0 <t <s

cortrmon = (2 N[22

ExaMPLE 2. Weibull distribution.

Let
l—exp(—4x%, x=0,
F(x)=
0, x < 0.
Then f(x) = aAx* " texp(—Ax%), H(x) = Ax* and h(x) = aix®~!. Therefore
a(kd) . .
Jroo (X) = F_(t)x "“lexp(—kix®), x20,
which for g > 0 gives
I'(t+p/o)
WY = — 7
E(Y® () &P T ()

For instance,

' Var Y® (1) = m(r(wgr(ﬂ—ﬂ (t+§>>.

Moreover, for 0 <t <s

oy CE 2 )

ExamPLE 3. Single-parameter Pareto distribution.
Consider the single-parameter Pareto distribution function

0, Cx<l1,
Fx)=+
1 - l/xa, X ? 1:
where « > 0. Then for x =1 we have f(x)= a/x
h(x) = a/x. Therefore the pdf of Y®(z) is

k tl t—1
Fronn () _ (ko) (log x)

F(t) xka+1 4
Therefore for >0

ood [ ke Y
| E(Y® (1) —<ka—ﬁ>’

! provided that f < ka. If o > 2/k, this easily gives

t 2t
Varr® = <kocki 2) _<kaki1) '

a+1

, H(x)=alogx and

x=1.
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Similarly, for 0 <t <s

Cov(Y®(r), Y®(5)) = ( kaki 1)’ [(ZZ:Dt B (k"ici 1>t].

EXAMPLE 4. Two-parameter Pareto distribution (Lomax distribution).
For the two-parameter Pareto distribution

P — {(1)—(,1/(/1+x)) , x>0,

x <0,

E(Y® ()’ —):'Z( 1) ()(ka_1>, n < k.

Therefore, if ka > 2, then

VarY® () = A2 {(koc 2 (k“" ) t}
COV(Y(k) (t), y® (S)) -2 (kaki 1>5 l:(zz:;)t“(k:i 1)‘:|.

ExaAMPLE 5. Generalized Pareto distribution.
For the generalized Pareto distribution with pdf

A>0,0>0,

we have

Also

-
(Q4ax)"t7t x>0, if «>0,
. (1+ax)"t7Y O0<x< —1/a, if a<O,
X)) =
e x, x=0, f a=0,
0, otherwise,
(.

we have for neN, a #0,

. E Y\
() (&)

n<kfo if a>0,
neN if «a<O.

u[\/]=

B0 =53

where

For instance, if 2a < k, then

- 856}




40 M. Bienick and D. Szynal

Moreover, for 0 <t <s

COV(Y(k) (®), YO (s )) 1 (k k a)-* l:(kk_—zo:x>‘_ (kia> :l

EXAMPLE 6. Inverse exponential distribution.

Let
e 1 x>0,
F(x) =
0, x < 0.

Then for x >0 we have f(x)=x"2e " * and H(x) = x~!, and h(x) = x2.
Therefore

kt e—k/x
fZ(")(t) (x) F(t TEE1 x> 0)
and for a >0
a F(t—d)
E(Z® @) =k* ,
provided that ¢ > a. For instance, for ¢ > 1
k
EZ®(t) = —
0=
and for t > 2
k2

E@O0) = C—D—2
which implies
. 2
VarzZ® (t) = m, t>2.

ExXAMPLE 7. Gumbel distribution.
Let

F(x)= exp(—e_"), xeR.
First we consider the case y =0 which corresponds to Gumbel distribution. Then

Szoo@ (x) = exp( ke e ™, xeR,

F(t)

and for neN

E(Z® ()" =

i o

j x exp(—ke“")e’"‘dx=r() fe iyl gy

0

_i -1y <’;> (logk)y"~i ' (z),
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where I'?, j > 1, denotes the j-th derivative of gamma function and I'® =T,
Therefore

EZ9() = logk—— ((2
and
E(Z% () = Fi(t) {(logh)? I’ (ty—2I" (t) logk+I" (1)}
This gives
Var Z® (¢) = rore—re)

(re)

which is positive since I' is log-convex function on (0, o0).
Moreover, for 0 <t <s

EZW (1) Z®(s) = ——_F(t)llfs(s—t) _}; yexp(—ke ) e oyf xe (™Y —e 1 dxdy
ks o] a0
= TOTG=D —“Im yexp(—ke ) e {(j; ze Z(l—e 7 1714z
+y u_i3 e =(1—e " 1dz}dy.
]
We have
K —tz(1__ ,—Z\§—t— _ _ _F(t)F(S—t)
_[‘;e (1—e 2 *"1dz=B(t,s t)_—[‘(s)
and
H —tz —Z\s—i— — _ F’(S)_!L(E)
ge (1—e dz =Bt s t)(F(s) F(t))’
Hence
EZ® (1) Z0(s) = E(Z® (s)) + (f,—((:))—%(ti))) EZ%(s),
and

rOrs-(e)”
rey

Cov(ZM (1), Z¥ (5)) = Var Z® (s) =
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EXAMPLE 8. Generalized extreme value distributions.
Let
| exp(—(1—y0)!”), x<1fy, y>0,
F(x) =< exp(—(1—yx)'"), x>1/y, y <0,
exp(—e™), xeR, y=0.

The case y = 0 corresponds to Gumbel distribution which has been con-
sidered in Example 7. For y # 0 we obtain
kt

fz(k)(z) (x) = ()

(1—px)"~texp(—k(1—yx)'"),

and for neN

Therefore for t > max (0, —7v)

_1 I+
Ty kT

‘ EZ® (1)

| and for ¢ > max(0, —2y)

ooz 1 2T (+y) | T(E+2)
E(Z® (1) TR TR0 2T

Hence

I't+2) L ®)—r?(p+1)

®) () —
Var Z¥ (t) 2R

Moreover (cf. [1]), for 0 <t <

Cov(Z®(1), Z® (s)) =

I'{t+7y) {F(s+2y)_1"(s+y)}
Y2k2 (@) | T'(s+7) resy |

8. AN APPLICATION

Let {Y®(¢), t = 0} be the k-th record-values process for an absolutely
i continuous distribution function F with pdf f and the hazard function H (x) =
. —log(1—F (x)). Let Y stand for the inverse function of H, ie.

Up) = H '@ =F1(1—e™, u>0.

As an application of fractional record values we consider the problem of es-
timation of Yr(u) for u > 0, which is equivalent to the estimation of x,,
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the p-th quantile of F, by putting u = —log(1—p), pe(0, 1). The problem of the
estimation of x, by fractional order statistics is considered in [7] and [10].
Using Taylor’s formula to ¥y in a neighbourhood of u we get

Yr () —Yr () = Yr ) (x—u) + 3 Y5 @) (x—u)* + 3 UF () (x—u)>+
Using Y® (t) £ y/x(W® (1)), putting x = W®(f) and taking expectations, we obtain
(81) EY®() = yr@)+¥r@E(W®()—u)
+Yr @ E(WY ) —u)’ +3yF WE (WP (O —u)’ +
Taking into account that W® (ku) is I' (ku, k) distributed, we see that if ¢ = ku,

then E(W® (t)—u) =0 and E(W® (t)-—u)2 = u/k. Putting these quantities into
(8.1) we get

lﬁ(u

EY® (ku) = yp (u) + ;1/” )E (W% (ku)—u)’ +

Therefore Y® (ku) can be considered as an estimator of the value ().

DEFINITION 6. The estimator - (u) of the inverse to hazard function at the
point u based on the k-th fractional record values is defined as

YrW) = YO (ku), u>0.

Note that using the fractional record values instead of the ordinary record
values allows us to reduce the bias of Yz (u).

We consider also the estimator of r(u) based on the sequence
{Y®,n> 1} of k-th record values from F.

DEFINITION 7. The estimator Yz (u) of W () based on the k-th record values
from F is defined as

Yrw) =(1- {ku}) Y[gf‘)] + {ku} Y[g‘)” 1
where [x] and {x} stand for the integral and fractional part of a real number x.

Note that the values of /(1) may be obtained from empirical data, on the
contrary to Yr (u) The values of (1) can be approx1mated by the values of
Yr(u), as stated in the following theorem.

THEOREM 7. Let & = {ku}. Then

82) Er - ) = 200+ w0 ) +0 67

Proof. Let yj= E(W® (t)—t/k) ,j€N, stand for the j-th central moment
of W® (1) and let ¢ = t/k—u. Then for j > 2

A 1 ] i Jj— lr(t+J) l
=1 Eo( b <>t 0 °<kf>’
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which implies for r > 2
r . 1
E(W® (t)—u) = (r.)c"’,u'-= o(k).
( () ) j;o J J kr
Moreover, by (8.1) the left-hand side of (8.2) may be written as
(8.3) Ur )+ (W) My + 305 () Mo+ 307 @) M3+,
where
M, =(1— E(W® —uf +eE(WH,  , —wy —E(W® () —u)
r—1 7 N" . .
= (j) {(1—e)(—ef T +e(l—ey I}

o \i/ k7

Therefore

g(l—g) e(l—e) 262 —2e+1
= M 3 = k2 3u— k .
Putting these expressions into (8.3) we get (8.2). =
Now we show how to construct the confidence intervals for yr(u) using
Yp(u) and Yr@u). As W® () ~ I'(t, k), we obtain

P(Y® () < Yp@) = P(WO(0) <) = ng;(tl;u),

where I'(x; x) is incomplete gamma function given by (3.2). Therefore, for
O<t<s

It ku)_F(s; ku)

. ) s S (k) =
If t,seN and t =n, s =n+r, then (8.4) takes the form
E nt+tr—1 kui
PO <t < ) = § E

Therefore, to construct the 100(1 —2)% confidence interval of the form
(Y® @), YO (),

we choose as ¢ and s the solutions to the equations

 k
@8.5) r Ef’(t)”) - 1—-5;,
(8.6) I (s; ku) _¢

I'(s) 2




On the fractional record values : 45

Alternatively, ¢t and s can be approximated as follows:
(8.7 t ~ 'k (2/2),
(8.8) s~ Tk (1—a/2),

where ', (p), pe(0, 1), denotes the quantile of order p of gamma I'(a, b)
distribution.

Note that in general the values given in (8.7) and (8.8) are easier to find.
However, for the values of t and s determined by (8.5) and (8.6) the coverage
probability is exactly 1—o, while for ¢ and s determined by (8.7) and (8.8) the
coverage probability is only approximately equal to 1—o.

To summarize the above consideration, we define the exact 100(1 —a)%
confidence interval for {/y(u) as

(e (t/R), Y (s/k)),

where ¢t and s are given by (8.5) and (8.6), respectively. But in practice we
propose using the approximate 100(1 —a)% confidence interval for Yy (u) de-
fined by

(W (t/k), Fr(s/k),
where ¢t and s are given by (8.5) and (8.6), respectively.
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