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a Lévy process. This distribution turns out to be exponential if the tail
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service times, and it has a more complicated non-exponential shape in
the opposite case; if the service times have heavy-tailed distribution
in the domain of attraction of a one-sided a-stable distribution, then
the limit distribution is Mittag-Leffler’s. In the case of a symmetric
o-stable process X, the Laplace transform of the distribution of the
supremum M is also given. Taking into account the known relation-
ship between the heavy-traffic-regime distribution of queue length and
its waiting time, asymptotic results for the former are also provided.
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1. INTRODUCTION

The paper provides a characterization of the limit distributions of
an appropriately normalized stationary waiting times for G/G/1 queues ope-
rating in the heavy traffic regime under the assumption that the service times
and/or the interarrival times have heavy-tailed distributions. It relies on the
fact that this distribution is equal to the distribution of the supremum
M = SuPo << (X (f)— pt), where X is a Lévy process, see Szczotka and Woy-
czynski (2003). The latter turns out to be exponential if the tail of the dis-
tribution of interarrival times is heavier than that of service times, and it has
a more complicated non-exponential shape in the opposite case; if service times
have a heavy-tailed distribution in the domain of attraction of a one-sided
a-stable distribution, then that limit distribution is Mittag-Leffler’s. In the case
of a symmetric a-stable process X, the Laplace transform of the distribution of
the supremum M is also given. Taking into account the known relationship
between the heavy-traffic-regime distribution of queue length and its waiting
time, asymptotic results for the former are also provided. The paper permits
existence of statistical dependence between the sequence of service times and
the sequence of interarrival times, as well as between random variables within
each of these two sequences. Several examples are provided.

To formulate the problem more precisely let us consider a queueing system
of G/G/1 type generated by a stationary input sequence {(v;, ), k=1, 2, ...} of
pairs of nonnegative random variables v, and u,, where v, is interpreted as the
service time of the k-th customer and u, as the interarrival time between the
k-th and (k+1)-st customers. Let {(vy, ), k=..., —1,0,1,...,} denote
a two-sided stationary extension of the input sequence {(v;, ), k=1, 2, ...}.
Although the two sequences are different, there is no danger in using the same
notation for both and labelling both of them input sequences.

We shall assume that

a= EUl—Eul < 0,
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and put
k
ék=U_k”""u_k and Sk= Z f.l’ k?l, S0=0.
j=1

We shall also require that S, > — o0, ass., as k— 0. The quantity

w:= sup S
O0sk<w
is called the stationary waiting time for a G/G/1 system generated by the in-
put sequence {(vy, u), k > 1} and it is also the limit, in a weak sense, of the
sequence wy, k = 1, of waiting times w, of the k-th customer.
Our goal is to study the system in the limit

a=a,10,

which, in queueing theory jargon, is known as the heavy traffic regime. Our
notation will thus explicitly reflect the dependence of various quantities on n:

(Uks uk) = (Un,ka un.k): Sk = Sn,k: 5 = é(n) = {En,k: k= 1}: W = Wy.

The basic and well-known fact is that if a,10 and if &€ (n) are ergodic, then
w, 5 o as a, 1 0. Formally, our primary goal is to find conditions on the input
sequences ¢ (n) which guarantee existence of normalizing constants c,, ¢, T oo,
and a non-degenerate random variable M such that

W,/C, LM as a, 10,

where 5 stands for the convergence in distribution. A characterization of
possible limit distributions appearing above is a secondary goal.

Our principal tool is the Heavy Traffic Invariance Principle (see Szczotka
and Woyczynski (2003)), which can be formulated as follows:

HeAvY TRAFFIC INVARIANCE PRINCIPLE. Let

Lt
O X0O=1 5 Car AO="0 w g ="
nj=1 " "

where t =20, n> 1, and constants ¢, — o0 as n— co. If:

(A) there exists a stochastically continuous process X with stationary in-
crements such that X,3 X in the Skorokhod topology in D0, co) and
X({t)—ct—> —o0 as. as t > oo, for all ¢ >0,

(B) there exists B, 0 < B < o0, such that B,— B, and

(C) the following sequence is tight:

(2) CU,,/C,, = OSUP (Xn(t)_ﬁn(t))a nz 19

<t<oo
then, as n — o0,
(3) wnfcn > sup (X(t)—pt)=M.

0<t<oo
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Application of the above principle to queues is more fruitful if it is com-
bined with the following observation which is based on the idea of decom-
position of processes X,: Let f,— f,

X, =XP+XP, XPO=XPO=0as, X,5X, XP5X,

and assume that the sequences of random variables
(I/C,,)Q)S,i) .= Ssup (Xgli)(t)_piﬁ(t))a nz 1: i= 15 27 P1t+p2 = 1:
0€t<
are tight. Then

walcy 3 sup (X(1)— Br).
0<€t<o0
A stronger version of this observation will be formulated later on as the Decom-
position Theorem.

If X is the standard Wiener process, then M has an exponential distribution
with parameter A = 2f (see Karlin and Taylor (1975), p. 361). This asymptotics of
the stationary waiting times is encountered in situations when service times and
interarrival times form weakly dependent (say, satisfying some mixing condi-
tions) sequences and their distributions have light tails, that is

@ lim x> P(->x)=y < .
Indeed, for GI/GI/1 queues, Kingman (1961) has shown that if Eu, ; — A~ and
Var (v, )+ Var(u,,) = o, 0 <o < o, as 4,10, then

lim P (w,/c, > x) = exp(—2Ax/a?),

where ¢, = (1—g¢,) !0, and ¢, = Ev, 1/Eu, , is the traffic intensity. Kingman’s
approach was based on an analysis of the limit of the characteristic functions
for w,/c,. An analogous result for queueing systems with dependencies between
random variables in the input sequences and light tails was obtained by Szczot-
ka (1990), (1999), where functional limit theorems have been utilized.

In this paper we apply the Heavy Traffic Invariance Principle in the situa-
tion when X is a Lévy process without Gaussian component, which corre-
sponds to the case of heavy-tailed distributions of service times and/or interar-
rival times in a G/G/1 queueing system. Recall that the distribution of a ran-
dom variable { is said to have a heavy tail if there exists a < 2 such that
%) lim x*P({ > x)=y>0.

The special case of heavy-tailed GI/GI/1 queues, where the input sequences
had independent terms, was considered by Boxma and Cohen (1999), who
investigated the limits of the Laplace—Stieltjes transforms of w,/c,. They also
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assumed that the tails of the distributions of service and interarrival times
satisfy some regularity conditions (ibidem (2.6-7)). Roughly speaking, these as-
sumptions imply that the input distributions belong to the domains of attrac-
tion of stable distributions with different exponents « for service times and
interarrival times. They showed that if the distributions of service times have
heavier tails than those of interarrival times and if they belong to the domain of
attraction of a stable distribution with parameter a, 1 < a < 2, then the limiting
distribution of w,/c, is a Mittag-Leffler distribution (also called sometimes
a Kovalenko distribution). In this situation the normalizing constants ¢, depend
~only on the distribution of service times. On the other hand, they proved that if
the distributions of interarrival times have heavier tails than the service times
and if they belong to the domain of attraction of a stable distribution, then the
limiting distribution of w,/c, is exponential, here the normalizing constants
¢, depend on the distribution of interarrival times. Similar results are given in
Whitt (2002). x '

The composition of this paper is as follows : Section 2 formulates our main
results on limit distributions of stationary waiting times in heavy traffic for G/G/1
queues with heavy-tailed distributions of service and/or interarrival times.
These results seem to be novel in the queueing theory context but we view them
as an illustration of the Heavy Traffic Invariance Principle applied to heavy-
tailed G/G/1 queues in heavy traffic in presence of some dependence struc-
tures. Initially, the dependence structure of the input sequences is that of a mar-
tingale difference sequence but then, using the Decomposition Theorem, we are
able to relax this restriction to what we call half-martingale dependence struc-
ture: only one of the two input sequences is required to form a martingale
difference sequence. These results also illustrate the general phonomenon of the
limit distribution depending only on the input component with heavier dis-
tribution tail. A number of corollaries to our two main theorems are also
included. They illustrate the possibility of getting the limiting distribution of
w,/c, for G/G/1 queues with the following dependence structures:

e GI/GI/1 quenes.

e Queues for which the r.v.’s v,; —u,;, —0 <k < o0, are iid., but ran-
dom variables v,, and u,, need not be independent. Moreover, the distribu-
tions of v,,, as well as of u,;, may depend on k.

e Queues for which the sequences {(v, ,— Evy,1) — (U . — Eu, 1), k > 1} form
martingale difference sequences for each n = 1.

e Queues for which only one of the two input sequences forms a martin-
gale difference sequence.

In Section 3 we begin to gather tools needed in the proofs of the two main
theorems and start with a result on convergence of processes to a Lévy process.
This is a well-explored territory but we found that a well-known result from
Durrett and Resnik (1978), Theorem 4.1 (see also Jakubowski (1986)), needs
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some adaptation to be directly applicable for our purposes. We go through
a similar process in Section 4, where we adapt known results from Szczotka
and Woyczynski on sufficient conditions for tightness of the sequence {w,/c,}.
Finally, proofs of Theorems 1 and 2, relatively short after all the preparations
of Sections 3 and 4, are provided in Section 5.

2. LIMIT DISTRIBUTIONS OF STATIONARY WAITING TIMES
IN HEAVY TRAFFIC

The next two subsections present the main results of the paper; the proofs
are postponed until the last section. We begin in Subsection 2.1 by considering
queueing systems with Lévy input sequences having martingale dependence
structure and follow it by the Decomposition Theorem which permits, in Sub-
section 2.2, an extension of results of Subsection 2.1 to the case where only one
of the input sequences has a martingale structure.

In what follows X stands for a Lévy process without Gaussian component
and with sample paths in the space D [0, o). Its characteristic function can be
written in the form

Eexp(iuX (1)) = exp (tys,, (1)),

where

6 Y, =iub@)+ | E—Dvdx)+ [ (" —1—iux)v(dx);
. x| zr O<|x|<r ’

the drift b(r) is a real number, the spectral measure v is a positive measure on
(— o0, o0) which integrates function min (1, x?), and r is a positive number such
that points —r and r are continuity points of the spectral measure v. If spectral
measure v is concentrated on the positive half-line (0, o), then we will call
process X spectrally positive or, loosely, a process with positive jumps. When
v is concentrated on the negative half-line (— 00, 0), process X will be called
spectrally negative (process with negative jumps). Let us define

bir,v):=— [ xv(dx)
Ix[Zr
if 1t is finite. Then _
(N Yoy =iu(b@)—b@r, )+ | (" —1—iux)v(dx).
0<|x| <

For an a-stable spectral measure v defined by the formulas
v(—oo,x)=7p,|x}7* for x <0 and v(x, o) =17y,|x|7* for x >0,

we have

o

br,v) = —=r'"*(r2— 1)

a—1
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Similarly, for a spectrally negative o-stable v

b(r,v) =y a—0rr'™%
a—1
for a spectrally positive a-stable v
b(r,v)=7y,0 rli-e,
oa—1

and, for a symmetric a-stable v, b(r, v) = 0.
2.1. Input sequences with martingale dependence structure. The following
two conditions will play a role in formulation of our main theorems:

ConpITioN C (1, d). Let 7 > 2 be an integer and é > 0. We say that a se-
quence {c,} satisfies the condition C(z, d) if, for some ny,

8) 3 Lfeme\
. k;fgﬁ?’ﬁ Cn '

THE (8, {c,})-BOUNDEDNESS CONDITION. Let § > 0 and {c,} be a sequence of
positive numbers. An array {#,, k = 1, n = 1} of random variables is said to
satisfy the (8, {c,})-boundedness condition if

1 ntk é
9 supE ( Y 17,,,]) < 00.
n.k ntk j=1 +

Here, x, := max(0, x).
THEOREM 1. Consider a sequence of G/G/1 queues with input sequences

(Vn k> Un), and sequences (a,) and (c,) such that, for each n > 1, {lpr— 0 k= 1}
is a martingale difference sequence satisfying the following conditions:

(A) Processes X, 2 X, where X, are defined in (1) and X is a Lévy process
without Gaussian component such that X (t)—ct - — o0 a.s. as t - o, for all
¢ >0, and with characteristic function exp [{,,u)] in (6), where

1
b(r) = br = hm - Z E((gn.j_an)l(lén,j_anl < rcn)|g;n,j—1)'

n>oCyj=7

(B) As n— o0, sequence B, = |a,|n/c, — B, where 0 < # < c0 and b, < .

(C) Sequence {c,} satisfies the condition C(z, d).

(D) Sequence {&,,—an, k=1, n> 1} satisfies the (8, {c,})-boundedness
condition.

Then

| wn/c, S sup (X ()—pt) = M.

0€t<w
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Thus, with the notation
[+0]

p= [ (e7*—1+4+x)x~@"Vdx,
0+

we have the following corollary to the above Theorem 1, and to Theorems 4
and 8 in Szczotka and Woyczynski (2003).

COROLLARY 1. If the conditions of Theorem 1 are satisfied, then the fol-
lowing statements hold true:

() If X is spectrally negative with spectral measure v and characteristic
function of the form (6), where b(r) = b,, and if f+b(r, v)—b, > 0, then M has an
exponential distribution with parameter A which is the positive root of the equation
Y (2) =0, where

—p 0__
yw=ub,—p+ [ (@ =1)vdx)+ | (€*—1—ux)v(dx).
In particular, if v(—o0, x) =7y, |x|7%, for x <0, then

(10) ,1=< B )ll(rl).
oy

(i) If X is spectrally positive with exponent (1), where b(r) =b,, and
a-stable, spectrally positive measure v(x, 0) =7y,x~ % for x>0, with 1 <a < 2,
v, > 0, then M/0 has the Mittag-Leffler distribution with Laplace—Stieltjes transform

1 1/@=1)
() Bexp(—sMj0) ==, where 0= (“V; “) |
(iii) If X has a symmetric a-stable measure v, i.e. v(— o0, —x) = v(x, 00) =
=yx *forx >0,1 <a<2,9>0,then M has the Laplace—Stieltjes transform
of the form

Ee™M = ¢ 400" 5>,

where

A@s)= | ;1_117 [(e7*=—1) [ exp(— At cos(t (z+up)u™ ") dtdzdu.
0 V] 0

The case of independent increments. It is a useful exercise to
reinterpret the above results in the special case of input sequences with in-
dependent and identically distributed terms. Note that, for each k, random
variables v,, and u,, may be dependent.

In formulation of the following corollary we will make use of the following
definition: A sequence of distribution functions F,, n = 1, is said to be attracted by
a Lévy distribution with spectral measure v on R if the following conditions hold:

(12) nF,(y) >v(—o0,y) and n(l1—F,(x))—v(x, o)
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for all y <0 and x > 0, which are continuity points of v;

(13) lim sup n(F,(—x)+1—F,(x)) = 0;

(14) limn | xdF,(x)=b, |bl<0;
n lxj<r

and

(15) lim lim sup n j x2dF,(x) = 0.
—+0 n—w |x| <8

COROLLARY 2. Let, for each n = 1, {{,;—a,, k = 1} be a sequence of in-
dependent and identically distributed random variables such that the sequence of
distribution functions F,, n = 1, defined as

1
Fn(x)=P(c_(én,l_an)“-<-x), x€eR,
n
is attracted by a Lévy distribution with spectral measure v. Furthermore, let
B.— B, 0 < B < o, and the distributions of &, —a, be majorized by the dis-
tribution of &, in the convex ordering sense, i.e.

Emax(0, ¢, 1—a,—x) < Emax(0, 3; —x) for all xeR,

and let

n [
(16) 1imsupE<ci Y 9,-) < o,

n=*0 nj=1 +

where 84, 3,, ... are iid. random variables with E3; = 0. Then

—l—wnz sup (X (£)— ).
Cn 0€t<w

The normalizing constants c,, n > 1, are such that the processes X, (¢)

= (1/¢c,) Zﬁ.’fl (¢nj—an), n =1, converge to a Lévy process X. If X is a stable

Lévy process with stable spectral measure v, v(—oo, —x) =7y, x~% and

v(x, 0) =7p,x % for x >0, 1 <a <2, then ¢, =n'*h(n), where h(n) slowly

varies at infinity. Those constants can be evaluated from the conditions (12)
and (13), i.e., from the limit conditions

nP(Un,l —Up,1—0qy < —XC,,) —>7P1 x° and nP (Un,l_un,l —ay, > xcn) - sz_“a
which hold for all x > 0, and from the condition |a,|n/c,— f, 0 < f < 0.

It is clear that in the considered case constants c, depend on the dis-
tributions of u, ; (interarrival times) if v is stable and spectrally negative (y, > 0,
y, = 0), and on the distributions of v, ; (service times) if v is stable and spectral-
1y positive (y; =0, p, > 0).
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2.2. Input sequences with half-martingale dependence structure. In this sub-
section we formulate results that extend Theorem 1 to the case when only one
of the two input sequences has a martingale structure; we say then that the
whole queueing system has the half-martingale dependence structure. Again, the
proofs are postponed until the last section of the paper.

2.2.1. Dependence of the distribution of M on the tails of the distributions of
service times and interarrival times. Here we examine sifuations when the dis-
tribution of M depends either on the tail of the distribution of service times or on
the tail of the distribution of interarrival times. The emerging picture is explained
in the following Decomposition Theorem, a weaker version thereof was formu-
lated as Lemma 4 in Szczotka and Woyczynski (2003). The statement of the the-
orem is preceded by an adjustment of the notation introduced first in Section 1.

Let
Lnt] 1
Z (Un - _n: Un(t)= -

Cn1 j=1 Cn,2 j=1

V@) =
where 0, = Ev, ;, #, = Eu,,, n > 1, and ¢, ;, ¢, are constants tending to in-
finity. Then a, = 7,—1,. For other notation, see (1).

THEOREM 2 (DECOMPOSITION THEOREM). Suppose that, for each n = 1, the
input sequence {(Vyy, Uny), — 00 < k < o0} is such that 8, —» B,0 < B < 0, wzth
Cp = Max(Cn1, Cn2), B =1, and that the arrays

{’1&1}12 = (Un,—k_ﬁn): k > 1: nz 1} and {71(2) = _(un,—k_an)s k = 1: nz= 1}
are such that the sequences

{iw;“: sup (V,.a)—pﬁn(r))} and {cl wf?i= sup (Un(t)—pﬁn(t))}

Cn, 0st<w "2 0st<o0

are tight for some p, 0 < p < 1, and the sequences {supo<,<.|V,(t)l, n = 1} and
{supo<i<c|Un(t)l, n = 1} are tight for all ¢ > 0. Then:

@) If V, 2V, where Vis a non-degenerate, spectrally positive Lévy process
and ¢, 3/cp1 — 0, then

wufen > sup (V(0)—Br).
0st<o0

(i) If U, 2 U, where U is a non- -degenerate, spectrally negative Lévy pro-

cess and ¢y 1/cno— 0, then

w,/cn > sup (U(@®)—Br).
0<t<w
Remark 1. Obviously, the sequence {supo<,<.|V,{f)], n > 1} is tight if
Vo5V or if {(v,-r—7,), k=1, n> 1} is a martingale difference array and
satisfies the (9, {c,})-boundedness condition. A similar statement holds true for
the sequence {supo<;<.|U. (), n > 1}.
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At this point we are in a position to describe classes of queues to which the
Decomposition Theorem is applicable. For convenience, the following termi-
nology will be utilized: A queue generated by a stationary input sequence
{(vy, w), —o0 < k < o0} is said to be of independent-martingale type (IM-type)
if the sequence of interarrival times {u;, —c0 < k < 00} is a sequence of i.i.d.
random variables and the sequence of service times {v;, —o0 < k < o0} is such
that {v,—Ev;, — o0 < k < o0} forms a martingale difference sequence. Similar-
ly, a queue is said to be of martingale-independent type (M I-type) if the sequence
of interarrival times {u,, — o0 < k < o0} is such that {u, — Eu;, —o0 < k < o0}
forms a martingale difference sequence and the sequence of service times
{vr, —00 <k < 0} is a sequence of iid. random variables. A queue is of
independent-independent type (II-type) if it is both of IM-type and MI-type. Of
course, the II-type queueing system need not be GI/GI/1 because we do not
assume that the sequences of service times and interarrival times are indepen-
dent. Also, a queue is said to be of martingale-martingale type (M M-type) if
{uy—Eu;, —o0 <k < oo} and {v,—Ev;, —c0 <k < o0} form martingale dif-
ference sequences. Finally, a queue is said to be of half-martingale type (HM-
type or MH-type) if only one of the two input sequences forms a martingale
difference sequence.

Interarrival times with tails heavier than those of service times. In the case of
queues of II-, IM- and MH-type, for which interarrival times have heavier tails
than service times, which corresponds to X being spectrally negative, we have
the following results:

CoroLLARY 3 (The spectrally negative case for queues of II-type and IM-
type). Let, for each n > 1, {(vy4, Uns), —00 < k < 00} be an input sequence
either (a) of a queue of II-type or (b) a queue of IM-type, and let c, = n'/* h(n),
1 < a < 2, where h(n) slowly varies at infinity and B, — B, 0 < B < oo. Suppose
that the following conditions hold:

(@) SUpLE|v,,1—0,°< 00 for some & l<a<e<2, in case (a) and
sup, Var (v,,1) < oo in case (b).

(ii) The array {12 1= —(un,—x— i), k = 1, n > 1} satisfies the (5, {c,})-bound-
edness condition for some 6, 1 <d <a.

(iiiy The sequence of distribution functions F,, n = 1, defined as
Up,1 — U,

F,(x) = P(—

< x), xeR,
Cn

is attracted by a stable distribution with spectrally negative measure v, v(— o0, x) =
=7:]x7% x <O.

Then w,/c, 2 M, where M has an exponential distribution with parameter
A = (Bfloryy )=,

Another example of the spectrally negative case in which the assertion of
the Decomposition Theorem holds true is that of a queue of MH-type with
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{ty, —x— 1y, k = 1} assumed to be a martingale difference sequence with a spe-
cial structure of dependence which we call chain-dependence, while no martin-
gale structure is imposed on {v, _,—,, k = 1}. The concept of a chain-depen-
dent sequence of random variables has been encountered in the queueing con-
text before and is defined as follows:

Let {J;, k = 0} be a stationary, irreducible Markov chain (periodic or not)
with a finite state space S = {1, 2, ..., m}, the transition matrix P = {p, ;, i, j€ S}

and stationary distributions 7 = (ny, @5, ..., T,). A sequence {{, k =1} of
random variables is called chain-dependent with respect to {J;, k > 0}, with
distribution functions G,, G,, ..., G, if, for each i and j,

(17) PJh=j,0<x|Jy-1=1, Br-1)
=PUr=j, (i <x| -1 = i) = pij Gi(x),

where the o-fields #, =oc(Jg, J1, ---» Jis C15 Loy oeny Lp)-

Observe that if {{;, k > 1} is a chain-dependent sequence, then {{;, k > 1}
is stationary, and {{,—E(;, %, k > 1} is a martingale difference sequence,
where E(, = Y-  Tady, dy = |7 xdG;(x); see Section 4 for details. In the above
situation we will simply say that {{;, k > 1} is chain-dependent with respect to
{Jx, k = 0}, with stationary distribution = = (ny, #,, ..., ©,,) and distribution
functions G,, G, ..., Gy; the irreducibility of {J;, k > 0} will be always as-
sumed though.

In what follows we consider a sequence of chain-dependent sequences.
Namely, for each n> 1, {{,;, k> 1} is chain-dependent with respect to
{Jn1> k = 0}, with stationary distribution =, = (7, 1, Tn2, - .-, Tnm) and distri-
bution functions G, ;, G, 3, ..., G,m, and we set

i)=Y 1(J,;=1, n=11<i<m.
=1

We also need the concept of convex ordering between random variables
n; and 5, and their distribution functions F,; and F,. Namely, we shall write
N1 € M2, and F; <, F, if, for all x,

Emax (0, n;—x) €< Emax (0, 1, —Xx).

Finally, we shall say that a random variable # has a Pareto distribution with
parameters (a, y) if its cumulative distribution function

0 for x < ylf,
F(x) - {l_yx—m for x 2 ,))1/(1.
Of course, En = yo/(a—1).

CoRrOLLARY 4 (The spectrally negative case for queues of MH-type). Let,
for each n > 1, {(vny, thny), —00 < k < 00} be an input sequence of a queue of
MH-type such that the following conditions hold:
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(i) For each n > 1 the sequences {v, _y, k = 1} are either such as in cases
(@) or (b) in Corollary 3, or they are ¢-mixing with the same mixing function

¢ = {¢, k = 1}, for all n, such that Zk 1\F < 00 and Ev2}® < oo for some
e>0.

“(ii) For each nz1, {u, 4, k>1} is chain—dependent with respect to
{Jox» k = 0} with stationary distribution T, = (Tn 1, Tu 2, -+ s Tonm) and distribu-
tion functions Guts Guzyoovs Goy where Goi(x) = Py 1 < x| Jppe1 = i).

Furthermore, assume that the following conditions hold:

(iii) B, — B, 0 < B < o0, where ¢, = n'’*h(n), 1 < a < 2, h(n) slowly varies
at infinity, and a, = Ev, ; —Eu, ;, where Eu,; = Z:"=1 n,,,ifxdé,,,,-(x).

(iv) n"'m,;(n) B m;.

(V) The sequences {G,;, n > 1}, 1 < i< m, of distribution functions defined as

Gpi(X) = P(——"M <x | Jpo = i), XeR,
Cn

are attracted to stable, spectrally negative probability distributions with spectral
measures v;, respectively, where v;(—o0, x) =y, ;|x|7%, x <0.

vi) G,; <.G; for alln =1 and 1 <i < m, where G; are Pareto distribution
functions with parameters (o, y, ), respectively.

Then w,jc, > M, where M has an exponential distribution with parameter

= (Bllayy W)=, where y, = Z"”=1 Y1,
j

Service times with tails heavier than those of interarrival times. In the case of
queues of I1-, MI- and HM-type, for which service times have heavier tails than
interarrival times, which corresponds to X being spectrally positive, we have
the following results:

CoROLLARY 5 (The spectrally positive case for queues of II-type and MI-
type). Let, for each n > 1, {(vux, tns), — 0 < k < 00} be an input sequence of
a queue of either (a) of I1-type or (b) of MI-type, and let ¢, = n*"*h(n), 1 <a <2,
where h(n) slowly varies at infinity and B, - B, 0 < f < 0. Suppose that the
following conditions hold:

(i) sup,E |u,1—1,)° < oo for some & l<a<e<?2, in case (a) and
sup, Var(u, ;) < oo in case (b).

(i) The array {5} := v, ——0,), k = 1, n > 1} satisfies the (8, {c,})-bound-
edness condition for some 0, 1 o <a.

(iil) The sequence of distribution functions F,, n > 1, defined as

F,(x) = P(v"’lc—v" < x), xeR,

n

is attracted by the stable, spectrally positive probability distribution with spectral
measure v, v(x, ©0) =y,x % x>0,

Then w,/c, 2 M, where M /0 has a Mittag-Leffler distribution with parame-
ter 0, and 0 = (ory, u/B)t~*,
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CorOLLARY 6 (The spectrally positive case for queues of HM-type). Let,
for each n 2 1, {(Uny, tny), — 00 < k < 0} be an input sequence of a queue of
HM-type such that the following conditions hold:

(i) For each n > 1, the sequences {u,, _, k = 1} are either such as in cases
(@) or (b) in Corollary 5, or they are ¢-mixing with the same mixing function

¢ = {¢w, k = 1}, for all n, such that Y, _ 1\/_ < 00, and Eu{* < oo for some
g>0.

(i) For each n>1, {v, 4, k> 1} is chain-dependent with respect to
{J s> k = 0}, with statlonary dzstnbutzon T, = (Ten1s Tn25 -+ o> Tonm) and distribu-
tion functions G,, 15 G2 oo Gy, where G, ;(x) = P(v, 5 < X|Jpp—1 =1).

Furthermore, assume that the following conditions hold:

(iii) B,—> B, 0 < B < o0, where c,=n'"h(n), 1 <a <2, and h(n) slowly
varies at infinity.

(iv) n ™ 1m,;(n) B,

(v) The sequences {G,;, n =1}, 1 <i<m, of distribution functions de-
fined as

Up1— Uy . ~ _
G,,i(x) = P(y < x|Jpo = z) = G,i(ex+0,;), x€eR,
Cn

are attracted to stable, spectrally positive probability distributions with spectral
measures V;, respectively, where v;(x, ) =7y,;x7% x> 0.

vi) G,; <.G;foralln>1and 1 <i<m,where G, 1 <i<m,are Pareto
distribution functlons with parameters (a, y,;), respectively.

Then w,/c, > M, where M /0 has a Mittag-Leffler distribution with parame-

ter 0, 0 = (ay, /B)"* =%, and y, —Z, 1 TiV2,

3. LIMIT DISTRIBUTIONS OF STATIONARY QUEUE LENGTH

Let I, denote the stationary queue length in the n-th queue generated by
the input sequence {(V,, Un), — 0 < k < c0}. The results for stationary wait-
ing times w, formulated in Section 2 immediately give analogous results for the
stationary queue length I, in view of the following result which is due to
Szczotka (1990), Theorem 2:

THEOREM 3. Suppose that there exists a sequence {c,}, ¢, T 00, c,/n — 0, such
that, for each t =0 and n— oo,

1 Lent] 1 Lent]
(18) — Y v ; Dot and = 3 u,_; D,
Cn j=1 Cn j=1

and

(19) ,/cy 2 M as n-o o.
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Then
(20) (1/c)(l,—vew,) >0

and, consequently,
(1/e)l, 3 M.

Notice that the convergence in conditions (18) takes place if processes

Lmz] Lne]
__Z(Un—] _na =_Z n—j_ﬂn): tZO, n=1,
Cn Jj=1 Cn j=1
converge to processes ¥ and U, respectively, with ¥(0) = U (0) = 0 a.s. (which
is usually assumed), and v, — ¥, %, — 0.
Indeed, in view of the equalities

1 et 1 Lo G| 1 el ] -
Z = Z ( " -iT ?1 L J Z ( n -i T n L . J Ups
Cn j=1 Cn C,, i= Cn

the assumptions ¥, £ %4 ¢,/n—0, and 3, > 0, and the Continuous Mapping
Theorem for the topology of weak convergence (see Theorem 5.1 in Billingsley
(1968)) imply the first convergence in (18). The second convergence in (18) can
be verified in a similar fashion,

4. PROOF PRELIMINARIES

This section gathers facts needed in the proofs of results stated in Sec-
tion 2. Although these facts are essentially known, we need to adapt them for our
use in Section 5. The first subsection deals with the issue of convergence of
a sequence of processes to a Lévy process while the second subsection collects
results about tightness.

4.1. Convergence to a Lévy process. A Lévy process can be viewed as the
limiting process, n — o, of the interpolated sums processes Y, (t) = Zk"tJ1C" s
t=20,n>1, where {{,;, k> 1, n> 1} is an array of random variables. We
begin in Proposition 1 by rewriting a result due to Durrett and Resnik (1978),
Theorem 4.1, in the case when {{,;, k>1,n>1}isa martlngale difference
array. It gives sufficient conditions for the convergence ¥, 4 X, when X is
a Lévy process with spectral measure v. As a corollary we formulate the clas-
sical Prokhorov’s result for the convergence Y, 2 X, when, for each n > 1,
{{axs k = 1} is a sequence of i.i.d. random variables. Finally, we rewrite Durrett
and Resnik’s result in the case where, for each n > 1, random variables
{ux» k = 1} form a chain-dependent sequence.

The martingale case. An array {{,, k = 1, n > 1} is called a martingale
difference array if, for each n > 1, the random varlables {axs k = 1, are defined on

6 — PAMS 24.1
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a common probability space (Q,, #,, P,) on which there is an increasing se-
quence {Z,;, k > 1} of o-fields contained in the o-field &,, and {,; is &, ;-mea-
surable, k > 1, while the conditional expectation E((,;|%,x-1)=0. In the
described situation we also say that {({,x, Fui), kK = 1, n > 1} is a martingale
difference array.
Denote by 1(A) the indicator function of event 4 and let
Lnt]
(21) bn,r(t) = Z E(Cn,jl(lz:n,jl < i‘) | gz'—rx,j—l)a t 2 0, h
j=1

J

\Y

L,

[nz]
Zn(t) = Z Cn,j_bn,r(t)s t= Oa nz 1,
j=1

22 Guy=Las10G) <O)—E(Ln;10nf < &) | Fujor), 8>0.

PROPOSITION 1. Let {{,4, k=1, n> 1} be a martingale difference array
satisfying the following conditions:

(@) Forallt >0 and all x > 0, y < 0, which are the continuity points of the
spectral measure v, as n— oo,

[nt] [n]
Z P(ln;>x| Fuj-1) 5 tv(x, ), P(lny<y| Fuj-1) 5 tv(— o0, y).
=1

Jj=1 i

(b) For all £>0

max P(|(,;l >¢| % j-1) 50.
<

1<j<€n
(c) For all >0
limlimsup P(Y. E((.)? | #nj-1) >€)=0.

600 n—ow j=1 _

Then Z, 3 X in D[0, o) with J, Skorokhod topology, where X is a Lévy
process with characteristic function E exp (iuX (2)) = exp (it o,, (1)) with exponent
¥y, (u) of the form (6) with b(r) = 0, and spectral measure v given in condition (a).

Furthermore:

(d) If b, is a number such that, for n— o,

(23) sup |b,,()—th| B0 asn—-o00 for all ¢>0,
o<i1<c

then Y, = Z,+b,, 2 X in DO, oo) with J; Skorokhod topology, where X is
a Lévy process with characteristic exponent Y, ,(u) and b(r) = b,.

Now let us consider condition (d) of Proposition 1 and the form of the
limit b, in the case when the spectral measure is continuous with
§7v(x, 0)dx < oo and |~ v(—o0, x)dx < co. For this purpose let us put

Fn,j(xl'g;n,j—l) = P(Cn.j < xl'%l,j—l)! ]> 1: n > 1:

and assume that F,;(x| %, ;_) are regular conditional distribution functions.




Heavy-tailed dependent queues in heavy traffic 83

PROPOSITION 2. Let {{,, k = 1, n = 1} be a martingale difference array
satisfying conditions (a) and (b) of Proposition 1 and let a spectral measure v be
continuous at all points with j:u v(x, o0)dx < co and _f:; v(— o0, x)dx < 0.
Then condition (d) of Proposition 1 holds and

b= — [ xv(dx)— [ xv(dx).

Proof. Since functions ZJL': J(1—F, (x| #,;-1)) of variable x >0 are mo-
notonic and the limiting function tv(x, oo} of variable x > 0 is continuous, we
have -

L] |
riligclj;l (1—F, (x| Fpj-1))—tv(x, 0)| 0 for any c > 0.

Since, for any ¢ > 0, there exists x, > r such that, for x > x4, v(x, o0) < ¢, the
above uniform convergence holds on the interval [r, c0), ie.

Ln}
(24) stip[ Y (1 =Foy(x| 5 -1)—tv(x, oo)| 50.

xX=r j=1
In a similar way we show that
L] ,
(25) sup |zFn,j(J’l%,jﬂ)—tV(—OO,J’)|—*0-
ySTroj=1

Now, since E((,,;| % j-1) =0, we get

E(Cn,j1(|Cn,j| < 7')|57n,j—1) = —E(Cn,jl(mn,jl = r)|5"~n,j—1)
= —E((uj1(; = Fnj-1)—E(n;1Cnj < —1) Frj1)

xd(1=Fy (x| Fnj-1))— | xdF,;(x|F,; 1)

—

~ e §

=t (1=Fyy | By )= | (L= Fuy (x| Fo - 1)) dx

-r

+rF, j(—r| Fpj-1)+ j F, (x| % ;-1)dx.

Hence, using the definition of b,,(t) from (21), we get

[nt] o [nt]
bn,r(t) = _T'Z‘,l (1_Fn,j(r|g;n,j—1))_ j (Z (1 _Fn,j(xlg;n,j—l)))dx

[nt] -r |nt]
+7r z Foi(—r| - 1)+ j (Z Fn,j(xl'%.,j—ﬂ)dx-
=1

J —w j=1
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Therefore, using the convergences (24) and (25), we get, for » — oo, the
following convergence:

b, () B —trv(r, o0)—t | v(x, c0)dx+1trv(—oo, —r)+t | v(—o0, y)dy.

Integrating by parts the right-hand side of the above equality we get the form
of b, asserted in the proposition. Since the point convergence of monotonic
functions to a continuous function implies the uniform convergence on com-
pact sets, we get the statement of the proposition for all four factors in the
formula for b,,(z). This concludes the proof of the proposition. m

The iid. case. In the case when random variables in {{,;, k> 1, n > 1}
are row-wise i.i.d. we have the following corollary to Proposition 1, a result due
to Prokhorov (1956):

COROLLARY 7. Let, for each n = 1, {{,1, k = 1} be a sequence of i.i.d. random
variables with E{,, = 0 and distribution functzons F,, n = 1, such that the se-
quence {F,} is attracted to a Lévy distribution with spectral measure v. Then
Z,3 X, in D[0, o) with J; Skorokhod topology, where X is a Lévy process with
b(r) =0 in the exponent y (w) in (6).

Furthermore, lf by, = nE{, 1 1(|ls4| <¥) > b,, and b,,(t) = (|nt|/n)b,,,
then Y, = Z +b,,,—>X in D0, co) with J; Skorokhod topology, where X is
a Lévy process with exponent yr, ,(4) and b(r) =

The chain-dependent case. Another special case of martingale dif-
ference arrays {{,, k = 1, n > 1}, for which we obtain sufficient conditions for
processes Y, to converge to a Lévy process, are chain-dependent sequences
introduced in Section 2. Our model here is Example 4.1 from Durrett and
Resnik (1978) which we adapt to the case of a series of chain-dependent se-
quences.

Note that the definition of chain-dependent sequence implies that
P(Ck<x|Jk 1 =1) = G;(x) and

Tk
(ﬂ {(z XilJo=Jjo» J1 =J1s .0 Jx—1 =jk—1})= H Gji—l(xi)'
i=1

Hence

m

El= Y EGlJis = DPUscr =)= Y m | xdGi(9 = a,

i=1 i=1 — oo

and

P(lO {Ck+l xl})
= z P(ID {Ck+l X de =Jos -oor Jrts—1 =js—1})><

JOsj15eesds— 1
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XP(Jy=jos 0o Jyss—1=Js—1)

= 2 (ﬂ {L<xilJo=Joseoes Jsm1 =Js-1})

Josjtseinds—1

XP(JO =j03 veesy Js—l =js—1)

{t: < xl})-

The above reasoning yields the statements of Section 2 to the effect that
the sequence {({;—a, k > 1} is stationary and {({,—a, %), k > 1} is a martin-
gale difference sequence.

Let, for each n > 1, {J,, k > 0} be a stationary, irreducible Markov chain
(periodic or not) with a finite state space S = {1, 2, ..., m}, the transition proba-
bility matrix P® = {p{"), i, je S}, stationary distribution x, = (7, 1, T 25 -+ Tpm)
and let {{,x, k > 1} be a chain-dependent sequence with respect to {J,,, k > 0},
and with distributions functions G,q, G,3, ..., G, Furthermore, let
By = 0(Jno0> It Inzs ovo» Jugs Cn1s Cnizs o Cag)  denote  o-fields, and
a, = E(, . Then, for each n > 1, the sequence {{,,—a,, k > 1} is stationary
and {({px—an, #np), k=1, n> 1} is a martingale array.

Define

L

=P(

1

1

n

Ti(n)i= Y, 1(J,;=10), 1<i<m, n>zl.

j=0
Notice that
Lnt]
Y E(Cn,j 1l <) | B, j- 1)
j=1

lnt] m
= z Z E(Cu,jl(ICn,jI < ")IJn,j—1 = i)l(Jn,j—l = i)

ji=1li=1
I_II!J m m

=2 X Hf xdGyi ()1 (Jpj-1 =0 =) (n ||j xdGm(X))< m(["t])>
j=11i=1|x|<r i=1 x|<r

Hence using the form of b,,(f), defined in (21), we get

bur)= 3 (0 1 36005 37D ).
i=1 |x|<r
COROLLARY 8. Let Markov chains {J,;, k > 1}, n > 1, be such that
(26) nin,m) S asn—->0, 1<i<m,

and assume that each of the sequences {G,;, n > 1}, 1 < i < m, of the distribution
Sunctions is attracted to a Lévy distribution with spectral measure v;, respectively,
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ie. condltwns (12)-(15) hold with {F,} = {G,;} for 1 <i < m and with b, = b}’
in (14), i

27) n [ xdG,;(x)>b? as n—>o0, i=1,2,...,m.

x| <r
Then the processes Z,(t) = ZL”’J {nj—bnyr (1), t =0, n = 1, converge in D [0, o)
with J; Skorokhod topology t0 a Lévy process X with exponent \y , (u), where
b(r)=0, and v = Z:'; (TiVi, while Y, = Z,+b,, converge to a Lévy process
X with exponent VY, ,, where b(r)=b, = 2:’; b,

Proof. To prove the corollary we will verify the conditions of Proposi-
tion 1. Notice that

Py > x|Bnj-1) = Z P(ln;>x|Jnj—1=0D1(pn;-1=1).

i=1
Therefore, for x > 0, we have

Lt
Z P(an>x|t@n1 1)

ji=1

i(m>wmq=mm¢F0
Lo
(1_Gn,i(x)) Z 1(Jpj-1=1)

ji=1

(v-mm m@maznw@w)

Il
ek IlMs

-
Il
-

i
Ms

I
-

i

for all £ > 0 and all continuity points x > 0 of all spectral measures v;.
In a similar way we show that, for all ¢ > 0 and all continuity points y < 0
of all v,,

[nt] m 1 m
Y Pl <y|Buj-1)= Y, nGn,i(y);n,.,i(LntJ)A Y mtvi(—o0,3), y<O.
j=1 i=1 i=1

Therefore condition (a) of Proposition 1 is satisfied.
Now notice that

max P(lCnJ|>£|'%nJ 1)_ max ZP(|C'I_]|>8|JH] l_l)l(Jn] l_l)

1<j<€n 1€jsn;=

m

S max Z (l_Gn,i(6)+Gn,i(—E))l(Jn’j_l = l)

1<js€n;=

Ms

(1-G,:(e)+Gpi(—e) - as n— 0.

i=1

This implies that condition (b) of Proposition 1 is satisfied.
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To check condition (c) recall that Z,;,, ; are defined in (22). Reasoning as in
Durrett and Resnik (1978) we have the following relations:

L E(G) 1 Be-1) < T E(G1(ln ) < )] Baj- 1)

Therefore

n m

S B 1A, )< (0 | sz,,,(x))( n,“(n))

j=1 i=1 |x|<3s
which shows that condition (c) of Proposition 1 is fulfilled. Therefore, applying
the first assertion of Proposition 1 we get the first assertion of the corollary.

To check condition (d) of Proposition 1 notice that n™ !, ;([nt]) 5 m;t

and the limiting function is a continuous function of variable t. This and the
monotonicity of the sample functions of =, ;(¢) imply that

sup [n"'m,  ([nt])—m;t| 20 as n—> o0 for all ¢ > 0.

0<t<e
Now, using the form of b,,() and the relation b, =) m;b, we get the
inequality

sup |bn,r (t) - b, tl Z j XdGn l(x) Sup |n 7'l:n,i ([nt]) —T; tl

0<tsc i=1 |x|<r
+c Y mfn | xdG,;(x)—bd|,
1=1 |x]<r

which, in view of the above convergence and assumption (27), gives condition
(d) of Proposition 1. This, in turn, gives the second assertion of the corollary. =

If the spectral measures v; in Corollary 8 are stable, with the same ex-
ponent o, ie.

vi(—o0, =x)=7;:x"* and v(x, 0)=y;,x * for all x>0,
then the spectral measure v=13"_
m m
".V1=Z,l 1 Tit and ?2—21 1 Vi2-

4.2. Tightness conditions. In Proposmon 3 we rewrite Theorem 3 from
Szczotka and Woyczynski (2003), which gives sufficient conditions for the tight-
ness of the sequence

o= L, (o0 )f

with X, (t) = (1 /c,,)ZL"t Jn.j» t 2 0, where the sequence {1, .} is row-wise station-

Vi is stable with exponent o, while

ary and En,; = 0. Then we rewrite this proposition in two special cases: when
{Nux> k =1, n = 1} is a row-wise iid. random array, and when it is a martin-
gale dlfference array.
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PROPOSITION 3. Let the array {n,., k = 1, n = 1} be row-wise stationary
with En,; =0, and |a,|n/c,— B, 0 < f < o0. If
i o0 1 |nt]
2 sup P — ni > KT' ) < 00,
( ) kgl"?"po (0<t<‘5kcnjzln o )

where © 22 and ny are integers such that |a,n/c, = p/2 for n>=n, and
k = (1/27) B, then the sequence {(1/c,)w,} is tight.

ProrosiTiON 4. Condition (28) is satisfied if, for some integers 1 = 2 and
ny as in Proposition 3, one of the following three conditions is satisfied:
(i) Foreachn > 1, {n, ks k > 1} is a sequence of i.i.d. random variables such

that d := inf, 5, inf; 5, P(Z — 1M >0)>0, and
0 1 ntk

(29) Y sup P(— Y M = tcr"> < 00.
k=1nZno nj=1

(ii) The array {4, k = 1, n > 1} is a martingale difference array such that,
for some 0, 1 <0 <2, the followmg condition holds:

30 i supl_ ( ni 11,,,)6 < a, where (x), = max(0, x).

k=1 H?n[)

(i) {#4> k=1, n=1} is a martingale difference array satisfying the
(0, {c,,})—baundedness condition with {c,} satisfying the C(z, )-condition.

Proof. Applying Lemma 1.1.6, p. 9, in Tosifescu and Theodorescu (1969),
with x = 0, to the sequence {#,4, k > 1} of iid. random variables we get

P( max l211,,1>mr)<;! (cl Zn,,]>rcr)

1<1<m:kC,,j 1 nj=1

which, by (29), implies (28).
The assertion in case (ii) follows immediately from Doob’s inequality.
The assertion in case (iii) follows from the inequality

1 nt* 8 1 ( ka> ( 1 nt* >5
Hn \ — fn -
T3 ( c, le J) 7ok c, Coe le o

This concludes the proof. =

The following remark gives examples of sequences {c,} satisfying the con-
dition C(z, ).

Remark 2. The sequence {c, = n'*h(n)}, with 1 < & < 2 and a function
{h(n)} slowly varying at infinity, satisfies the condition C(z, d). In particular,
the sequences {c, = n'*} and {c, = n'"logn} satisfy the condition C(z, d).
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Indeed, choose a positive ¢ such that 1+¢ < 7*~ 1 and an integer n, such
that h(nt)/h(n) < 1+¢ for n = ny;. Then

h(nt*) _h (nt*~11) h (nt*~217) k(a7

h(n)  h@mt*™Y) h@m*2) " h(n)

Wl_ C ‘5=T_k6(a_1)/m h(nt") "< 148 \¥
%\ ¢, h(n) ) ~\gle"Di/ >

which, in view of the inequality 14 < @ 1/ implies that the sequence
{c, =n'*h(n)} satisfies the condition C/(z, 8).

ProposiTION 5 (Sufficient conditions for the (J, {c,})-boundedness condi-
tion).

() If {c,} satisfies the condition C(t, ) and, for each n, k, E (Zf:  Mng)s <
<E (Zk 9-)’1, then the condition

j=1"

1 n d
(31) ]jmsupE(— > 9,—) <
C,,j:1 +

n—>aw

<(1+e* for n=n,.

Hence

implies (30).

() If 84, 9, ... are i.id. random variables with distribution belonging to
the domain of attraction of the a-stable distribution, then (31) holds with
¢y = n**h(n), where h(n) slowly varies at infinity, and with any  such that
1<d<a<2.

(iii) If for each n > 1, {n,x, k = 1} is a sequence of i.i.d. random variables
with sup, E |n,,1|> < oo for some 5, 1 <o < & <2, then {f,, k = 1,n > 1} satis-
fies the (3, {c,})-boundedness condition with c, = n**h(n), where h(n) slowly
varies at infinity.

(V) If {up» k=1, n>=1} is a martingale difference array with
var (1,4) = 62, sup, 6, < oo and c, = n*’? h(n), where h(n) slowly varies at infinity,
then {N.x, k =1, n > 1} satisfies the (8, {c,})-boundedness condition with 6 = 2.

Proof. The proof of case (i) is obvious. The proof of case (ii) follows from

Kwapien and Woyczynski (1992), p. 36. To prove case (iii) notice that from
point 30 in Petrov (1975), p. 98, we get the following inequalities:

1o o 2nt* 1
E 2 M| S E |, 1[* < 20* 7T E |, .
Cck j=1 n®* k% (p (n7*)) (h(nh)

This and o < ¢ imply the assertion of point (iii).
The proof of case (iv) is an immediate consequence of the identity

supE 1 'f g net 2 <
oF i) = S () O <

Cpik j=1 nk AT

This completes the proof of the proposition. =
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To verify condition (i) of Proposition 5 one can take advantage of the
concept of majorization of the distributions of #,, n > 1, by the distribution
of 9. We shall demonstrate how this approach works in the context of convex
ordering <., introduced in Section 2. Recall that if # and 3 are random variables
with finite expectations and with distribution functions G and F, respectively,
then we write 7 <.9 and G <_F, if E(j—x)+ < E(3—x), for all x, where
(x)s = max (0, x). A convenient sufficient condition for # <, 9 is the so-called cut
criterion; random variables n and 9 with finite expectations are said to satisfy the
cut criterion of Karlin and Novikoff (see Stoyan (1983), p. 12) if En < E3 and if
there exists an xy < co such that the following inequalities hold: G (x) < F (x) for
all x < x4, and G(x) > F(x) for all x > x,. If n and 9 satisfy the cut criterion,
then n <.9, ie. G <. F (see Proposition 1.5.1 in Stoyan (1983), p. 13).

Summarizing the above discussion we get the following results:

PROPOSITION 6. Let {9, k> 1} and {n,,, k 1} n> 1, be sequences of
i.i.d. random variables with expectations zero and 1,1 <.% for all n = 1. If the
sequence {9, k > 1} satisfies condition (31), then the array {n,,, k > 1, n > 1}
satisfies the (8, {c,})-boundedness condition.

Proof. The proposition follows immediately from the fact that the con-
vex ordering <, is closed with respect to the operation of convolution of
distributions, and from Proposition 5 (i). =

PROPOSITION 7. Let, for each n > 1, {n,,, k = 1} be chain-dependent with
respect to irreducible stationary Markov cham {Jnxs k = 0} with stationary dis-
tribution 7, = (Ty 1, Ty2, - .-, Tnm)> and distribution functions G, 1, Gu 2, ..., Gum
with expectation zero. Furthermore, let G;, 1 < i< m, be the distribution func-
tions of the centered (zero-mean) Pareto distributions with parameters (y;, a),
1<i<m, 1 <a<?2, respectively, such that

G <.G; foralln>1,1<

Then the array {4, k = 1, n > 1} satisfies the (9, {c }-boundedness condition
with ¢, = n'® and any 6 1<6<cx

Proof. Let {§,;,j>1,1< i< m} be an array of mutually 1ndependent
random variables such that the dlstrlbutlon function G; of §;; is a Pareto
distribution with parameters (y:» o). Since G; (x) = G.,(x) whenever y; <7y,
(stochastic ordering J;, i <9, ,j) and since stochastlc ordering of distribution
functions is closed under their convolution, we have

Gi*xGiyx..xG, (x) > G™(x) for all x,
where G is a Pareto distribution function with parameter (y, @), where
} = max <;<m ;- Hence

n

E(Y 5, <E(

j=1 J

&)

-

1

where 3,, §,, ... are iid. random variables with distribution function G.
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Now, let 3; ; = 5 —E§; 9; = g ES , let G; be the distribution function

i,j°
of §;;, and G the dlstrlbutlon functlon of 3;. Then

(2 E(S ) <E(3 ).

J
Now, notice that

(33) E(Z nn.j)‘i._ Z E( Znn1+|']n0 lO, 1=i15---9 Jn,n*1=in71)
j=1

i0sitseensin—1

XP(Jn,O = lOa Jn,l = 11, ey Jn,n—l = inwl)-

Since random variables #, 1, #,.2, - - ., fln,x are conditionally independent, given
the condition {J, ¢ =g, Jn1 = i1, ...s Juu—1 = in—1}, in view of the inequality
G, <.G;, (32), and (33), we get

E(Ym)i< T K

08150 nsin—1 J

it

Sij—l J) P(JnO lOa 'In,l = il: BERE) Jn,n—l = inwl)

E(3 8)'.

Since the Pareto distribution belongs to the domain of attraction of the a-stable
distribution, we get

1 n ]
1imsupE<T/u Y Sj) < o0,
n—ow n ji=1 +

which concludes the proof of the proposition. m

The above idea of majorization can be refined to yield the following

ProOPOSITION 8. Let processes X (t) = (1/c,,)ZL'lJ111,, »t=0,n>1, and nor-

malizing constants c, be such that X, 3 X and cpjca — 1% 1 <o <2, for an
integer constant t > 1. Furthermore, let for any positive x > 1 the following
conditions be satisfied:

lim sup p (Supo <t<1 (Cn/cm:k) X" (t‘ck) > xk)
k> o P(Supostsl(l/cn)Xn(t) > xk)

P X, (t) > x*
lim sup (supo<r<1 Xa(t) x)<oo
k> P(Sup0$.t$.1X(t)>xk)
and

limsupts P( sup X () > 18) < o0

k—o0 osts1l

for some 1, > 1 and 19 = 17, > 1, where t; < ™% Then the array {f,., k > 1,
n > 1} satisfies condition (28).
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Proof Let n, be an integer such that c,/c,. = 1, for n>=ny. Then
CofCuec = T4 fOr n = ng, and

P( sup X,,(t)>r")=P< sup Cn X, (") > Cn

0<t<tk 05151 Cpeke ka>

< P( sup iX,,(t’c") > 1:’5).
0sts1 Cpk
This and the assumptions of the proposition give the following inequality:

. P n nt X" t k > 5
limsup s P( sup X,(z) > 7*) < limsup (9Po<i<1 (Cn/ene) Xa () > 7o)
k> Oszs7k k> P (supo<i<1 X, (t) > )

) P(su X, >1h) .
x lim sup (S9Posi<1 X () TO)-hmsuprEP( sup X (£) > t6) < 0.
k=" P(Supos;<1 X (£) > 16) ke Dsrs1

This concludes the proof of the proposition. =

5. PROOFS

Proof of Theorem 1 and Corollary 1. The conditions of Theo-

rem 1, Proposition 4 (iii), and Proposition 3 imply tightness of {(1/c,) w,}. This,
jointly with the convergence X, % X, f, - B and the Heavy Traffic Invariance
i Principle, gives the first assertion of the theorem.
“ The assertion dealing with the form of the distribution of M in the case of
a spectrally negative X follows from the fact that X (f)— St is also a spectrally
negative Lévy process and X (f)—ft— —o0 as, as t— oo, because
f+b(r, vy—b, > 0. This, together with Proposition 5 (b) in Bingham (1975),
implies that M has an exponential distribution with parameter 4, which is the
largest root of the equation  (4) = 0. As a matter of fact, there are only two
roots and one of them is zero. Thus A is the positive root of the equation
Y (4) =0.

The form of 1 in the spectrally negative stable case follows from the special
form of v (u} in that case. More precisely, since v(— 00, x) = v, [x|"* for x < 0,
we have

- 1 Y (w)=u(b,—p+ _jr xv{(dx))+ }r (e“x—l—ux)v(dx)+oj_ (e —1—ux)v{dx)

-r

’ =—u(f+b(r, v)—b,)+0j7 (e —1—ux)v(dx)

0~ 1
= —uﬁ+y1a § (e"x—l—ux)de.

—
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The last equality follows by Proposition 3 which asserts that, for a stable
negative spectral case, b, = b(r, v). To find the positive root 4 of the equation
Y (u) =0 we need to solve the following equation:

BrL 2, 1
L * 1 4 Ax)—r dx.
= 0]; (e 1+ x)xade
But
e —Ax 1 am -x 1 a
[ =14Ax)—5dx=2* | (e —14x)75dx = A" p.
0+ x 0+ x
Hence

1f(a—1)
()
Xy p
which gives assertion (i).

To prove part (i) we apply Theorem 4 in Szczotka and Woyczynski (2003),
where the Lévy process X (t)— ft has characteristic exponent ¥, _; , (4). In our
situation X (t)— ft has characteristic exponent ¥, — 5, (#). Therefore, using the
above-mentioned result with b(r) = b,, we get assertion (ii).

Assertion (iii) follows from Theorem 8 in Szczotka and Woyczynski (2003).
This completes the proof of the theorem. =m

Proof of the Decomposition Theorem. Notice the following equa-
lities:

1 _ cn,l Cn,2
o= Z?Em( . | AGES e Un(t)— B (t)>
= sup ((C“ V,()—(1—p) B, (r))+(c"'2 U, (t)—pB. (t))).
0St<ow Cn Cp

Hence
(34) lw,, < sup (c"’l V,(6)—(1—p)B. (t)>+ sup (C"’2 U, ()—pB» (t)),

Cy 0<t<m \ Gy 0st<ow \ Gy
and

(35) clm,,z sup (C"'l V. (6)— B (6)+ 22 U,,(t)) for any ¢ > 0.

n 0<t<c \ Gy Cn

Let us consider case (i). Then, for sufficiently large n, we have ¢, < ¢, ;, so
that, in view of (34), we get the following inequalities:

1 2 n
66 —o< sup (HO-(1-PA0)+72 sup (U,.(t)— - p/s,.(t))

C"
n 0 Cp 0S1< Cn,2
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The tightness of {(1/c, 1)@} and {(1/c,.) P} yields the tightness of
{(1/c,) @,}. Moreover,

o %0,

since ¢, ./c, — 0 and

Lo®3 sup (V()—(1—p)pe).

Cp,1 0€t<

because of the Heavy Traffic Invariance Principle. Hence, for any 0 < p < 1
and any x>0, being a continuity point of the distribution of
SUPg<i<a (V (1)—(1—p) Bt), we have the inequality

hmsupP( w, >x><P(0§up (V) —(1—p) B1) > x),

n—oo

which, since the left-hand side is independent of p, implies that
1
(37) lim supP(c—co,, > x) <P( sup (V- Pt) > x).
n—+co n 0€t<w

Now, by (35), we have

P((:lwn > x) > P( sup (Vn(t)—ﬁn(t) fn (t)l) > x)
n [ESEY ost<c
>P< sup <V,.(t)—ﬂ,. o2 ) )
0<t<c Cp, 0<t<c

Taking the limit liminf,., on both sides of the above inequality, using the
convergences V, 3 V, B, (t) = Bt, and (¢, »/c,) SUPo<e<c |Ux (1) 20, and then ap-
plying the Continuous Mapping Theorem (see Theorem 5.1 in [1]) we get the
following inequalities:

Hm infP (—Cl— W, > x) > liminf P( sup (V;,(t)—/i,, ® c:'z (t)> > x>

n—w n—w <t<e <t<€c

> P( sup (V(t)—Bt) > x).

0<t<c

Since the left-hand side above does not depend on ¢, we get

n— o 0<t< 0

(38) hmmfP(1 w, > x> > P( sup (V(O)—pt) > x),

which, together with (37), gives the convergence
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To prove case (ii), where c, ;/c, — 0, notice that the role of ¥, and U, is
symmetric so that we can proceed here as in case (i). Thus the proof of the
theorem is complete. m

Proof of Corollary 3. Since the array {—(1/c,)(up,—x—1,), k=1,

> 1}, with ¢, = ¢, , = n**h(n), satisfies the conditions of Corollary 7 from Sec-

tion 4.1 (Prokhorov’s result) with stable, spectrally negative, spectral measure v,

v=(—oa0, x)=71|%]7% x <0, we have U, % U, where U is a spectrally nega-

tive L&vy process with spectral measure v. Hence, also {supy<,<.|Un(f)l, 1> 1} is
tight for each ¢ > 0.

By assumption (ii) of Corollary 3 the array {n{2)} satisfies the (9, {c,})-
boundedness condition with 1 < § < « and ¢, = ¢, 5, which, in view of Propo-
sition 4 (ii), implies that {{2)} satisfies condition (28) in Proposition 3 and that,
in turn, implies that {(1/c,.)w{®} is tight.

On the other hand, applying Proposition 5 (iii) to the sequence {#{}} in
case (a) of Corollary 3 we infer that it satisfies the (4, {c,})-boundedness con-
dition with d =¢, 1 <a<e<2, and ¢, = ¢, = n'*h(n), which, in view of
Proposition 4, implies that {n{!)} satisfies condition (28) of Proposition 3 and
that, in turn, implies that {(1/c, )"} is tight in case (a).

Similarly, applying Proposition 5 (iv) to the sequence {#{}}} in case (b) of
Corollary 3 we infer that it satisfies the (8, {c,})-boundedness condition with
8 =2, ¢, = ¢, 1 = n'’?, which, by Proposition 4, implies that it satisfies con-
dition (28) of Proposmon 3 and that, in turn, implies that {(1/c, ;) ©"} is tight
in case (b).

Notice that, by Remark 1, the sequence {supo<;<.|Va(t)l, n = 1} is tight for
each ¢ > 0, in both cases (a) and (b).

Now, using the Decomposition Theorem in case (ii), we get the assertion of
the corollary, which completes the proof. & '

Proof of Corollary 4. Since the array {#{3)} satisfies the conditions of
Corollary 8 w1th stable, spectrally negative, spectral measure v, v = Zm T3 Vys
we have U, 2 U, where U is a spectrally negative Lévy process with spectral
measure v. Hence, also {supo<;<.|U,(?)|} is tight for each ¢ > 0.

From Proposition 7 it follows that the array {n{3}} satisfies the
(8, {cn})-boundedness condition with ¢, = ¢,, = n*/* and 1 < § < &, which, in
turn, by Proposition 4 (iii}, and then by Proposition 3, gives tightness of
{t/e,.) 0P}

Tightness of the sequence {(1/c, ) w"} in cases (a) and (b) is shown in the
proof of Corollary 3, where a proof of tightness of {supo<;<.|V;(®)l, n > 1}, for
each ¢ > 0, is also given. Tightness of {(1/c,;) @i’} in case (c) follows from Re-
mark 3 in [14], which provides sufficient conditions for tightness of {(1/c, 1) ®{"}
under ¢-mixing conditions. Also tightness of {supo<,<.|V,(t)|, n = 1}, for each
¢ >0, follows from [14].

Using the Decomposition Theorem in case (i) completes the proof of the
corollary. =
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Proof of Corollary 5. Since the role of ¥, and U, is symmetric, the
proof of the corollary is similar to the proof of Corollary 3 with u,, and
U, interchanged. =

Proof of Corollary 6. With obvious adjustments, the proof follows
the lines of the proof of Corollary 4, and is thus omitted. m
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