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1. INTRODUCTION 

Stable-like processes are introduced originally by Bass [2], [3] in terms of 
martingale problems as variants for a-stable processes; they have spatially 
inhomogeneous "index" atx).  Tsuchiya [lo] defined the processes in terms of 
stochastic differential equations with jumps. Negoro [7] introduced the processes 
using pseudodifferential operators and studied the magnitude of local variation 
for their sample paths. Jacob and Schilling [6]  considered more general symbols. 

Symmetric stable-like processes are introduced by the second-named 
author [ll] in terms of Dirichlet forms and they are accordingly symmetric 
Markov processes with respect to the Lebesgue measure. 

The aim of this paper is to introduce, extending the idea in [ll], a family 
of symmetric processes that contains in a natural way the symmetric a-stable 
processes and Brownian motions. Our definition of the processes is motivated 
by the fact that the Dirichlet form 



146 Y. I sozaki  and T. Uemura 

that corresponds to the symbol Itla (the symmetric a-stable processes on R") 
converges, as a tends to 2, in a sense to 

d"2)(~, U) = J VU - Vvdx 
R d  

that corresponds to the symbol 151' (the Brownian motion in w~). Here the 
function C(a) is defined by 

C(a)  = 
r (1 + 01/21 r ((a + 4/21 sin (In 4/2) 

21-und12+ 1 

See e.g. [I]. Note that if C (a) = a (2 -a) C"(a), we have 

It may now be natural to let the index a vary spatially, namely, let a(x)  
be a (0, 21-valued function and replace 01 in the definition of 8'") with ollx). 

An interesting observation in this paper is the following. Let us say that 
oc is in the transience domain if is transient. The recurrence domain is defined 
in a similar way. We will see in the last two sections that some ~ ( x )  taking 
values in the transience domain produce recurrent processes in one and two 
dimensions. 

We exhibit various behaviours of the symmetric stable-like processes in 
Table 1. For transience obtained using a comparison argument, we refer the 
reader to [ll]  or [12]. 

This article is organized in the following way. In Section 2, we introduce 
precisely the notion of the symmetric stable-like processes. Proofs of the state- 
ments therein are given at the end of the section. We show the conservativeness 
under some conditions in Section 3. On our way we prove Lemma 3.2, a crite- 
rion for conservativeness. Although this lemma is an easy consequence of The- 
orem 1.6.6 in [ 5 ] ,  we have not found it in the literature. In Sections 4 and 5, we 
give some suMicient conditions for recurrence, in one- and two-dimensional 
cases, respectively. 

TABLE 1 .  Behaviours of 8" (Cp means "a comparison argument" as in [ l l ]  or [12]) 

a  (4 
u(x)  = 2 

u  ( x )  c)r 2 rapidly 

1 < a ( x ) a < 2  

u(x)  = 1 

a (x )  ;" 1 rapidly 

O < u ( x ) = o ! < l  

8" in 2D 

BM, recurrent 

recurrent (Theorem 5.1) 

transient 

Cauchy, transient 

transient by Cp 

transient 

8" in 1D 

BM, recurrent 

recurrent by Cp 

reccurren t 

Cauchy, recurrent 

recurrent (Theorem 4.1) 

transient 

C" in 3D+ 

BM, transient 

unknown 

transient 

Cauchy, transient 

transient by Cp 

transient 

a (x) h 0 slowly conservative under some condition (Theorem 3.1) 
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2. DEFINITIONS AND PRELIMINARIES 

Let a(x) be a rO,2]-valued measurable function on Rd. For a technical 
reason, we assume the set 

A := ( x f R d ;  M ( X )  = 2)  

is the union of countable balls modulo a Lebesgue-null set: To be precise, let 

B(x ,  r) = ( y € R d ;  ly-xl < r)  

be the ball with centre x and radius r. Then, modulo a Lebesgue-null set, 

A = U B(xi, r i ) .  
QN 

We introduce a bilinear form b" on ,P(Rd; dx) by 

9 [ba] = (u E~ (Rd; dx): ~d has the derivatives of the first order on 0 B (xi, ri), 
 EN 

("" -"~) 'C(a(x) )dxdy  ~ ~ - ~ l * + a ( x )  < m ,  and V U E ~ ( A ;  dx)] ,  
Af x Rd 

Moreover, we set 

Note that the integrand in the definition of is non-zero only if ~ ( x )  ~ ( 0 ,  2), so 
that the integral is equivalent if it is taken over the set { x  €Rd;  a (x) E (0, 2)) x Rd. 

THEOREM 2.1. The form (Qa, 9 [ba]) is a Dirichlet form on I? (Rd; dx) in the 
wide sense. 

The theorems in this section are proved at the end of the section. 
It is then natural to ask if the domain 9 [ba] contains %yP (Rd), the space 

of all uniformly Lipschitz continuous functions with compact support. The 
following theorem provides us with a plausible sufficient condition. 

THEOREM 2.2. The domain g[ba]  contains Wkip(Rd) if and only $ 

(2-1) [ I ~ I - ~ - ~ ( ~ ) a ( x ) d x < c o .  
I l ~ l '  11 

In the rest of this paper, we always assume that this condition (2.1) hoIds. 

COROLLARY 2.1. Let Fa be the closure of %yP (Rd) with respect to 8% Then 
(P, 9 " ) s  a regular Dirichlet f o m  on L2(Rd). 
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In particular, if 

[ x la'"' 
lim inf > 0 
1x1- 0, flog IxlI1 a- (4 

with some 6 > 0 and the infimum of ~ ( x )  is positive on any compact set, 
then the conditions of the theorem are satisfied. To be more specific, if 
~ ( x )  = const(log(lxl v e))-' with 0 < 8 < 1 (see the Remark on page 85 of [ll]) 
or E > 1, then the condition (2.1) holds, but if ct (x) = const(log(lxl v e))-l, then 
(2.1) is violated. Note that the criterion in [ll] is violated when E > 1. Observe 
also that these examples of ol (x) satisfy limlXl,, a (x) = 0. Despite there is no 
0-stable process, our &" can be defined. 

Proof  of Theorem 2.1. Let (uJ be a sequence in 9[baj such that 

It suffices to prove that there is a ~ € 9 3  [&"I and 

since every normal contraction obviously operates on 9 [gq]. This will be done 
in a way similar to that in the proof of Theorem 2.1 in [ll]. 

Because of closedness of the Sobolev space on each ball B(x,, ri), there 
exists a function ui E H1 (B (xi, ri)) such that (ul) converges to ui in H1 (B (xi, ri)). 
By standard arguments, there are a subsequence (GI) of (ul) and a null set 
N c U i  B(xi, ri) such that (ii,) and its derivatives converge to those of u at 
every point outside N. Moreover, since (u,) is a Cauchy sequence in L2 (Rd; dx), 
u is extended over Rd as a function in L? (Rd; dx) SO that a subsequence 
(ii,) c (ii,) converges at every point outside a null set in Rd, say N'. 

Let u" and 2?, be quasi-continuous versions of l(N,,t,,u and l~,,,,,,fi,, re- 
spectively. Then, by Fatou's lemma, we have 

s; (u-u,, u-u,) = 8; (ii-6m, 6-ii,) 

< liminfb",(2,-ii,,,, $,-I&) -+ 0 as m 4 ao. 
l+m 

P r o of o f The  o re m 2.2. Recal that the second-named author [1 l] has 
shown the following theorem. Let a (x) be a real-valued measurable function on 
R and let & be defined by 

9[p]= u ~ I ? ( R ~ ; d x ) :  S J  { (u (4 -u ( ~ 1 ) ~  dxdV < * I X -  yldf 
Rd x Rd 

(2.2) 
(u (XI - I.4 b)) (v ( 4  - v b)) P ( u , v ) =  SS lx- ,,ld+a(x) dxdy. 

R d x R d  
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Then the integral in the definition of p ( u ,  er) with u from % p ( R d )  is conver- 
gent if and only if the following conditions are satisfied: 

1 1 
( 1 )  0 < a (x )  < 2 for a.e. x and - -E L:,,(Rd); 

2 -a(x) '  M ( X )  

(2) there is a compact set K such that j I ~ l - ~ - " ( " ~ d x  < co. 
Rd\K 

In our setting, the range of a (x) is confined to LO, 21 and the Dirichlet integral 
on the set A is always convergent for u E %'kip (Rd). Moreover, the integrand in 
the definition of 8' vanishes for x such that a (x )  = 0 since C ( 0 )  = 0. Hence 
quite the same argument in Ell] leads us to conclude that the integral in the 
definition of 8" (u, u) is convergent for all u E %'k'~(Rd) if and only if 

(2') there is a compact set K such that 

S C ( o r ( ~ ) ) I x l - * - ~ ( ~ ) d x  < co. 
[ x E R ~ ; O  < a(x) < 2)\K 

Since 

C (a (4) G C2 (4 (2 - a (4) 
and 

S I -d-a(x)dX < CO X I  for any 6 > 0, 
{XER~;IXI > I.U(X) > 8)  

we easily see the conditions (1') and (2') are equivalent to (2.1). 

3. CONSERVATIVENESS CRITERIA 

The authors have a conjecture that our symmetric stable-like processes are 
conservative for practicaIIy any index function ct (x). But this seems difficult to 
establish, so we write a weaker statement: We assume some smoothness of a ( x )  
and write the generator explicitly to verify a sufficient condition for conser- 
vativeness. 

In what follows we employ the notation 

(3.1) M ,  (x )  = 1 v sup x + l a x  for X E R I .  
&Rd,151 < 1 

THEOREM 3.1. Assume that u (x )  is locally Lipschitz continuous, a (x)  < 2 for 
I 

all x € R d  and satisfies the condition (2.1) in Theorem 2.2. Then: 
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(a )  C$ ( W d )  G 9 [Bq and the generator A of the form 8"' has the folIowing 
integral representation (3.2) on a subspace Cz  (Rd) E 93 [A]  : For v E C t  (Rd) ,  

(3.2) Av ( x )  = lim 1 (v (y) - v (x))  
e+O y ~ R ~ , l y - ~ )  > E  

x ( ~ ( a ( x ) ) \ x - ~ l ~ - ~ ( ~ )  + ~ ( a ( ~ ) )  I X -  yl-d-a(y))dy. 

(b) If we assume 

MI ( X I  exp (MI (x)Ie) 
< sup n-I sup 

HEN Ixl<n 2-a(x) 

(3.5) sup n- sup Mi (x)' exp (MI (x)/e) < co , 
n f N  Ixl$n 

2-inf{a(x+t); It1 G 11 
sup n - 2  < m,  SUT,,2-sup { a ( x + t ) ;  Itl i 11  EN 1x1 

then the symmetric stable-like process is conservative. 

Note that (3.3) implies the condition (2.1) in Theorem 2.2. 
If sup, a (x )  < 2 and a (x)  is uniformly Lipschitz continuous, all the con- 

ditions are satisfied. A more remarkable example of a ( x )  satisfying these con- 
ditions is given by a (x )  = 2 - co exp (-c, (1x1 v 1 j 2 )  with co, cl > 0. 

If sup,a(x) < 1, a similar proof shows that dm is conservative without 
assumptions (3.4H3.6) on smoothness. The generator is still given by (3.2) with 
such a (x), but for each v E C t  (Rd) not only C ;  (Rd). This conclusion also holds 
with a(x )  that satisfies (3.3), sup,,, a (x)  < 1 with any compact set K c Rd, and 

sup a-I 
1 

< 03. 
neN 1 - SUP (a  1x1 Q n) 

The second-named author defined in [11] as in (2.2), in the present 
manner but without the factor C(a t ) ) .  The generator of is studied in [I21 
and the integral representation has almost the same form as our (3.2), accord- 
ingly without C (a (=)). 

If the dimension d is one or two, there are some classes of a(x )  with- 
out smoothness that provides us with recurrent (hence conservative) &", as 
is seen in the subsequent sections. Not all of these functions a (x) ,  introduced in 
Theorems 4.1 and 5.1, satisfy the conditions in Theorem 3.1. A typical example 
in one dimension is a (x) = 2 -c, exp (- cl (1x1 v with co,  cl > 0. Unfortu- 
nately we have not arrived at a more plausible condition for conservativeness 
yet. 
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Remark  3.1. Bass [2], [3] considered the following martingale problem: 
Assume 

and let 3 be an operator on C,2(Rd): 

A probability measure P on P = D [O, c ~ )  is said to solve the martingale 
problem for B at xo E R ~  if for any f E C; (Rd) 

i 

f (XJ-AX,)-J Bf(X,)ds is a P-local martingale. 
0 

Then Bass showed the continuity of a ( x )  implies the existence and the Dini 
continuity implies the uniqueness of the solution. 

If we assume (3.7) and the global Lipschitz continuity of o: (x), our genera- 
tor A has the following relation (3.9) obtained by R. Schilling (private com- 
munication). Let B* be the dual of B. Then for u and v E Cg (Ed)  

= - ((B + B*) U, ~ ) ~ q ~ d ; ~ ~ )  + J B* 1 ( x )  u (x) v ( x )  d ~ .  
R d 

Here 1 denotes the constant function on Rd. Namely, the symmetrized part of 
Bass' generator plus some perturbation (creation or killing, depending on the 
sign of Bh 1 (x ) )  equals our generator. 

If we assume in addition 

0 < inf ~ ( x )  < supol(x) < 1, 
x=Rd x€Rd 

the dual operator B* has the following integral representation: 
For any f E Ch (Rd),  

The following equality also holds: 

B* 1 (x) = 1 - 
~ ~ - ~ [ d + a ( x )  

Rd 
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Proof  of Theorem 3.1 (a). Put A, = {(x, y): Ix-yl ,< E )  for E > 0. 
If U E ~  [gal and V E  Cg(Kd), then the integral in the definition of ba(u, v )  con- 
verges b y  Theorem 2.2, and hence 

The following argument is inspired by [XI (or [12]): Let 

and, by symmetry, 

1 - - - J j  ( ~ ( x ~ - ~ ( Y ~ ) ( v ( ~ ) - v ( ~ ) ) J o C ~ ~ ~ ~ ~ ~ v .  
'{e<lr-yl<l) 

Then we have 

bU(u, v) = lirn(Yo+!Pl(~)). 
E+O 

Now let 

Then we easily see, by using J (x, y )  = J ( y  , x), 

! and 
i 

i 
I y'1(&) = - ( u ( x ) ,  A l b ,  8 ,  x)+Az(v, E, x ) ) L 2 ( R d ; d x ) .  

I It suffices to prove that A. (v, .) is square-integrable and A, ( v ,  E ,  .) + A, (0, E ,  a) 

converges in I? (Ed) as E + 0. NOW we prove the following upper bound: 
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LEMMA 3.1. Let R > 1 be a number such that S u p p  (v) c 3 (0, R) and recall 
the notation Ml(x) in (3.1). Then 

(3.13) lA~(v,x)l<constHull ,R~(I~l-R)-~ for lxI>2Ry 

(3.14) IAo (v, x)l < const llvllco (1  + lyl-d-a(Y1 a (y)  dy  + Rd) for 1x1 < 2R, 
{ IY l  ' ZRI 

(3.15) A, (v, E ,  X) = 0 for 1x1 2 R, 

(3.18) sup IA2(u, E, x ) I  < const IIV2vllrn 
2-inf(a(x+ +); It1 G 1) 

O < e < l  2-SUP Ia(x+ O; I8 G 1) 

Here const denotes a constant that depends only on d and variesfiurn line to  line. 

P r o o f  o f  Lemma 3.1. If 1x1 3 2R,  

Hence 

IAo(v, x)l < l l ~ l l r n  J 4Cz I x - ~ ~ l - ~ d y  < const Ifvllm Rd(IxI - R ) - d y  
(lul <R) 

which is (3.1 3). 
I f  1x1 < 2R and Ix-yl > 3R, then v(y) = 0 and Ix-yt > ly1/2. Thus 

+2C2 llvllm J I Y / ~ I - ~ - ' ( ~ ) ~ ( Y ) ~ Y + ~ C ~  llvllm j Id< 
[IX-YI>~RI 11 < < 3R) 

m 

< 2C2 u (x )  llvllm const J t-l-u(X)dt 
3 R  
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where 5 = x - y is a variable in Rd and t is a real variable for 151. We have (3.14) 
if we observe that the second term in the rightmost side is finite by the con- 
dition (2.1) in Theorem 2.2. 

We have (3.15) since Vv (x) = 0 for 1x1 3 R.  
We easily see that 

and, by taking their mean, we obtain 

1 
A,(v, E, X) = - 5 -  vv(x) 

2 [B-= ltl x 11 

x (141-d-a(x+~'~(a(x+  t))- ltl- d - a { x - a ~ ( a ( ~ - { , ) ) d t .  

We then prove 

To prove (3.19), note first that la(x) -a (x + < ) I  < MI (x) 151 and I51 log (1/151) 
< l/e for any 151 < 1. Then 

If t E R and It] < MI (x)/e, we easily see that let - 11 d exp (MI (x)/e) Itl. Setting 
= log(lcla~x)-a~x-o ), we have 

l(tla(x)-u(x- 5) - 1 I < , exp ( M I  (x)/e) llog [Sla("-a(x-r) I 
< exp (MI (x)/e) MI (XI 151 log (1/151). 

Then, since C(a) and C'(a) are bounded, we obtain 

6 const M~ (x) 151 I ~ I ~ ( ~ ) - ~ ( ~ + ~ )  + const ~ X P  (MI (x)/e) MI (4 151 log (1/151) 
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Using this twice, we get 

Plugging this into the left-hand side of (3.191, we obtain the upper bound there 
by using 

1 

S t - l + & l ~ ~ ( l / t ) d t  = r ( i ) / ~ ~ ,  
0 

which is valid for E > 0. Now (3.16) follows immediately from (3.19) since 
( 3 - a ( ~ ) ) ~  3 1. 

If 1x1 2 R + 1 and < 1, then x and x + [ are out of the support of v (-1 
and we have (3.17). 

By the Taylor expansion, Iv(x+t)-v(x)-(.Vv(x)l < const 11V2v11,1t12. 
Then (3.18) follows from 

which is also bounded by this second term. 

Let us resume proving that A, ( a )  E L~ (Rd; dx) and A, (E, .)+A2 (E, .) con- 
verge in I.?(Rd; dx) as E + 0. Since we assume a(x) < 2 and local Lipschitz 
continuity, (3.16) and (3.18) are bounded and supported on a compact set. 
Hence the bounds in (3.13)-(3.18) are square-integrable, and this is what we 
need concerning A, (0, a). As for A,  (v, E, a), the proof of (3.1 6 )  in fact shows 

which is less than or equal to the right-hand side of (3.16). Hence lime,, A, (v, E, x) 
exists for any x by the dominated convergence, yielding a bounded function with 
a compact support. This is also the case for A,(v, E ,  -). Now if we define 

we have b" (u, v)  = - (u, A v ) ~ z ( ~ ~ ; ~ ~ ) .  

We now assume (3.3H3.6) to prove the conservativeness for Ca. In fact, we 
verify the criterion in the lemma below. 
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This lemma is based on an idea found in Ethier and Kurtz [4], 5 3.4, that 
states "Boundedness and pointwise convergence imply conservativeness," of 
which we have been informed by R. Schilling. We should point out that Lem- 
ma 2.1 in [9] is also reminiscent of this idea. 

LEMMA 3.2. Let (8, 9) be a regular Dirichlet form on L2 (X; m), where X is 
a locally compact separable metric space and m is a positive Radon measure on 
X with supp [m] = X .  Suppwe that a core % of (8, F) is contained in the domain 
of the generator A. Assume there exists a sequence of functions (q,) c %' such that 

0 6 pn ( x )  4 1 and Iirn cp, (x) = 1 for x EX, SUP < c~ 
n +  m n 

and 
lim Arp, ( x )  = 0 for m-ax. x E X. 
n + m  

Then (8, 9) is conservative in the sense that, for every t > 0, 

1 (XI = 1 for rn-a.s. x EX. 

P r o of. Since rp, E V,  we have for any v E F n I! (X; m) 

Thus the assumption and Lebesgue's dominated convergence theorem imply 

lim b (q,, v)  = - lim 1 Aq, ( x )  u (x )  m (dx) = 0, 
n+ m n+m x 

which is a criterion for conservativeness given in Theorem 1.6.6 in [ 5 ] .  H 

Proof of Theorem 3.1 (b).Take asmoothfunctionw(t)on[0, a) that 
satisfies 

O $ w ( t ) < l  for all t ,  

1 for ~ E [ O ,  11, 
w ( t )  = 

0 for t ~ ( 2 , o 0 ) ,  

sup (Iw' (t)l + 1 w" (t)l) < Cx, . 
i ~ [O,m)  

Set rp ,  ( x )  = w (lxl/n) for x E Jld SO that c p ,  ( x )  -, w (0) = 1 as n + a for any 
fixed x. Note that each rp, is a smooth function on Rd supported on a compact 
subset and accordingly belongs to the domain of A. 

Since cp, (x ) -  qn,(y) + 0 as n -+ co for any x and y, A ,  (q,, x) + 0 follows 
by the dominated convergence if we prove 

for any fixed x. To bound B,, we replace qn(x)-cp,fy) by 1 and obtain 
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for each x by (3.3). On the other hand, we easily see that 

by Lemma 3.1, IIVqnllm < constln and 11V2 q,11, < const/n2. 
To prove sup,,, IAq,(x)l < m, note that supp(q~,) G {x€Rd; 1x1 G 212). 

Then we have, by (3.18) in Lemma 3.1, 

const 2-inf{a(x+t); ltl < 1) 
sup Ilim A, (q,, E ,  x)I < sup - 
n,x E + O  

SUP n2 1xl<zn+12-~~p(a(x+<);1{1 < 1)' 

which is finite by (3.6). Similarly, sup,,, llim,,, A, (q,, E, x)l is finite by (3.4)' 
(3.51, (3.15) and (3.16). 

To bound sup,,, 1 A ,  (q,, x)l, we define 

I (x) :=  S J(x, Y ) ~ Y .  
Ilv -4 'ma..(1.Ixllzll 

Note that (3.3) implies sup, 1 (x) < co . 
If 1x1 < 2/3, the integral defining I ( x )  is taken over {ly-xl > 1) and for 

any n we have 1 A, (q, , x)I < I (x) since Iqn (x) - 9, (y)l d 1. Otherwise, if n > Q Ix 1 
or 4n < 1x1, we have p, (x)  - cp, (y) = 0 for any y in {ly - xl < 1x1/2), and thus the 
integral defining A. (q,, x) can be taken over {y E P; Iy -xl > max (1, 1x1/2)] 
and IA,(q,, x)l < I ( x ) .  Now, it is enough to consider x such that 
(2n)/3 < 1x1 < 4n. But then 

Putting these together, we have, for all n, 

< I(x)+ lxl-l const 1~11-d- inf{a(~); lds31~1/2}d~ 

I 1  c lTl <lxl/2) 

lxll2 Ixl/Z 

= I(x)+ l ~ l - ~ c o n s t  t-infudt < I (x)+IxI-'const j ldt < I (x)+const. 
1 1 

Then sup,,, !A,  (cp,, x)l < sup, (I (x) + const) < oo . H 

4. ONE-DIMENSIONAL CASE 

One-dimensional symmetric a-stable processes are transient if a < 1 and 
recurrent if a 2 1. 

An interesting achievement in [l l]  is as follows: Let be as defined in 
(2.2). If the function a (x) takes its values in (0, 11, the domain of transience, but 
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close to 1 for 1x1 large, then the symmetric stable-like process associated with 
is recurrent! We revise this problem in the context of 8" and observe that 
a comparison theorem holds. 

Let 9e(ba)  be the extended Dirichlet space of the Dirichlet form ba(see 
e.g. Csl). 

THEOREM 4.1. (a) Assume the condition (2.1) in Theorem 2.2 and the fol- 
lowing are satisfied: 

(1) lim sup 1 n-a(x) dx < oo , 
{Ixl<n} 

2-a(x) 
(2) lim SUP J dy J 1 + a(xj dx < m. 

{ ly l<2n j  [ ~ s l > a n j  I x - Y I  
Then the space Fe (gg) contains the constant function 1, and hence the symmetric 
stable-like process associated with (ba, Fa) is recurrent. 

(b) If in addition 

then the process associated with (@, FJ) is also recurrent. 

Remark  4.1. (i) The following function a(x) is defined in Example 2 on 
page 90 of [ l l ] :  Let E 2 1, c ~ ( 0 ,  2), a > e, and 

a (x) = 
otherwise. 

Then the conditions in the above theorem can be verified by a similar argument 
to that in [ l l ] ,  which fact fills a column in Table 1. The recurrence of 6" also 
follows from the equivalence argument concerning and 6". 

(ii) By Theorem 4.1 (b), the recurrence for gB is concluded if E > 0, c E (0, 2), 
a > 1, and 

2 - l ~ l - ~ ,  1x1 > a ,  

C, otherwise. 

It is here that our specification of the Dirichlet form makes a real diffe- 
rence: This function B(x) is defined in Example 3 (for the case 0 < E < 1) 
and Example 3' (for E > 1) on page 90 of [1 l] and the recurrence criterion on 
page 88 of [I11 is not satisfied in the latter example. 

P roo f  of Theorem 4.1. The statement (b) follows from (a) since the 
integrals in the conditions (I) and (2) are decreasing in a(x). 

Before proving (a), note that the condition (2.1) in Theorem 2.2 is satisfied 
under the present assumptions, whence 9 [&"I 3 %FP(R). 
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For any n E N, let u,, (x) be the function on R defined by u, (x) = 1 for 
x E [- n, n], u, (x) = 0 for 1x1 2 2n and un (x) = 1 - (1x1 -n)/n for n < 1x1 < 2n. 
Then (u,) is a sequence in %$ji"12) that tends to 1 everywhere as n 4 wi. In [Il l ,  
the following estimate has been shown: 

We have, by the same argument, 

(u,, u,) 6 const C (OI (x)) dx + const j dy j 

3n n-a(x) 

+const j - C (or (x)) dx . 
-3n2-a(~) 

Since C (a (x)) < C ,  a (x) (2 - a (x)) by (1.1), the right-hand side remains bounded 
as n + oo under the assumptions (1) and (2). 

We reproduce from now on the proof of Theorem 3.2 in [11] and add 
a modification. 

Relying on the standard techniques of the Hilbert space theory, we have 
a sequence of convex combinations 

of (u,) such that limi,, a (i, n) = 0 for any n and (vi) is an ba,J-Cauchy sequence 
that converges to 1 for a.e. x. Hence 1 E Fe(&a,J). On the other hand, the form 
&a*J is represented by 

for u,  V E ~ ? ~ ( & ' " , ~ ) ,  where u" and v" are quasi-continuous modifications of u and 
v, respectively. Then we have b"3J(1, 1) = 0, and hence bQsJ(vi, vi) + 0 as 
i+co.  

Since (Vu,,, Bu,) = 0 (l ln) + 0 as n + co, we easily have (Vvi, VvJ + 0 
as i + ao. Hence (vi) is also an 8"-Cauchy sequence that satisfies 8" (vi, vi) -+ 0. 
Finally, we have 1 E Fe (8") and bQ(l , 1) = 0, which implies the recur- 
rence. = 
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5. TWO-DIMENSIONAL CASE 

The planar Brownian motion is a recurrent diffusion process while two- 
dimensional symmetric m-stable processes (where 0 < a < 2) are transient. In 
the following theorem, any value taken by a(x) is in the domain of transience. 
Nevertheless (ba, 9 [dFa]) is recurrent, and this fact fills the corresponding 
column in Table 1. 

THEOREM 5.1. (a) Assume that 

O<or(x)<2for a.e. x and a (x )=2-0  - 
(1.; lx,) as I x l  - m.  

Then the condition (2.1) in Theorem 2.2 is satisfied with this choice of a (x) a d  the 
symmetric stable-like process associated with (,Fa, fig) is recurrent. 

(b) If in addition a (x) d P ( x )  d 2 for a.e. x, the process associated with 
(g8, F8) is also recurrent. 

P r o  of of Theorem 5.1. This proof is done in almost the same way as 
that of Theorem 4.1. 

Since a(x) + 2 as 1x1 + a, the condition (2.1) in Theorem 2.2 is satisfied and 
9 [b"] contains %? (RZ). 

For any n E N, let u, (x) be the function on R' defined by un (x) = 1 for 
1x1 < n, u,(x) = 0 for 1x1 2 2n and u,(x) = 1-(1x1-n)/n for n < 1x1 < 2n. Then 
(u,) is a sequence in %yP(R2) that tends to 1 everywhere as n + co. 

We begin by showing that sup, &a~J(u,, u3 < oo implies recurrence. Let 
(iik) be the sequence of convex combinations of (u,) defined by 

Then 

and s~p,b".~(i&,  ii,) < co. By the same reasoning as in the proof of Theo- 
rem 4.1, there exists a sequence (vi) in 9 [&'what converges a.e, to 1 and 
satisfies Ba (vi,  vi) -r 0, which implies recurrence. 

Now the statement (b) is an easy consequence of (a). Indeed, if we set 
= x - y  in the first integral below, we have 



A family of symmetric stable-like processes 161 

const - < - vol (I3 (0, 2n))+ b a s J  (un, u.). 
n2 

Here we have used C (a) < 242, (2 - a) and Ix - yl -8'") g Ix - yl -a(x1 for a n y  
x ,  y such that Ix - yJ 2 1 and u (x) < pix). Since voI ( ~ ( 0 ,  2n)) = 0 (n2), 
sup, balJ (u,, u3 < co implies sup, 8 " ~ ~  (u,, u,) < co . 

By the same reasoning, we only have to show that sup, bgJ(u , ,  u,) < og 
for some ii ( x )  such that E (x) < a ( x )  for a.e. x, 2 - ol (x) < const/(log]xl) when 1x1 
is large and E ( x )  is rotationally invariant, i.e., 8 (x) is a function of 1x1, which will 
be denoted by i ( lx l )  with an abuse of the notation. Note also that 
u, ( x )  = w (x/n) by some function w (-) on R. Then we have, by setting - 
y = qeJL1e and q = r 1x1, 

m 

X S ( w ( I ~ / / n ) - w ( r I x ~ / n ) ) ~  1xI2 rdr. 
O I x  - r l  x leJ-'e12+41xl) 

Let f (a, r) be a function defined by 

for 0 < u < 2 and r E (0, 1 )  u ( 1 ,  a). Using 

1 1  - PAMS 24.1 
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and the rotation invariance of the integrand, we have, by setting 1x1 = n < ,  

rn 

x (nt)-anr) f (w ( r )  - w ( r ~ ) ) ~  f (3 (nc), r)  rdr 

We are going to prove that the right-hand side is bounded if 

sup sup n2 pi(t1 < a. 
"' 1 t.[$iCG, 

Note that this condition is satisfied if 2-E(x) < const/(log 1x1) for large 1x1. Let 

for n E N and 5 2 0. Then we have the following estimates: 

LEMMA 5.1. (a) I ( n ,  c) = 0(1/ (2- i (n( ) ) )  for 1/3 < g < 3. 
(b) I (n ,  5)  = for [ > 3. 
(c) I (n , 5)  = 0 (5"'[n5)/07 (n 5)) for 5 < 113. 

We postpone its proof. Let K be a positive constant specified later and we 
divide the following integral into five parts: 

By Lemma 5.1 (c) and tT(n5) > 0, A.  is bounded as follows: by setting 
5 = nc, we obtain 

Kin K 
A, < const S tn2-"["" d t  = const j 5npi([) dl;, 

0 0 

which tends to 0 by the dominated convergence. 
To prove that A, is bounded, let K be a number such that 2- ii (t) < 1 for 

all t 2 K. Then 
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The rest is easy. For any 6 > 0, 
1/3 

A, < ( sup 1 const 5d5, 
n> l , rZJr;  I/$ 

3 

A, < ( sup n2 -$')) const (t v c -  l) d t ,  
n >  1,taJii 113 

m 

A4 < ( sup n2-c(tl) JcOnSt 5 - 1  f  SUP^^ -i(t);ts JmJ 

n > l , t 3 &  3 
r -  de, 

which are all bounded since inf n , l , t , f i  &(t) > 0 and limt+,2-i(t) = 0. 

Proof of Lemma 5.1. Note first that the function r w f ( a ,  r) is easily 
seen to be continuous separately on the interval 0 < r < 1 and on 1 c r < a; 
its behaviour near the boundary is as follows: 

f (a, r )  - 2 7 ~ r - ~ - "  as r + m .  

The function 

of a is continuous on the interval -1 < a < a, and hence bounded on 
0 Q a < 2. 

Since 0 < w(q) < 1, we have Iw (S) - w (rS)I < 1. It is clear that w is Lipschitz 
continuous and lw (5) - w(r5)I d const [ 11 - rl on any neighbourhood of r = 1. 

If 1/3 < 5 < 3 and 6 > 0, we have 
m 

J g ~ ~ ~ l - r ~ 2 . ~ ~ - r ~ - ~ - ~ ( ~ 5 )  rdr 

const 
< + const. 

2-E(nO 

If 5 > 3,  then (p ( 5 )  = 0 and rp ( r t )  # 0 only if r < 2 / l  < 213. Then 

since f (u,  r) is continuous and bounded on 10, 2/31. 
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If 5 < 1/3, 4p (0 = 1, and hence (q (c) - rp (rl))" 0 for any r 6 I/{. We 
have then 

m g, 

I (n, 5) < 1 1 .  f (a(n<), r)rdr < J const r -  l -O'(nt;)dr = 0 (5i(n9)/cl (nt)). 
l i t  115 
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