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Abstract. In a nonparametric regession model with random de- 
sign, where the regression function m is given by rn (x). = E (Y I X = x), 
estimation of the location 0 (mode) and size m(B) of a unique maximum 
of rn is considered. As estimators, location 6 and size fi(8) of a maxi- 
mum of the Nadaraya-Watson kernel estimator m for the curve m are 
chosen. Within this setting, we establish joint asymptotic normality 
and asymptotic independence for 8 and f i  (4) (which can be exploited 
for constructing simultaneous confidence intervals for 0 and rn(0)) 
under mild local smoothness assumptions on m and the design density 
g (imposed in a neighborhood of 8). The bandwidths employed for 
rir are data-dependent and of plug-in type. This is handled by viewing 
the estimators as stochastic processes indexed by a so-called scaling 
parameter and proving functional central limit theorems for those pro- 
cesses. In the same way, we obtain, as a by-product, an asymptotic 
normality result for the Nadaraya-Watson estimator itself at a finite 
number of distinct points, which improves on previous results. 

AMS Subject ClassiGcation: 62GO5, 62GO7. 
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1. INTRODUCTION 

Let (X, Y) be a Zdimensiond random vector with unknown bivariate 
distribution such that Y is integrable. Then the dependence of Y on the (ran- 
dom) value x of X can be expressed by the regression function 

m ( x ) : =  E(YIX = x), XER. 

In this situation, we speak of the random design regression model and call X the 
design variable and Y the response variable. We will always assume X to have 
a marginal (Lebesgue) density g which we will refer to as the design density. (We 
do not require (X, 1.3 to have a bivariate Lebesgue density, however.) Our 
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main concern is the estimation of the location 6' and size m(B) of a unique 
maximum (mode, peak) of the (unknown) function m, Our method is indirect in 
the sense that the estimators for 8 and m(0) are based on a kernel estimator 
f i (x)  for the regression curve m ( x )  (for details see Section 2 below). With 
r i  given, it suggests itself to estimate 0 and m(0) from location d and size m (4 of 
a global maximum of rit (over some compact interval while O is assumed to be 
an interior point of a slightly bigger compact interval; details will be given 
again in Section 2). 

Within this setting, our main aim is to establish joint asymptotic nor- 
mality for the estimators 0 and &(g) under some mild local smoothness con- 
ditions on the regression function m and the design density g (mostly imposed 
locally in a neighborhood of 8). Corollary 3.10 below wiII, in addition, reveal 
the asymptotic independence of 6 and m(@, which makes the construction of 
simultaneous confidence intervals for 8 and m(8) especially simple. Our results 
will be valid for a wide class of kernels (not necessarily having compact support) 
and data-dependent bandwidths of the type being generated by plug-in rules. 

The above-described idea of estimating location and size of a maximum of 
a nonparametric curve by the corresponding functionals of a kernel estimator 
of the curve is not new; it stems from the closely related problem of estimating 
the mode of a density. In continuation of Parzen's (1962) pioneering work on 
density estimation and estimation of the mode, Eddy (1980), (1982) and Roma- 
no (1988a) tackled optimality questions of kernel density estimators of the 
mode. Romano (1988a) also seems to have been the first to consider data- 
dependent bandwidths in this context. In another paper (Romano (1988b)) he 
examined the limiting behavior of bootstrap estimators of the location of the 
mode, an idea picked up later by Grund and Hall (1995) in the context of 
bandwidth selection by minimizing the bootstrapped L,-error for the mode 
estimator. See also Gasser et al. (1998) for the recent concept of estimating the 
mode when the data are points in a normed space. For bootstrapping in the 
context of the present paper, see Ziegler (2000), (2001a). 

While kernel methods have quickly won recognition also in nonparamet- 
ric regression models after the fundamental works of Nadaraya (1964)' Watson 
(1964) and Gasser and Muller (1979), they have not been widely used for 
estimating location and size of maxima of regression functions so far. Up to 
now, we are only aware of the work of Miiller (1985), (1988), (1989) and Ehm 
(1996) where this kind of "nonparametric peak estimation" is pursued. Miiller's 
(1989) work on peak estimation culminated in a functional central limit theo- 
rem for the joint distribution of the estimated location and size of the peak. 
This has already led to a joint asymptotic normality and independence result 
for bandwidths estimating the theoretically optimal ones (which would depend 
on unknown quantities) by plug-in methods. However, Miiller's results only 
apply to models with fixed design. For random design models, peak estimation 
based on the Nadaraya-Watson (NW) kernel estimator appears to be an ap- 
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propriate method, but we do not know of any results pertaining to this in the 
literature except those of Boularan et al. (1995) on the related concepts of 
estimation of zeros (the points where m attains the value 0) and nonparametric 
calibration in the random design model. Since the results obtained by Boularan 
et al. (1995) also apply to derivatives of regression functions, the estimation of 
maxima is contained through estimation of the zeros of the first derivative of m. 
However, for the validity of their approach, global existence and continuity of 
the first derivatives of m and g are needed, while our corresponding result gets 
along with continuity of rn at the point 0 and requires no continuity of g at all. 
Furthermore, Boularan et al. (1995) deal only with consistency problems and 
leave asymptotic normality questions for the estimator of the location of the 
zero out of consideration. 

In all of the above-mentioned papers, unimodality, i.e. the existence of 
a "unique largest peak" of the density, is an overall assumption. So it is naturaI 
to ask for methods for testing the hypothesis of multimodality. This was ad- 
dressed by SiIverman (1981) and further examined e.g. by Mammen et al. 
(1992). This is closely related to the concept of 'bump hunting' where the 
number of modes of the curve is estimated and tests are based on this. This 
topic has been treated in Heckman (1992) and Harezlak and Heckrnan (2001), 
where also additional references can be found. 

The outline of the present paper is as follows: Section 2 (framework) 
presents the precise definitions of the estimators and briefly surveys some con- 
sistency and asymptotic normality results which have been proved in other 
papers of the author (Ziegler (2002), (2003)). Some optimality considerations for 
a bandwidth choice are also given. Section 3 (functional central limit theorems 
and data-dependent bandwidths) then contains our main results including the 
announced joint asymptotic normality result for 0 and m(g) (Corollary 3.10). 
Some facts about weak convergence of stochastic processes in the sense of 
Hoffmann-Jnrrgensen needed in the proofs of Section 3 are collected in the 
Appendix. 

Z FRAMEWORK 

Let I : = [a, b] be a compact interval and J : = [a - q , b + q] ,  Q > 0, 
a slight enlargement of I which is introduced in order to avoid boundary 
effects. We impose the following (very mild) overall conditions on the regres- 
sion function m and the design density g which include the characterization of 
8 as the 'unique largest peak' of m on 3: 

m is bounded on J; 

g is bounded away from zero and infinity on J 



A further discussion of these conditions is contained in Ziegler (2002). Now, in 
case of existence, we introduce 0 = as an estimator for 0 through the equation 

with %,, being the Nadaraya-Watson estimator for m defined by 

where K is a kernel, h > 0 a bandwidth, and ( X i ,  I.;) are observations being i.i.d. 
copies of (X, Y). Note that on,, exists i f K  is continuous; however, it may not be 
unique (in fact, it is known that kernel estimators tend to produce some ad- 
ditional and superfluous modality). On the other hand, it is indifferent which 
method for choosing from its competitors is pursued; our results apply to 
any choice of satisfying (I). We emphasize that the validity of our proofs is 
not affected by potential non-measurability of gn,h, either. 

Under appropriate regularity conditions (on the kernel, the bandwidth 
etc.), consistency of 8 and & (4 has been proved in Ziegler (2002), Theorem 2.3. 
Under some additional regularity conditions (including three-fold continuous 
differentiability of rn and g in a neighborhood of 8) and for a fixed (i.e. non- 
data-driven) bandwidth with nh7 -, d 2 0, also asymptotic normality for 6 has 
been obtained in Ziegler (2003), Theorem 3.8; the precise statement is 

where 

and 

@(B- 0) 3 N (p, a'), 

a' . - Var(Y1X = 6) . - j [K") (z)] dz. 
s (0) (m(2) 

In particular, the bias and variance of 0 asymptotically behave like 

1 
b i a ~ ( e ) - h ~ ~  and ~ a r ( 4 - - a 2 .  

nh3 

Hence for the asymptotic mean-square error of 8 we obtain 

(5) 
1 

M S E ( ~ )  = ~ ( 6 - o ) ~  - -a2+h4p2. 
nh3 

(Grund and Hall (1995) have pointed out, in the context of estimating the 
mode of a density, that (5) rather describes the MSE of the asymptotic distri- 
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bution than the actual asymptotic mean-square error. Indeed, in order to 
make (5) rigorous, a uniform integrability argument would have to be added to 

I the mere application of (21.) 
I Minimizing the expression (5) with respect to h yields 
I 

(6) 

with 

I 

i as an optimal choice for h in the sense of classical Lz-theory. (Note that there is 
I 
I no optimal choice at all in this sense if the asymptotic bias p vanishes). The 

optimal rate of n-lI7 (being valid for nonnegative kernels) is already well 
known from mode and regression peak estimation (Eddy (1980); Romano 
(1988a); Miiller (1989)). It is also well known that the optimal constant always 

I depends on unknowns in situations like that under consideration. However, 
I 

I s,,,, as a function of p and IT, can be estimated consistently by the plug-in 

~ method (see Remark (i) below). It is a natural question, therefore, to ask wheth- 
er the asymptotic normality result (2) is still valid when sop, in (6) is replaced 

I 
I by a consistent estimator &,,, i.e. if 

- . n - 1 ~ 7  
opt - Sopt 

is chosen as a bandwidth. But observe that this is of the general form 

with v,, being a sequence of real numbers tending to zero and S,, being a statistic 
depending on the observations. Hence we seek for asymptotic normality results 
for bandwidths of the form (8). (Another motivation for considering band- 
widths of this form is the so-called scale-equivariance of kernel estimators, 
a notion introduced and discussed at length in Romano (1988a).) 

Remarks on bandwidth selection. (i) Within the present setting, the plug-in 
method consists in replacing gb3(B), j = 0, 1, and m[a(B), j = 2, 3, by ~ ~ ~ ( # ) ,  
j = 0, 1 (with j being the Rosenblatt-Parzen kernel estimator for g), and 
&ti)(@, j = 2, 3, respectively, and Var (Y IX = 8) by 

in the expressions of p and aZ (in (7)). This procedure is justified by Theo- 
rems 1.5 and 2.2 in Ziegler (2002), which ensures the consistency of these pilot 
estimators (under some regularity conditions); however, some care has to be 
taken in the choice of the 'pilot bandwidths' (see Remark 3.9 (iii) in Ziegler 
(2003) for details). 
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(ii) In the present context, bandwidth selection by the plug-in method 
requires the practical computation of particularly many pilot estimators. Hence, 

I a bootstrap approach to bandwidth choice (as already known from density 
estimation, see Shao and Tu (1995), p. 353, and the references given there) 
should be considered. In Ziegler (2001a) the so-called 'smoothed paired boot- 
strap' (SPB), where the observation pairs ( X i ,  q) are bootstrapped, has been 
proposed. We cannot go into detail here, but we mention that, in the setting of 
the SPB, the bootstrapped MSE (which should form a reasonable approxima- 
tion for the original MSE) can be minimized directly with respect to the band- 
width, leading to a bandwidth depending on the (Xi, a, but not on the boot- 
strap variables. Furthermore, under suitable conditions it might be shown that 
the bandwidth h, obtained by this minimization algorithm can be regarded as 
being of the form hn = S,-n-117 with S, 3 s,,,, so that our results apply to 
a bandwidth chosen by this procedure. (See Ziegler (2001b), where this is 
proved in the case of estimation of the density at a point.) 

, Some sets of conditions. At the end of this section, we collect some regulari- 
ty conditions (on the kernel, bandwidth etc.) of which we will make a repeated 
use in the sequel. On the moments of Y and the h e d  sequence v, 0 the 
bandwidth is based on, we impose the following: 

(10) EIY12+p<co and n * ~ : + ~ + r n  for somep>Oy 

(1 1) nv: + rn, nv; -,d (0 < d < co). 

Further we will say that the local smoothness condition (S) is satisJied if m and 
g are three times continuously differentiable in some neighborhood of 0 with 
m(''(0) < 0 and Var(Y lX = -)  is continuous at 6. 

As to assumptions on the kernel, they will vary from result to result, but 
by assumption (K) we will mean f r o ~ i  now on that K is twice continuously 
differentiable with K, K(') and K(') being of bounded variation and with 

lim 1z3 K (z)l = 0, j z2 K (z) dz < co, 
Izl-*m R 

lim Iz4 K(l) (z)l = 0, z3 ]K(') (z)l dz < coy Jim 1z3 K(') (z)I = 0. 
121-m R 121 + m 

Finally, we will speak of condition (Kk) with k  2 2 if K is of bounded 
variation and if there is some k 2 2 such that 

Iim Izk+l K (z)l = 0, 
IzI+m 

limak-j 1 zjK(z)dz=O for e a c h j = l ,  ..., k - 1  
a+m lzl da 
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and 

and we will speak of condition (K') if K has a bounded and integrable first 
derivative K(l )  for which (z2K(l)(z)l is bounded in R. 

3. FUNCTIONAL CENTRAL LIMlT THEOREMS 
AND DATA-DEPENDENT BANDWIDTHS 

To be able to prove asymptotic normality results for data-driven band- 
widths, we view pit and 0 as processes in the sense 

(where 0 < sl < s, < m should be chosen in such a manner that sl < sop, < s2) 
and show that 

and 

converge weakly to appropriately chosen Gaussian processes. 
Note that the process Mn can be regarded as a random element in 

C Is l ,  sZ 1, so that Billingsley's (1968) classical theory of weak convergence in 
the function space C [ s , ,  sz] applies, while the mapping st - ,  on, need not be 
continuous, so that a technical dficulty arises in proving a functional central 
limit theorem for dn,, (see, however, Miiller (1989), where similar mappings are 
viewed as random elements in a certain function space). We will overcome this 
acuity by employing weak convergence in the sense of Hoffmann-J~rgensen 
(see the Appendix). But before doing this, we give first a functional version of 
Proposition 3.1 in Ziegler (2003) on which the functional central limit theorems 
for both the processes Ma and On will be based. The 'tightness' argument in 
Step 2 in the proof of Proposition 3.1 below is standard and e.g. similar to the 
proof of Lemma 3.1 in Miiller and Stadtmiiller (1987). 

PROPOSI~ON 3.1. Let assumption (10) befuIfilled. Assume that K is bounded 
and integrable with limlzl-m IzK(z)t = 0 and satisJies assumption (K'). Let x be 
such that m, g, and Var(Y1X = - )  m e  continuous at x. For fixed 
0 < sl < s2 < oo consider the stochastic process given b y  
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Then 

where # is a mean zero Gaussian process with paths in C[s,, s,] and with 
covariances 

Proof .  As a first step, it is shown that for given points tl, . . ., t , ~  [sly s2], 
the random vector (w,(tl), .. ., W,(t,)) is asymptotically normal with (mean 
zero and) asymptotic covariance matrix (qj)i,j= , where 

This can be done via the Cramkr-Wold device, using Proposition 3.1 in Ziegler 
(2003) employing (real numbers I,, . . ., 1, being given) the 'auxiliary kernel' 

Then, according to Theorem 8.1, p. 54, and Theorem 12.3, p. 95 (with y = or = 2 
and F (t) = f i t ) ,  in Billingsley (1968), in order to complete the proof of Propo- 
sition 3.1 it is enough to show that there is some A > 0 such that for every 
a and s, t E [sly s2] it follows that 

Now, by the mean value theorem, we obtain 

(17) E((K(s)- ~ ( t ) ) ' )  

with K* (2) = (K (z) +zK(ll (I))' and some t* between s and t. 
Now, since (t*)-3 < ( s ~ ) - ~  and v,t* v,s, -, 0, an application of Theo- 

rem 1A in Parzen (1962) shows that the expression 

in (17) has an upper bound in n which is independent of s and t, whence (16) is 
established. FA 
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The following lemma will be needed in the proofs of our main results and 
is of independent interest since it leads to the asymptotic normality of the 
Nadaraya-Watson estimator itself with data-dependent bandwidths (Corolla- 
ry 3.4 below). 

LEMMA 3.2. Assume that K (not necessarily greater than or equal to 0) is 
bounded and integrable with J, K (z)  dz = 1 and satisfies the conditions (Kk) Cfor 
some k 2 2) and (K'). Let condition (10) be fu@IIed and assume that, for some 
fixed x E R with g ( x )  > 0, the function Var (Y I X = a) is continuous at the point x. 
Assumefurther that rn and g have continuous k-th derivatives in a neighborhood 
of x. Then the stochastic process M,, introduced in (12) can be written as 

Mn (s) = (s) + +,,/~~'qs'2k+ I/'' Pnmsy E CSI, ~ 2 1 ,  
with 

where & is a mean zero Gaussian process with paths in C [sl , s2] and muariances 

Var(YIX = X) 1 
(19) c o v ( ~ ( s ) , ~ ( t ) ) =  dt, S, t c [ s l ,  s2], 

and with 

where 

Proof. Observe that 

with 

and K,i being defined as in (14). First we show that 

behaves as indicated in (18). Note that En (s) = W, ( s ) / i , ,  (x) with W, (s) being 
defined as in (15). By Proposition 3.1, in order to establish (18) it sufices to 
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show that cn and W,/g(x) are stochastically equivalent in C [ s l ,  s,] (see Lem- 
ma A3 in the Appendix). Now 

where the right-hand side tends to 0 in probability uniformly in s E [ s l ,  s z ]  by 
Proposition 3.1 (whence W, is stochastically bounded in C [sl , s2] by Lem- 
ma A2) and Theorem 1.5 (i) in Ziegler (2002) with j = 0. Consequently, (18) is 
proved. 

Now, in order to conclude the proof of Lemma 3.2, we have only to show 
that 

Again by Theorem 1.5 (i) in Zlegler (2002) it suffices to show that 

But note that 

while it can be readily inferred from Proposition 3.2 in Ziegler (2003) that 

whence (23) is established. 

T H ~ ~ R E M  3.3. If; in addition to the assumptions of Lemma 3.2, we have 
p > 1/k and 

then for the process M ,  introduced in (12) it follows that 

where G is a Gaussian process taking its paths in C I s l ,  s2]  with means 

E ( G ( S ) ) = C - S ( ~ ~ + ~ ) ~ ~ . ~ ( X ) ,  S E [ S ~ , S ~ ] ,  

with p ( x )  being deJined as in (20) and the same covariance structure as G" 
(see (19)). 
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Proof .  By (22) and (24), 

Hence Theorem 3.3 follows from Lemma 3.2 by virtue of a simple application 
of Slutsky in C[s,, s2] (Lemma A4). 

The subsequent corollary is our first asymptotic normality result for data- 
dependent band-widths. 

COROLLARY 3.4 (Asymptotic normality of the NW estimator taken at a sin- 
gle point - data-dependent bandwidths). If h, fuIfiIIs (8) with S,  % s, > 0, then 
under the assumptions of Theorem 3.3 (put &(x) : = (x) )  

with p(x) as in (20) and 

Var (Y IX = x) j, K2 (2) dz 
c2 (x) : = 

L7 ( 4  

Proof .  Since 

f i  (fin (x) - m (x))  = M. (S.) = Mn (SO) + M. (S.1- M .  (so), 

with Mn (so) having a limit distribution as desired (Theorem 3.3), we have only 
to show that 

But this is standard employing the asymptotic equicontinuity of M,, which in 
turn is a consequence of Theorem 3.3 (see Theorem A5). 

Remark  3.5. For estimating m at a fixed point x, an asymptotically op- 
timal bandwidth is 

(2;;qxJ1,)'"" + hopt = topt* n-11(2k+1), where to,  = --- 

with 02(x) and p (x) as in (25) and (20). This can be obtained from Corollary 3.4 
by the same reasoning as described at the beginning of the chapter. Further- 
more, to, can be estimated consistently if, in particular, EY4 < co and 
Var (Y 1X = .) is continuous in a neighborhood of x (compare Remark 3.9 {iii) 
in Ziegler (2003)). For a globaEly optimal choice of h, see Nadaraya (1989), 
Theorem 1.5, p. 121, and the remark thereafter. 

Our next step towards the main result (which will consist in Theorem 3.9 
together with Corollary 3.10) is a functional central limit theorem for the peak 
estimator fin, scaled by s E [sl, s 2 ] .  
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THEOREM 3.6. Let the asstrmptions (101, ( l l ) ,  and ( S )  be fuEfiEled, and let 
K be u symmetric probability density satisfying (K) .  Then for the process 0, in- 
troduced in ( 1 3 )  it follows that 

in the sense of Ho$Prtann-Jayensen (see Definition Al), where H is a Gaussian 
process taking its paths in C [sh s2] and with means 

EH (s) = s7I2 . p 
( p  as in (3)) and coouriances (s, t~ [sl, sz]) 

P r o  of. By the mean value theorem, we have for each s E [ s l ,  s ~ ]  

with some 0: lying between on, and 8. For the numerator, we utilize the 
identity (suppressing indices) 

(27) f i ( l ) ( O )  = 1-11, 

where 

(28) 

and 

with 8 defined as in (21) and 

As to 11, it follows from Lemma 3.2 (k = 2) together with Theorem 1.5 from 
Ziegler (2002) ( j  = 0, 1) that 

As to I, an application of Proposition 3.1 with Kt') instead of K (note that K ( l )  
fulfills the assumptions needed there for K) together with two Slutsky argu- 
ments in C [sl, s2] (Lemmas A3 and A4) like in the proofs of Lemma 3.2 and 
Theorem 3.3, respectively (with the second one employing Proposition 3.2 in 

(3 1) sup 
s~tsi.sz1 

d (0) J = I I - - - S ~ J ~ . ~  
2 

rn("(0)~z2K(z))di (~0.  
s (el R 
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Ziegler (2003) with k = 3 and observing that rn(1'(8) = 0, K(''(-z) = - Kll)(z) 
and 3 j z3 (2) dz = - 1 K (z) z2 dz) yield 

(32) ( J ' ~ I ) ~ ~ ~ ~ , , ~ ~ ~ ~  fi in c CSI, szl, 

where 

with 

1 
p' : = - [d3) (0) g (8) + 3rn[') (8) g(l) (B)] I z2 K (z) dz 

2 R 

and 

Hence, by (27), (31) and (32), 

(33) ,/-fi!,t! (8) 4 - d2) (8) H in c [s,, s,] . 
Now according to Theorem 2.3 in Ziegler (2002) we obtain 

sup lef - 01% 0,  
SE[SI 9 ~ 2 1  

and hence, by Theorem 1.5 (ii) in Ziegler (2002), 

Then, recalling (26), a Slutsky argument (Lemma A3) for weak convergence in 
the space E m  [s,, sz] (again being analogous to the first step in the proof of 
Lemma 3.2) shows that the processes O,(s) and 

are stochastically equivalent, and this together with (33) yields the assertion. w 

Rem a r k 3.7. The proof of Theorem 3.6 shows that the weak convergence 
result (33) for the denominator in (26) holds without assuming K 2 0 and with 
requiring the second derivative K(2) of the kernel only to be integrable with 
1z2 K(') (z)I being bounded. 

The following corollary for data-dependent bandwidths is derived from 
Theorem 3.6 in a completely analogous manner as Corollary 3.4 has been 
inferred from Theorem 3.3. 
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COROLLARY 3.8 (Asymptotic normality of the estimator of the location of 
the peak - data-dependent bandwidths). Ifhnfu@lls (8) with S, 3 so > 0, then 
under the assumptions of Theorem 3.5 (put d,, := dn,h,)) 

with p and aZ de$ned as in (3) and (41, respectively. rn 

In order to get an idea of the necessary amount of bias correction (in 
constructing a confidence interval for 8), put so = sop, (from (7)) in Corolla- 
ry 3.8. Observe that, in this case, the asymptotic bias becomes 

depending on the sign of p, i.e. on the sign of 

To compare with the estimation of rn at a point x, put c = 1 and so = to,, (from 
Remark 3.5) in the situation of Corollary 3.4, leading to an asymptotic bias 
of & a (*)/a (depending on the sign of p (x)). This shows that the bias correc- 
tion needed for peak estimation is much more extensive than that being 
sufficient for estimation of the regression function itself, and that the latter 
bias correction is getting smaller with increasing order of the kernel being 
used. 

Now, in the context of functional limit theorems and data-dependent band- 
widths, we tackle the problem of asymptotic normality of the estimated sizes 
of the peaks. In Ziegler (2003) it has been explained why it is necessary to 
consider kernels of order k > 2 (which take negative values!) here in order to 
achieve a nondegenerate limit distribution. Furthermore, if we take ordinary, 
i.e. second-order kernels (k = 2, K 2 0) for estimating the location of the peak, 
i.e. for deriving on, and plug this estimator into a curve estimator m2,, using 
a third-order kernel (whence m,,, is in particular daerent from the regression 
curve estimator fi,,, from which 6" had been derived), hn - n-l i7 will be an 
optimal rate for both 8, and ~ f i ~ , ~ ( & , ) .  

To be more precise, let 

with some second-order kernel (i.e. a symmetric probability density) K1 satis- 
fying the assumption (K), and some (third-order) kernel K2 satisfying (K3) (i.e. 
(Kk) with k = 3) and sufficiently many additional conditions to ensure (33), see 
Remark 3.7. 
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Now choose gl,,, = Jn,, such that 

and 0 < sl < so,, < s2 < a3,O < t1 < to,, < tz < co (for k = 3; see Remark 3.5). 
Within this setting, we have the following joint functional central limit 

theorem for the estimators of the location and the size of the peak. The limit is 
a 2-dimensional Gaussian process. Note, in particular, that the limiting means 
and covariances of the estimator th2,n,,(&n,,) of the size of the peak do not 
depend on the scaling parameter s of the estimator for the location of the peak. 
Note further that the estimators for the location and the size of the peak are 
asymptotically uncorrelated. Weak convergence of 2-dimensional processes in 
the space I" (S) x 1" ( T )  (with S and T being metric spaces) will be treated by 
Corollary A6 in the Appendix. 

THEOREM 3.9. Let, in addition to the above, the assumptions (lo), (11) and 
(S) be fuIfilled. Define the stochastic processes GI,, and G2,n by 

and 

Then 

where (GI, G2) is a Zdimensional Gaussian process with paths in C [sl, s2] x 
C (Isl, s2] x [ f l y  tz]) and with means 

d - s7J2 m(3 (0) 
E G l  (s) = -- [ m + 2 ~ ] ~ Z 2 ~ i ( z ) d Z ,  s ~ [ s 1 7  st]? 

and covariances (ul, u2 E [sl, s2], v, vl, v2 E [tl, t2]) 
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Proof. By Corollary A6 it suffices to show that 

for any choice of ul, ..., U,E[S~,  s2],  (wl, vl), ..., (wP, v P ) ~ [ s 1 ,  s2]x[tl, t 2 ]  
and that (we denote, in contrast to the notation of the Appendix, outer proba- 
bility again by P) 

(35) lim sup B( sup ]GI,, (ul) - Gl,n (u2)l > E) + 0 a~ 6 + 0 
n-m lu l  -ull < d  

and 

(36) limsupP( sup (Gt,n(ul, nl)-Gz,,(u2, v2)J > E ) + O  as S + O n  
lu1-112lSd 
rut -02lCd 

Observe, by Theorem A5, that (35) is an immediate consequence of Theo- 
rem 3.6. 

Next we show (36). Now, with 

it follows that 

By Theorem 3.3 (and, again, Theorem A5) we obtain 

lim sup P ( sup IM2,, ( v l )  - lC/IZ,,, (41 > E) -, 0 as S + 0, 
n-+m Iu1-02lGd 

so that in order to prove (36) it suffices to show that 

(39) SUP lfi (&,n,* (0n.J -%,n,t (0))ls 0. 
s1GsCs2 
t 1 4 t s t z  

Now, suppressing the dependence on n in the sequel, we get 

m2.r (Os)-mz.t (6) = $8 (6.3 (Qs - 0) 

= I%$:! (0) (gs - 0) + (m$:i (0;) - fii;! (6)) (& - 6) 

= fiy)t (0) (& - 9) + Ijly)t (fly) (e: - 0) (dS - 0) 
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with 0: between ds and 0 and with 6,** between 8; and 8, and hence 

1 
(40) f i  ( f i ,  ( 1  - 2 ,  ) = f i f i k t !  f i  (es - @ fi 

Now, by Theorem 3.6 and Lemma A2 (and by the fact that s-312 is bounded for 

s E [sl , sz]), (4 - e) is stochastically bounded in 1" [sl , s2], and hence 
@ (8: - 0) is also stochastically bounded, since sup. 10.1 - 81 6 sup. 18,- 01. 
By Remark 3.7, ,,/mriif!(~) is weakly convergent in lm [ t , ,  t,] (note that 
K ,  fulfills all the assumptions needed for this), whence, by Lemma A2, 
f l f i$t!(O) is stochastically bounded in im [ t , ,  r,] since t -1 i2  is bounded for 
t~ [tl, t2]. Furthermore, by Theorems 1.5 and 2.3 in Ziegler (2002) (recall that 
nv,6 -, m) it follows that 

Considering all this and nv: -, a, in (a), we can infer that (39), and hence (36) 
is proved. 

The proof of (34) utilizes the Cramkr-Wold device. Consider (for fixed 
ul, wq E [sl , s2], U ~ E  [ti,  t 2 ]  and real numbers 11, p,) the expression 

which is, by (38) and (39), stochastically equivalent to 

This expression is, in turn, stochastically equivalent (see (27), (28), (31) and, 
again, Theorems 1.5 and 2.3 in Ziegler (2002)) to the following one, where the 
quantities d l ,  ?l are defined in an analogous fashion as in (21), (30), the index 
I referring to the kernel K t :  

71v3 u3 ( i at [ - ~ V L L ? ,  (0) -m @I d , "  1 )  + f u:12 u"'(Q) j z2 K l ( 4  dz] do) , = I  R 

2 - PAMS 24.2 



with 

Now the proof of (34) can be concluded by Propositions 3.1 and 3.2 in Ziegler 
(2003) and taking into account that j, z3 K!') (z) dz = - 3 jR z2 K1 ( z )  dz and 

dz = 0 for any u, v > 0 
R 

(note that Kil) is odd, while K2 is even). H 

COROLLARY 3.10 (Joint asymptotic normality of the estimators for loca- 
tion and size of the peak - data-dependent bandwidths), Let Sn 3 so, T, 3 to 
and hl," : = S, v,, h2,, : = T, . v,. Then under the assumptions of Theorem 3.9, with 
the notation I§,,:= #l,,qs, and m2,n := ~ i i ~ , ~ , ~ , ,  it follows that 

with 

(see Theorem 3.9; note again that EG, (so,  to)  does not depend on so) and 

Var (Y IX = 0 )  Var (Y  IX = 8) 
a: = 1 [Kill (z)] dz  , a: = J CK2 (211 d z .  

a (0) (6))' R ~ ( 0 )  B 

Remarks 3.11. (i) For the Gasser-MiilIer estimator in the fixed design 
model, Miiller (1985), (1989) has established results similar to our Theorem 3.9 
and Corollary 3.10. He employs compactly supported kernels and asymptotic- 
ally equidistant (nonrandom) design points and imposes a smoothness assump- 
tion on the regression function globally on some compact interval. Since the 
Gasser-Miiller estimator is well-behaved also with respect to its higher deriva- 
tives, Miiller's results are also valid for the higher derivatives of this estimator. 
However, his approach, in contrast to ours, consists in taking different growth 
rates of bandwidth for location and size of the peak, but using the same (higher 
order) kernel for both. 

(ii) For the estimator of the mode of a density based on the kernel density 
estimator, Romano (1988a) has proved results similar to our Theorem 3.6 and 
Corollary 3.8, but not a result corresponding to Theorem 3.9 which, however, 
may aIso be established in the context of estimating the mode of a density using 
the same methods as presented here. 

In Ziegler (2003) it has been mentioned that Theorem 3.6 loc. cit. generali- 
zes to the case of distinct points (instead of a single point x). With the methods 
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that have just been presented, it is possible to prove even a functional central 
limit theorem for estimating the regression function at distinct points 
XI, . .., x,, whose corollary can be used for constructing simultaneous con- 
fidence intervals for in (xi), . . . , m (x,) (with data-dependent bandwidths). For 
details see Ziegler (2000), Theorem 4.13 and Corollary 4.14. We will only state 
the corollary here which improves on Theorem 4.2.1 in Hardle (1990) and 
Corollary 1.4, Chapter 4, in Nadaraya (1989): 

THEOREM 3.12 (Joint asymptotic normality of the NW estimator at a finite 
number of distinct points - data-dependent bandwidths). Undm the assumptions 
of Lemma 3.2 and (24), and with rn and g having k-th continuous derivatives 
in appropriate neighborhoods of XI, . . . , x,, Var (Y I X = a) being continuous 
at x,, . . ., x, and g (xi) > 0 for all x,, . . ., xr ,  we have with h i ,  = Si,; v,, 
di,, : = fin,Sd,, and Xi,,  S s i + ~  for certain si,, E [sy),  sf)] 

[[;..";':";'y'], [cf2g11,, 0 I] 
S N  

c . sy; + . p (x,) c2 [xr) 

with p ( - )  and a2 (. ) deJined as in (20) and (25). rn 

APPENDIX: WEAK CONVERGENCE OF STOCHASTIC PROCESSES 

In order to avoid measurability problems, Hoffmann-Jnrrgensen (1984) in- 
troduced a notion of weak convergence in metric spaces where measurability is 
required for the limit only. Here we compile the dehition and some useful 
properties. We skip the proofs since they can be found in the literature, see e.g. 
van der Vaart and Wellner (1996) or Gaenssler and Rost (1999). Since the only 
metric spaces occurring in the present work are the function spaces C and I" 
and finite products thereof, we confine ourselves to the case of normed vector 
spaces. 

Al. DEFINITION. Let (52, a, P) be a p-space and (I/, 1 1  11) a normed vector 
space. Consider mappings X,,: fi ;2 V (not necessarily measurable) and let 
X,: i2 + V be a-23 (Q-measurable (where 93 (V) denotes the Bore1 a-field on 
(V, ' , I  .I[)). Then we define weak convergence in V as follows: 

x,%x,, (in V):*limE*CfoXn)=ECfoX,) t l f ~ C ~ ( V ) ,  
n+m 



where Cb(V) is the space of all bounded and continuous functions on (V, 11.H) 
and E* denotes outer expectation. rn 

Note that Definition A1 is an extension of classical weak convergence in 
function spaces such as C and D (see Billingsley (1968)) in the sense that if the 
X, can be regarded as random elements in one of those spaces, then our 
definition coincides with the classical one; moreover, most of the properties of 
the latter carry over to weak convergence in the sense of Definition Al. One of 
them is the so-called Portmanteau theorem which, in particular, implies the 
following lemma: 

A2. L-. If X ,  3 Xo in V (in the sense of Definition Al), then X, is (P*-) 
stochastically bounded in (V, 1 1  II), i.e. for each E > 0 there is some M > 0 such 
that 

P* (llXmll > M) < E for n large enough, 

where P* denotes outer probability. rn 

(Cram6r)-Slutsky-type results carry over as well: 

A3. LEMMA. Let X, 3 X, in Vand assume that the sequence of mappings X ,  
and I.',: G! + V are stochastically equivalent in (T/, 1 1  - I I ) ,  i.e. for each E > 0 

lim P* (IlX, - Y,lI > E )  = 0, 
11-00 

then 

i.e. Y, is also weakly convergent with the same weak limit as X,. ra 

The following lemma is often called also (Cram&)-Slutsky: 

A4. LEMMA. Assume that X, 5 X o  in V and Y,  3 a E V (i.e. that Y, has 
a nonrandom weak limit, which is, by the way, equivalent to ll%-a11s0), then 
x , + y , ~ x 0 + a .  ES 

The next theorem is a characterization of weak convergence for stochastic 
processes indexed by some totally bounded pseudometric parameter space 
(T, d )  and with bounded sample paths. In this situation, we can take 
V c I" (9, where 1" ( T )  is the space of all bounded functions on T endowed 
with the sup norm. The limiting process will have paths in the separable sub- 
space 

Ub (T) = Ub (T, 6) : = (x E I" (T): x uniformly d-continuous). 

In the applications in Section 3 of the present paper, T is always a. compact 
interval so that T is totally bounded and Ub(T) coincides with C(T). 
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AS. THEOREM. Let (T, d )  be totally bounded and let (X, (t)),T (n E N) be 
stochastic processes having paths in V c lm (T). Assume that there is a stochastic 
process (XO(t))teT such that for any choice of t i ,  .. ., t , ~  T 

Cfidi'-convergence) and assum that for each E > 0 

(41) lirn sup P* ( sup IX, (s) -X,, (t)l > E) 4 0 as 6 4 0 
n d  m #JET 

d(s,t) C a 

casynaptotic equicontinuity', AEC). Then there is a stochastic process ( X o  (t))t,T 
with paths in U b ( T )  such that 

where X,, has the same ffidiY-convergence m X,. 
Conversely, (42) with Xo having paths in Ub(T) implies (41). 

In the present paper, the convergence of 2-dimensional stochastic proces- 
ses also occurs. The characterization Theorem A5 essentially carries over to 
that case (see also Problem 2, p. 42, in van der Vaart and Wellner (1996)): 

Ad. COROLLARY. Let jT, di), i = 1,  . . ., r, be totally bounded pseudometric 
parameter spaces and la 6 c 1" (a. Let 

and (Xl,,, .. ., X,,) be r-dimensional stochastic processes such that, for any 
choice of ti,l, . . ., ti,pi E z, i = 1 ,  . . , , r ,  

Assume further that 

Then there is an r-dimensional stochastic process (XI,-,, . . ., Xrro) with paths 
in Ub (TI, dl )  x . . . x U b  (T,, d,) and having the same 'JidiY-convergence as 

. . ., XI.,,) in the sense that,for any choice of tiply . . ., T ,  i = 1,  . . ., r ,  

and satisfying 

where Vl x . :. x T/, is equipped with the norm 
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Conversely, if (44) holds with (X ,,,, ..., X,J having sample paths in 
Ub  (TI,  dl) x . . . x Ub (T,, d,), then (43) holds true. 
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