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1. INTRODUCTION 

We consider the Rd-valued stochastic algorithm, defined on a probability 
space (8, d ,  9) and driven by the recurrence equation 

(1) Z ~ + I  = Zn+ynh(ZJ+Cn+~t 

where h is a continuous function from an open set G c Rd to Rd,  (y,) is a deter- 
ministic real sequence decreasing to zero and satisfying 

and (5.) is a "small" stochastic disturbance. 
The ordinary differential equation (ODE) method (see e.g. 131, [13], [19]) 

associates the possible limit sets of (I) with the properties of the associated 
ODE 

These sets are compact connected invariant and "chain-recurrent" in the Be- 
na'im sense for the ODE (cf. [I]). These sets are more or less complicated. 
Various situations may then happen, for example the simplest case is an equi- 



382 P. Doukhan and 0. Brandiere 

librium: z is a solution of h (2) = 0, an equilibria cyde, or a finite set of equilibria 
is linked to the ODE'S trajectories, connected sets of equilibria, or periodic 
cycles for the ODE, etc. 

To use the ODE method, we need some conditions: (23 is bounded and 

where (c,) denotes a nonnegative deterministic sequence such that 

(I,) and (r,) are Rd-valued random vector sequences, defined on (52, d,  g), and 
adapted with respect to an increasing sequence of cr-fields (9,n)n30 and satis- 
fying almost surely (as.) on A c D: 

and 

The classic algorithms theory relates to a noise (in) which is a martingale 
difference sequence. The aim of this paper is to replaoe this condition on the 
noise by a weakly dependence condition. 

The paper is devoted to suffcient conditions for (6). Section 2 considers the 
weak dependence condition from Doukhan and Louhichi in [12]; set for this 

Lip (h) = 
I . ,  - 1  - 3  I if h: jR, 

SUP 
x . . ,  ) y  y )  Ix1-~ll+.- *+IxU-YUI 

A = fh such that h: R" + R  for some u > 0 and Lip(h)+llhllm < a), 

and consider some function C: W2 + R. The sequence (cn) is said to be 
(E, A, C)-weakly dependent if there exists a sequence E'= (E,),>, such that e,JQ 
as r 7 and satisfying, for any (u+ u)-tuple (tl, . . ., t,+,) with t ,  < . . . < 
tu < t , + r  < t,+, < ... < tu+,, 

Various examples of this situation may be found in [ I l l ;  they include 
general Bernoulli shifts, it = zy= xkl,. ~ .,,, ,.,. k, Ct -,, . . . Ct-,, , 
stable Markov chains such as it = G((,- l ,  . . . , it-,)+ <,, or 

ARCH (a) models, 5 t  = (a0 + zj3 aj Ct - j) 5t 

generated by some i.i.d. sequence (5,). In the first example, the situation of an 
infinite moving average, for which 1 = 1, is of a special interest and 
Cr < 4E ltO1 ~ 2 p , , r  laf)I. Now E, 10 (geometrically) in the second case if 
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with z . b j  < I and E lcO1 < a. In the last, non-Markov and non-linear exam- 
ple, a chaotic expansion holds if Ej,, lajl E ltol < 1, and then any class of rate 
may be obtained for E,. Note that r always denotes the gap in time between 
"past" and "future". A generalization to the vector Rd-case is also provided 
below. 

Section 3 considers a weakly dependent noise in the sense of the y-weak 
coefficients in Dedecker and Doukhan [9]. The mixingale-type coefficient used 
there, determined for the sequence (m)nBO, is defined as 

The sequence {I,) is said to be y-weakly dependent if y, 4 0 as r t m. In [9], this 
is proved that a causal version of (8, A ,  C)-weak dependence implies y-weak 
dependence, where the right-hand side in (8) takes the form C(u) Lip(k)O,. 
Counterexamples of y-weakly dependent sequences which are not 0-weakly 
dependent may also be found there. 

We first settle an immediate ex tens ion  of this notion to Rd-valued se- 
quences. The definition of y-weak dependence extends to Rd and we have: 

PROPOSITION 1.1 .  The following two assertions are equivalent: 
(i) An Rd-ualued sequence (X,) is y-weakly dependent. 
(ii) Each component (Xi) ( I  = 1, ..,, d)  of (X,) is y-weakly dependent. 

Proof .  Clearly, 

I I E ( x ~ + ~ - E ( x ~ + ~ ) I  %)lli G ~ I E ( ~ ~ + ~ - E ( x ~ + ~ )  I %)Ill 

and ti) implies (ii). On the other hand, 

whence 

IIE(Xn+,-~(xn+d l %).)Ill < $ max Y : .  
l < l < d  

In the frame of the (0, A, C)-weak dependence we say that the Rd-valued 
sequence (X,) is (0, A, C)-weakly dependent if each component (Xb) is 
(Of, A, C)-weakly dependent. 

The forthcoming two sections are devoted to provide moment inequalities 
of the Marcinkiewicz-Zygmund type adapted to deduce the relation (6) in those 
two frames. Section 4 is devoted to apply the study to the examples of Robbins- 
Monro and Kiefer-Wolfowitz algorithms. In Section 5 we obtain sufficient 
conditions for the complete convergence of triangular arrays, extending to 
Chow [6]. 

Finally, Section 6 is devoted to the specific algorithm of linear regression 
and with dependent entries. In [ 5 ]  Chen has also studied this topic. He works 
in a more general matrix-valued framework. Assuming only the stationarity 
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and the ergodicity of entries, he derives the a.s. convergence of the algorithm. 
We get the same result with a y-weakly dependence assumption, but this as- 
sumption, more restrictive, allows us to reach, thanks to a moment technique, 
a precise n-'I2-convergence rate. 

The proofs are relegated to a final section. 

2. WEAKLY DEPENDENT NOISE 

Let (la) be a sequence of centered random variables satisfying an ( E ,  A ,  C)- 
weak dependence as described in inequality (8). We denote by Sn the sum 
Cy=l Cil put Cq = max,,,,, C(u, 4 and we assume that 

where the supremum is taken over all { t , ,  . . ., t,) such that 1 < t ,  G . .. < t,, 
and 1 < m < q such that tm+l-tm = r ,  or 

where Qx denotes the quantile function of 1x1, which is the generalized inverse 
of the tail function t - P ((XI > t )  and M ,  = max (C,, 2). 

The bound (9) is mainly suitable for bounded sequences whije (10) holds 
for more general r.v.'s, using moment (or tail) assumptions. Various examples 
for which one of these two bounds holds are given in 1121. Moreover, let p be 
some fixed integer not less than 2. 

If (9) holds for all q < p, then, for any n 2 2 

If, now, (10) holds for all q < p, then, for any n 2 2 

(2p - 2)! n 1 

IESgI 4 --- {(c, J [min (&-I (u) ,  n)lp-  ' Qfi (u) du) 
- 1 )  i = l O  

Putting En = x;= ,ci- Ti, and using similar techniques to those in [12], we 
derive the following result: . 

PROPOSITION 2.1. Let p 2 2 be somJixed integer and let (l,) be a centered 
( E ,  A, C)-weakly dependent sequence of real random variables such that (10) holds 
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for all q 6 p. Then for n 2 2 

n n- 1 

v (C,  2' c;- 1 z E ~ ) ~ ~ ~ } .  

This result is mainly adapted to the bounded sequence. The following 
result is appropriate to more general real variables (r.v.) sequence but requires 
a moment assumption (or a tail) condition. 

PROPOSITION 2.2. Let p be somefixed integer not less than 2 and a cen- 
tered (E, A, C)-weakly dependent r.0. sequence. Assume that for all 2 < q $ p 
inequality (10) holds with 

and there exists a constant c > 0 such that 

(15) 3k > p, Vi 3 0, P(ITil > t)  G c / tk .  

Then for n 3 2 

Note that (15) holds if the lnYs have a k-th order moment such that, for all 
i 2 0, E llilk < c .  

Arguing as in Billingsley [4], if (13) holds for some p such that 

then, for all > 0, 

lim Ptsup IZn+,-Z,I > l) = 0. 
n-m k 3 l  

Thus (E,J is a.s. a Cauchy sequence, and hence it converges. In the same way, if 
(16) holds for some p such that 

then (EJ converges with probability 1. 
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Equip R' with its p-norm Il(xl, . . ., xa)ll; = xf +. . . +xf. Let the sequence 
be an Rd-valued and ( E ,  A, C)-weakly dependent sequence. Set 

5. = (L';, . . ., 5 3 ;  then 

And if each component (5b),,, is (E', A, C)-weakly dependent and such that the 
relation (17) or (18) holds, then E Il.T;,,]l; < CO. Arguing as before, we deduce that 
the sequence (En),,, converges with probability 1. 

The proofs of Propositions 2.1 and 2.2 are given in Section 7. 

3. y-WEAKLY DEPENDENT NOISE 

Let ([n)nBO be a sequence of integrable real-valued random variables, and 
(y,),30 the associated mixingale-coefficients. Then we obtain the foIlowing re- 
sult: 

PROPO~I~ON 3.1. Let p > 2 and (cn),EN be a sequence of centmed random 
variables such that (15)  holds. Then for any n 2- 2 

where K1 depends on k, p and c. 

Observe that here p E R and is not necessarily an integer. If, now, (19) holds 
for some p > 2 such that 

n n - i  .. .. - 
lim C ci C ~ , + ~ y j "  < ao, 
"-'COi=l j = o  

where rn = 2 (k - p)/p (k- 1) < 1, then (En) converges with probability 1. Ob- 
serve that if xJm=,yy c m, then (20) is satisfied. The proof of this proposition 
is in Section 7. 

As in Section 2, the result extends to Rd. Indeed, if we consider a centered 
Rd-valued and y-weakly dependent sequence ([,)n30, we have, as in Section 2, 

and if each component ([k),,, ( E  = 1, . . ., d) is y'-weakly dependent and satisfies 
(15) and (20), then EIIEnIIP < m, and we conclude as before that (E,,)n30 con- 
verges as.  
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4. EXAMPLES OF APPLICATION 

4.1. Robbins-Monro algorithm. The Robbias-Monro algorithm is used for 
dosage, to obtain level a of a function f which is usually unknown. It is also 
used in mechanics, for adjustments, as well as in statistics to fit a median ([13], 
p. 50). It  writes 

with Cc, = co and Cc,Z < m. It is usually assumed that the prediction error (1,) 
is an identically distributed and independent r.v. sequence, but this does not 
look natural. Weak dependence seems more reasonable. Hence the previous 
results ensure the a.s. convergence of this algorithm under the usual assurnp- 
tions and the conditions yielding the a.s. convergence of z: c, in+ ,. 

Under the assumptions of Proposition 2.1, if for some p > 2 

the algorithm (21) converges a.s. 
If the assumptions of Proposition 2.2 hold, then the as.  convergence of the 

algorithm (21) is ensured if for some p > 2 

Under the assumptions of Proposition 3.1, if (20) is satisfied, the algorithm 
(21) converges with probability 1. 

4.2. Kiefer-Wolfowitz algorithm. It is also a dosage algorithm. Here we 
want to reach the minimum z* of a real function V which is V 2  on an open set 
G of Rd. The Kiefer-Wolfowitz algorithm ([13], p. 53) is stated as: 

where 5.  + = c,, b i  ' in+ + cn b: q (n, Zn), 114 (n, Z,)ll < K (for some K > O), 
Cc, = oo, ZC,, b.2 < m and C (cn/b,Jz < oo (for instance, c, = l/n, b, = n-b 
with 0 < b < 4). 

The prediction error (1,) is usually assumed to be i.i.d. centered and square 
integrable and independent of Z o .  The results of Sections 2 and 3 improve on 
this assumption until weakly dependent innovations. It is now enough to en- 
sure the convergence a.s. of C c ,  b; ' cn + l. The (&, A)-weak dependence assump- 
tions are the same as for the Robbins-Monro algorithm. Concerning the 
y-weak dependence, the condition (20) is replaced by 

n n - i  
Ci  C i f j  ,,, 

lim C -  C -yj <a. 
" + m i = 1  bi j = l  b E+J . 
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5. WEIGHTED WEAKLY DEPENDENT VARIABLES TRIANGULAR ARRAYS 

In this section, we consider a sequence ([i)i31 and a triangular array 
(cni){l si,cn,.-, of non-negative real constants. We put U,, = x:= en, ri. If the 
Ti's are i.i.d., Chow has established the following complete convergence result: 

T H ~ ~ R E M  (Chow [6]). Let 5,, .. ., li, . . . be independent and identically distrib- 
uted random uariables with E ( l i )  = 0 and E < m for some q 3 2. If for some 
real constant K, not depending on n, zy=, czi 6 K and nliqma~l,iGnlc,il d K, 
then 

The last inequality is a result of the complete convergence of n-1141UnI to 0. 
This notion was introduced by Hsu and Robbins [17]. Complete convergence 
implies the almost sure convergence from the Borel-CanteIli lemma. Li et al. 
[20] extend this result to arrays (c,i)I,31,i,s for q = 2. Recall also Yu [24] 
who obtains a result analogous to Chow's for martingale differences. Ghosal 
and Chandra [15] extend previous results and prove some similar results 
to those of Li et al. for martingale differences. As in [20], their main tool is 
the Hofhann-Jergensen inequality [16]. Peligrad and Utev [22] propose 
a central limit theorem for partial sums of a sequence U, = x;=, cni Ti, where 
SUP. CIS;- < a ,  maxi 1cni( -P 0 as n -, a and [is are, in turn, pairwise mixing 
martingale difference, mixing sequences or associated sequences. Mcleish [21], 
De Jong [8], and, more recently, Shixin [23] extend previous results in the 
case of Lq-mixingale arrays. Those results have various applications. They are 
used for the proof of strong convergence of kernel estimators. In this paper we 
extend Li et al. results to our weak dependent frame. A straightforward con- 
sequence of Proposition 2.2 is the following result: 

COROLLARY 5.1. Under the assumptions of Proposition 2.2, i f q  is an euen 
integer such that k > q > p, and iffor some real constant K, not depending on n, 
Cr= c:,~- < K, and i f  .E~ = 0 (r-7, with cl > ((q- l)/(k - q)) k, or E, = O (e-3, 
then 

P r o  of. Proposition 2.2 implies 
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If zY_, c:i -, < K and E, = 0 (r-") with a > ((q - l)/(k - q)) k, then there exists 
a real constant K, such that EIU,Ia < K , ,  and the result follows from 

If zy= ,c:, -, < K and E, = U (e-'1, then E I U.14 < K, for a real constant 
K, and 

As a straightforward consequence of Proposition 3.1, we obtain the fol- 
lowing result: 

COROLLARY 5.2. Under the assumptions of Proposition 3.1, $ q > p, 
k > q > 1, and 

n n - i  

lim C ~ ~ , ~ C c , , ~ + ~ y ~ < c o ,  where 
"4'4 j , l  j = O  

then 

b't > 0 ,  xP(n-lIPIU,I 2 t )  c co. 
n 

P roof .  We obtain 
n n - i  

E IUnIq G (2qK1 cn, i  C ~ n , i +  j 

n-i  
from Proposition 3.1, and the relation limn,, 6, en,ixj=o cri+ j y y  < m im- 
plies Cn P(n-lIPIU,[ > t) < m.  This completes the proof. 

6. LINEAR REGRESSION 

We consider a stationary (bounded) sequence b,, xn) E R x Rd, defined on 
a probability space (8, d ,  9). 

We look for the vector Z* which minimizes the linear prediction error of 
yn with xn. We identify the Rd-vector xn and its column matrix in the canonical 
basis. Consequently, 

Z* = arg min E [(y, - x,T Z)2] .  
ZeRd 

This problem leads to study the gradient algorithm 

T 
& + I  = Z n + ~ n k + l - ~ n + l Z n ) ~ n + ~ r  

12 - PAMS 24.2 



390 P. Doukhan and 0. Brandikre 

where c, = g/n with g > 0 (so (cn) satisfies (2) and (5)). Let C,+ = x , + ~  x L 1 ;  
then we obtain 

Let us put U = Elyn+lx,+l), C = E(C,+l), Y, = z,-C-' ZT, and h(Y) = 

- C F  then (24) becomes 

with 

Remark that here the solutions of (3) are the trajectories 

so every trajectory converges to 0, the unique equilibrium point of the differen- 
tiable function h (Dh(0) = -C and 0 is an attractive zero of h). 

Putting Fn = (a(%;:); i < n) we define the following assumption: 

A-lr. C is not singular and (C,) and (y ,  x,) are y-weakly dependent sequences 
such that the y-weakly dependent coefficient y, is @(ar) with a < 1. 

Note. If (y,, xnInEN is 0-weakly dependent in the Dedecker and Doukhan 
sense (see [9]), then A-lr is satisfied. This is proved in the Appendix. 

Putting M =  sup,))^,))^ now we claim: 

PROPOSI~ON 6.1. Under the assumption A-lr, (Y,) is a.s. bounded and the 
perturbation (t,) of the algorithm (25) splits into three ter&is, rwo of which are 
y-weakly dependent and one is a rest leading to zero. Consequently, the ODE 
method assures the as. convergence of Y, to zero (hence Z* = C-I U).  Moreover, 
i f  g < 1/2M, then 

Proof of Proposi t ion  6.1. To start with, we prove that Y, -P 0 a.s. by 
assuming that (Y,) is a.s. bounded. Then we justify this assumption and finally 
we prove (27). 

The perturbation r,+ splits into two terms: (y, + x,+ - C,+ C -  l U )  and 
(C-  C,+ Y,. The first term is centered and obviously y-weakly dependent with 
dependence coefficient y,. And y, is 0 (a3 by the assumption A-lr. It remains to 
study (C-C,+,) Y,. 

S tudy of (C-C,+J Y,. Write 

(C-C,+1) K = Cn+l+rn+l 

with 

c,+l = (C-C,+l) Y,-E[(C-C,+,) Y,1 and rn.1 = EC(C-Cn+i) KI-  
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We will prove that the sequence ([,) is y-weakly dependent with an appropriate 
dependent coefficient and that rn 4 0. 

Notice that r.,, =E[(C-C.+~)~~:,(~+I-~;)~+EC(C-C.+I)Y.~~I~ 
and since Yj = - c j ~ j + l  ~ ; . + c ~ f y j + l  x j + l - c j + ,  C-' U), we have 

n-1 n - l  

If n/2 is not an integer, we replace it by ( n  - 1)/2. In the same way, in the first 
sum we replace by ~ ~ I ~ ,  ( x + ,  - B+ G2 with the same remark as above if 
j/2 is not an integer. Consequently, 

Expectations conditionally with respect to Pj+ of each term of the second sum 
and with respect SnI2 of the Iast term give, by assuming (K) bounded, 

where A denotes the first sum of (28), and Ki (for i = 1,2,  . . .) is a non-negative 
constant. Moreover, 
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Expectations conditionally successively with respect to Sj+ and Em+ of 
each term of the first and the third sum and with respect to Pj,,, then PjI2 of 
the second and the forth sum give, by assuming (Y,) bounded, 

Since cj  = g/j, (29) and (30) involve that rn is O(~Z-~) ,  so rn converges to 
zero. On the other hand, for r 2 6: 

Note also that if r/2 is not an integer, we replace it by (r + 1)/2. Using the same 
techniques as above, we obtain 

and hence 

and 

Consequently, (5,) is y-weakly dependent, and since (20) is satisfied, the ODE 
method may be used and 'Y, converges to 0 a.s. 

Now we prove that Y. is a.s. bounded. Let V ( Y )  = YT CY = I I ~ ~ Y I I ' .  
Since C is not singular, V is a Lyapunov function and VV(Y)  = 2CY is a Lip- 
schitz function, so we have 

Furthermore, 

Since (y,, x3 is bounded, (C,) and Ily,+ , xn+ , - Cn+ , C-I ~ 1 1 '  are also bound- ' 

ed. Moreover, 

where A,,(C) is the smallest eigenvalue of C. Consequently, 
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The last term becomes 

2(Y,+1-XJT CY, = -2cnlICEmIlZ+2~n(~n+1~n+1-Cn+1 C-' VT CK 

+2c, Y,T(C-C.+l)CYn 

d -2c,lICY,1I2+cnK~~ IlcKll +Zen KT(C-Cn+1i C% 

< -2% llCK\12f cnK1o IICKII +2c,un+1 V(X), 

where u, = max {xT (C- C,) Xi, 1 =G i d d )  and ( X I ,  . . . , X,) is an orthogonal 
basis of unit eigenvectors of C. 

We now obtain 

Note that under the assumption A-lr (u,) is a y-weakly dependent sequence 
with a weakly dependent coefficient y, = 0 (a') and r=, C, u,+ I < a. More- 
over, if V (Y,) > K;,/4Rm,, (C), we have 

IlCKll 2 Klo/2 and -(2 I I C X I I ~ K I O  IICYnll) d 0. 

Let us put 

By the Robbins-Sigmund theorem, V(Y,) converges a.s. to a finite limit on 
(T = + a } ,  SO ( x )  is bounded since V is a Lyapunov function. 

On {liminf, V(K) < K~,/4Ami,(C)}, V(x)  does not converge to m and, 
using Delyon [lo], Theorem 2, we deduce that V(Y,) converges to a finite 
limit if 

Using the relation CC,~ < rn and the fact that on {V(Y,) < k )  the function 
[lh(Y,)+c,+1112 is bounded, we deduce (32). To prove (33) it is enough, by 
Proposition 3.1, to show that VV (Y,)) lIY(Yn)<kl = en+ is a y-weakly 
dependent sequence with dependent coefficient which satisfies (20). But to use 
the result of Proposition 3.1 it is necessary to center en+ l .  So we are going to 
prove that x c ,  Ee,+ < a and that (en+ - Ee,+ l) is a y-weakly dependent 
sequence with a dependent coefticient y: which is 6(r-2). 

Study  of E(en + ,). Fis t  of all, we must note a few elements. Denoting by 
I the unit matrix of Rd, we obtain 

Y, =( l -c , - lCJY.- l+c ,~ l (x ,y , -C,C-~U) .  

Let 2,- (C,) be the largest eigenvalue of Cn. Then note that &(C,) = 11xn1I2 < M.  
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And for n large enough en- M < 1 and (I- en- Cn) is not singular. Con- 
sequently, if MI = sup, (x, y, - C, C -  ' U), we obtain 

where b is some non-negative constant, not depending on n. Moreover, 

and 

which implies 

where 

Moreover, since c, = gin, for any 0 < j < n it follows that (1 + acn- l)j is bound- 
ed independently of n, so is k n P j .  Consequently, 

We have 

+ E G  (C- Cn+d C q 2  ~IIIY,,,~II < k d .  

Note that if n/2 is not an integer, we replace it by ( n -  1)/2. Using always the 
same technique, we obtain 

and hence c, Ee, < m . 
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Study  of (en - Ee,). We now prove that this sequence is y-weakly depen- 
dent with a relevant dependent coefficient. Write 

e(en+,-Een+,l=%) = D,+,+Gn+r-Een+r 

Here again, if 1-12 is not an integer, we replace it by (r - 1)/2. Again, the same 
techniques as for r ,  give 

EllDn+,[I = ~ ( ( n + r ] - ~ ) + O ( a " + ' ~ ~ ) .  

We study G,,, in the same way and E lIG,,+III = O ((n +r)-2), and since 
Ee,,, = O ( (n+r ) -2 ) ,  (20) is satisfied and the result is proved. 

P roo f  of (27). For n > N ,  let us put 

II: = (I-c~C~+~)...(I-C~C~+~). 

Since g < 1/2M, for N 2 1 it follows that Il: is not singular and we have 

where cj+l = y j + l ~ j + l - C j + l  C-l U .  And since Y , + O ,  we get 

and 

Hence 
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Since g < 1/2M, (34) involves that the sum converges. Indeed, (20) is satisfied 
with k = 5 and p = 3 (so rn = $1, and since c;+l is y-weakly dependent with 
a mixingale coefficient y, = B(aP).  Hence the result is proved. rn 

7. PROOFS 

7.1. froof of Proposition 2.1. We use a sketch similar to Doukhan and 
Louhichi's proof in [12]. Therefore we get 

n 

(3 5) E ( C  ci Ciy 6 P! c t l  ctP lE(Ctt * - -CtP)l* 
i =  1 l S t 1 6  ... < t , h n  

Let us put 

AP tn) = C Ctl  . . . Crp IE ( [ I ,  - . Ctp)l, 
l S t l <  ... C t , S n  

so for any t2 6 t, < t , - ,  

+ C Ctl . - . c t p  lcov K t ,  . 
1<t1<...<tp<n 

Let us write 

A: ("1 = c t i  -. . c t p  lcov K t ,  . . Ctm, Crm+ 1 . - . CtP)l. 
l<t l< ... <tpen 

Since the sequence (c,) is decreasing to 0, we deduce, as in [12], 

(36) A: (n) G Am(n)Ap-,(n). 

By (9) we obtain 

and the expression X., CPE~~:  Cppy MP-' (r + I)'-' E ,  = V, (n) satisfies, for 
any integer 2  < q < p - 1, the following: 

Now, Lemma 12 of [I21 leads to 
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and hence 

This ensures the result. a 

72. Pao~f of Proposition 2.2. Using the same notation as in the previous 
proof, by (10) we get 

where E(U) = &I,, ([u] denotes the integer part of u). Let us write 

If (14) is satisfied, we obtain 

W, (n) < W, (n)(q- 2 ) l (p -  ') (n) W J P - ~ M P -  21 (4. 

Thus we can conclude as in the previous proof. rn 

73..BrocsP of Proposition 3.1. Proceeding as in [9], we deduce that 

where 

Let q = p/(p-2); then there exists Y such that llYlllr = 1. Applying Proposition 3 
of [9], we obtain 

n - i  YI 

bi ,n  G C ci ci + j J Q{Yc~} 0 G(ci + jl (u) du, 
j = O  0 

where Gx is the inverse of x + 1; QX (u) du. 
The FrBchet inequality [I41 yields 

' n- i  1 

bi,n C c i c i + j { l [ u < ~ ( g ~ ) } Q ~ ( u ) Q ~ ( ~ ) d ~ ,  
j= 0 0 

where Q = Qci. Using Holder's inequality, we also obtain 
n - i  1 

b i ,  < ci ei+ j (J ~C<G(Y~)) Q p ( ~ )  d')2ip- 
j=  0 1 
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By (15), Q (u) d c1Ik and setting K = (k - l)/kcllk yields 
n -i 1 n - i  k(k-  1)- '(1 - p / k ) . 2 p  1 

bi,, ci z ci+ j (J l { u d ~ ( y  c ~ / k  -d dU)'lp 
j = O  0 j = O  ci+ j 

The result follows with K, = ~ ~ ( ~ - p ) / " ~ -  H 

8. APPENDIX 

Proof of the Note in Section 6. This note daims that if (y,, x,),,, is 
0-weakly dependent in the Dedecker and Doukhan sense [9], then A-lr is 
satisfied. Let us remind the definition of a %-weakly dependent Ed-valued se- 
quence which is used in [9]: 

If A[') is a space of bounded 1-Lipschitz real-valued functions defined on 
Rd, (X,) is 0-weakly dependent if 

tends to zero as r tends to infinity. 
For any f EA'~) ,  If (x)-f(y)l G Ix l -y l l+  . . . + I  xd-f l ,  where the d ' s  

( j  = 1, . . . , d) are the components of x. 
First, note that if an Rd-valued sequence (X,) is Bweakly dependent, any 

Ri-valued ( j  = 1, . . . , d - 1 )  sequence (x) = (X2, . . . , F:) is %-weakly dependent. 
So, if Cy,, x,) is 0-weakly dependent, then so are Cy,) and (xi)  ( j  = 1, ..., d). 

Let f be a,bounded 1-Lipschitz function, defined on R, and g the function 
defined on R2 by g(x, y) = f (xy). It is enough to prove that g is a Lipschitz 
function defined on R2. Indeed, 

and g is Lipschitz if x and y are bounded. 
Thus, since (x,) and (y,) are bounded, the result follows. 
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