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Abstract. We introduce different ways of being dependent for the
input noise of stochastic algorithms. We are aimed to prove that such
innovations allow to use the ODE (ordinary differential equation)
method. Tllustrations to the linear regression frame and to the law of
large numbers for triangular arrays of weighted dependent random
variables are also given.
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1. INTRODUCTION

We consider the R?valued stochastic algorithm, defined on a probability
space (2, &/, #) and driven by the recurrence equation

(1) Zn+1=Zn+ynh(Zn)+€n+1,

where h is a continuous function from an open set G = R? to R, (y,) is a deter-
ministic real sequence decreasing to zero and satisfying

@ Y a= 0,

and (£,) is a “small” stochastic disturbance.

The ordinary differential equation (ODE) method (see e.g. [3], [13], [19])
associates the possible limit sets of (1) with the properties of the associated
ODE

3) dz/dt = h(z).

These sets are compact connected invariant and “chain-recurrent” in the Be-
naim sense for the ODE (cf. [1]). These sets are more or less complicated.
Various situations may then happen, for example the simplest case is an equi-
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librium: z is a solution of 4 (z) = 0, an equilibria cycle, or a finite set of equilibria
is linked to the ODE’s trajectories, connected sets of equilibria, or periodic
cycles for the ODE, etc.

To use the ODE method, we need some conditions: (Z,) is bounded and

(4) 5n+1 = Cn(Cn+1 +rn+1)a
where (c,) denotes a nonnegative deterministic sequence such that
(5) Tn=0(), LeE<ow,

(¢,) and (r,) are R%-valued random vector sequences, defined on (2, <7, #), and
adapted with respect to an increasing sequence of o-fields (%,),>0 and satis-
fying almost surely (a.s.) on 4 < Q:

(6) Y Culpry < 0 as. .
and ' '
(7 r,—0 as. as n— 0.

The classic algorithms theory relates to a noise ({,) which is a martingale
difference sequence. The aim of this paper is to replace this condition on the
noise by a weakly dependence condition.

The paper is devoted to sufficient conditions for (6). Section 2 considers the
weak dependence condition from Doukhan and Louhichi in [12]; set for this

h vy X)) =R 1 oes Va
P WS b PER 21 & SPOPR of b Ay
A = {h such that h: R* > R for some u >0 and Lip(h)+|lhll, < oo},

and consider some function C: N*2 » R. The sequence ({,) is said to be
(¢, A, C)-weakly dependent if there exists a sequence & = (¢,),» o such that g, | 0
as rToo and satlsfymg, for any (u+v) tuple (ty,..., t,+p) With £; <... <
ty < byt P <lys1 <oor S bysys

®)  [Cov(h(ys o L)y kCeyr s - s L)) S C (1 0)(Lip (B)+ Lip (K)) &,
Various exafnples of this situation may be found in [11]; they include
e general Bernoulli shifts, ¢, = Zl 12,” N SO T
o stable Markov chains such as {, = G(L’, 15 oor L)+ &, OT
¢ ARCH (o0) models, {; = (ao+). ., a;{-5) &

generated by some ii.d. sequence (£,). In the first example, the situation of an

infinite moving average, for which /=1, is of a special interest and
& < 4E|§0|221k|>r|a§c1)|. Now &, |0 (geometrically) in the second case if

IG(X15 . Xp)— G (V15 - o» Yl < X bjIx;— i
J

if h: R* >R,
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with ) .b; < 1 and E|&o| < co. In the last, non-Markov and non-linear exam-
ple, a chaotic expansion holds if Z 114 El&ol < 1, and then any class of rate
may be obtained for ¢,. Note that 7 always denotes the gap in time between
“past” and “future”. A generalization to the vector R%-case is also provided
below.

Section 3 considers a weakly dependent noise in the sense of the y-weak
coefficients in Dedecker and Doukhan [9]. The mixingale-type coefficient used
there, determined for the sequence ({,),>0, is defined as

% = Sup E (Cexsrlo G i < R)—E(Cis)||1-

The sequence ({,) is said to be y-weakly dependent if y, | 0 as r 1 co. In [9], this
is proved that a causal version of (¢, 4, C)-weak dependence implies y-weak
dependence, where the right-hand side in (8) takes the form C(v)Lip(k)0,.
Counterexamples of y-weakly dependent sequences which are not 0-weakly
dependent may also be found there.

We first settle an immediate extension of this notion to R‘-valued se-
quences. The definition of y-weak dependence extends to R? and we have:

ProrosiTION 1.1. The following two assertions are equivalent:
(i) An R%valued sequence (X, ) is 'y-weakly dependent.
(ii) Each component (X!) (I=1,...,d) of (X,) is y-weakly dependent.

Proof. Clearly,
”E Xn+r E(X +r)| ”1 ”E n+r_E(Xn+r)|g—'n)”1
and (i) implies (ii). On the other hand,
|E (Xosr—EXs) | F)ls = EV YL (E(X:ri—E(X. ) ),

whence

|E(Xosr— EXper)| Zo)|s < /d max 3}, @

In the frame of the (§, A, C)-weak dependence we say that the R%-valued
sequence (X,) is (0, A, C)-weakly dependent if each component (X}) is
(0", A, C)-weakly dependent.

The forthcoming two sections are devoted to provide moment inequalities
of the Marcinkiewicz—Zygmund type adapted to deduce the relation (6) in those
two frames. Section 4 is devoted to apply the study to the examples of Robbins—
Monro and Kiefer-Wolfowitz algorithms. In Section 5 we obtain sufficient
conditions for the complete convergence of triangular arrays, extending to
Chow [6].

Finally, Section 6 is devoted to the specific algorithm of linear regression
and with dependent entries. In [5] Chen has also studied this topic. He works
in a more general matrix-valued framework. Assuming only the stationarity
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and the ergodicity of entries, he derives the a.s. convergence of the algorithm.
We get the same result with a y-weakly dependence assumption, but this as-
sumption, more restrictive, allows us to reach, thanks to a moment technique,
a precise n~1/2-convergence rate.

The proofs are relegated to a final section.

2. WEAKLY DEPENDENT NOISE

Let ({,) be a sequence of centered random variables satisfying an (¢, A, C)-
weak dependence as described in inequality (8). We denote by S the sum
Z. , % put C; =max,,,<,C(u, v), and we assume that

(9) Sup ICOV(CH . Ctma (tm+1 "-th)l S quy Mq_zg,-,

where the supremum is taken over all {t,, ..., ¢} such that 1 <¢; <...<t,,
and 1 < m < q such that ¢,,;—t,=r, or

min(gr, 1)

(10) ICoV (e, Loms Ltpas -GN <My [ Qp (%)...Q,, (%) dx,
0

where Qx denotes the quantile function of | X|, which is the generalized inverse
of the tail function t— P(|X| > t) and M, = max(C,, 2).

The bound (9) is mainly suitable for bounded sequences while (10) holds
for more general r.v.’s, using moment (or tail) assumptions. Various examples
for which one of these two bounds holds are given in [12]. Moreover, let p be
some fixed integer not less than 2.

If (9) holds for all g < p, then, for any n> 2

n— n—1
1) s < 22 i, 'S 6 v (e, M2 126
(p 1), r=0 r=0
If, now, (10) holds for all q < p, then, for any n>2
(2P 2)! o : -1 P=1 ~p
(12) IESH < —hr {(cp Y. | [min(e™* (), n)]°™" QF (w) du)
. i=10

v ((C [rnm( “tw),n)]"” ! QF. (u) du)” /2)}.

M=
© oy b

1

Putting 2, = Z:=1ci—1 (i, and using similar techniques to those in [12], we
derive the following result:

PROPOSITION 2.1. Let p = 2 be some fixed integer and let ({,) be a centered
(e, A, C)-weakly dependent sequence of real random variables such that (10) -holds
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for all g <p. Then for n=2

2 ——2 [ n n—1
13) B2 < ((pp— 1))| {(CPPTMD_Z Z -1 Z (r+1)"_2£,)
' i=1 r=0

n n—1
V(€2 Y e2, Y &)
i=1 r=0

This result is mainly adapted to the bounded sequence. The following
result is appropriate to more general real variables (r.v.) sequence but requires
a moment assumption (or a tail) condition.

ProPosITION 2.2. Let p be some fixed integer not less than 2 and ((,) a cen-
tered (e, A, C)-weakly dependent r.v. sequence. Assume that for all 2 < q<p
inequality (10) holds with

(14) Mq < Mg]—Z)/(p—Z) M(zp—q)f(p—Z),
and there exists a constant ¢ > 0 such that
(15) 3k >p, Vi=0, P > 1) < ¢fth.
Then for n>= 2
(2p—2)!
(p—1!

n n—1

V(M 3 Y B

i=1 r=0

n T n—1
(16) |E2T| < MM, Y oy Y (12 gk Pk
i=1 r=0

Note that (15) holds if the {,’s have a k-th order moment such that, for all
i20, Efff<c.
Arguing as in Billingsley [4], if (13) holds for some p such that

)

=0

amn {(Cl,p”M"_2 Z g,
i=1

n—1- n n—1
r+1P"2e)v(C.2" Y ety Y &)} < oo,
r i=1 r=0
then, for all { > 0,
lim P(sup|Z,x— 2, > ) =0.
n—w k21

Thus (X,) is a.s. a Cauchy sequence, and hence it converges. In the same way, if
(16) holds for some p such that

- d n n—1
(18) (Z cf-1 Z (r+1)P—23§k-Plik)V(z ez, Z ESk—Z)Ik)DIZ <,
i=1 r=0 i1 o

then (X,) converges with probability 1.
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Equip R? with its p-norm ||(xy, ..., Xz)||? = x§ +...+x5. Let the sequence
(C,,),l >0 be an R%valued and (e, A C) weakly dependent sequence. Set
=(as -+ 1); then

I Z atlf= 3 (3 alf.

= 11 1

And if each component ({%), ¢ is (¢', 4, C)-weakly dependent and such that the
relation (17) or (18) holds, then E ||%,][5 < co. Arguing as before, we deduce that
the sequence (X,),»o converges with probability 1.

The proofs of Propositions 2.1 and 2.2 are given in Section 7.

3. -WEAKLY DEPENDENT NOISE

Let ({,)x>0 be a sequence of integrable real-valued random variables, and
(y.)r»0 the associated mixingale-coefficients. Then we obtain the following re-
sult:

ProrosiTION 3.1. Let p > 2 and ({,),.n be a sequence of centered random
variables such that (15) holds. Then for any n > 2

19) ESE < (09K, 3 0 3, cyeqydt-pint-npl2,
i=1 j=0
where K, depends on k, p and c.
Observe that here p e R and is not necessarily an integer. If, now, (19) holds

for some p > 2 such that

n—i

(20) lim Z Y, Civj YT < 00,

R® =1 j=0

where m = 2(k—p)/p(k—1) < 1, then (X,) converges with probability 1. Ob-
serve that if Z}ioﬁ' < o0, then (20) is satisfied. The proof of this proposition
is in Section 7.

As in Section 2, the result extends to R?. Indeed, if we consider a centered
R%-valued and y-weakly dependent sequence ({,),>0, We have, as in Section 2,

d n

E|Z)F=E Y () ),

I=1 i=1

and if each component ({!),»0 (I = 1, ..., d) is y*-weakly dependent and satisfies
(15) and (20), then E||X,||I” < o0, and we conclude as before that (Z,),», con-
verges a.s.
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4. EXAMPLES OF APPLICATION

4.1. Robbins—Monro algorithm. The Robbins—Monro algorithm is used for
dosage, to obtain level a of a function f which is usually unknown. It is also
used in mechanics, for adjustments, as well as in statistics to fit a median ([13],
p. 50). It writes

(21) Z,,+1 = Z,,—c,,(f(Z,,)—a)+c,,(:,,+1

with }'c, = oo and ) 7 < 0. It is usually assumed that the prediction error ((,)

is an identically distributed and independent r.v. sequence, but this does not

look natural. Weak dependence seems more reasonable. Hence the previous

results ensure the a.s. convergence of this algorithm under the usual assump-

tions and the conditions yielding the a.s. convergence of Z'(') Cnlpsi-
Under the assumptions of Proposition 2.1, if for some p > 2

(22) i (r+1)"2%¢, < o0,

the algorithm (21) converges as.
If the assumptions of Proposition 2.2 hold, then the a.s. convergence of the
algorithm (21) is ensured if for some p > 2

(

r

el
(122 6Py (T &+ DH) < oo,
r=0

Ik

Under the assumptions of Proposition 3.1, if (20) is satisfied, the algorithm
(21) converges with probability 1.

4.2. Kiefer-Wolfowitz algorithm. It is also a dosage algorithm. Here we
want to reach the minimum z* of a real function ¥ which is %? on an open set
G of R% The Kiefer-Wolfowitz algorithm ([13], p. 53) is stated as:

(23) Zn+1 = Zn_zcn VV(Zn)_érH-ls

where £n+1 = Cnbn_1 Cn+1+cn b,?q(n, Zn): ”q(n: Zn)“ < K (fOI' some K > 0)9
Yen=00, Yc,b2 < oo and Y (ca/bs)* < o (for instance, ¢, = 1/n, by=n""
with 0 <b < %).

The prediction error ({,) is usually assumed to be i.i.d. centered and square
integrable and independent of Z,. The results of Sections 2 and 3 improve on
this assumption until weakly dependent innovations. It is now enough to en-
sure the convergence a.s. of Y ¢, b, 1 ¢a+1. The (e, A)-weak dependence assump-
tions are the same as for the Robbins—Monro algorithm. Concerning the
y-weak dependence, the condition (20) is replaced by

lim Z Z 'ﬂy,

n—>o ;= 'J 1b1+1
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5. WEIGHTED WEAKLY DEPENDENT VARIABLES TRIANGULAR ARRAYS

In this section, we consider a sequence ({;);>; and a triangular array
(cni)i <i<na>1) Of non-negative real constants. We put U, = ZL L Cni G If the
{;’s are i.i.d., Chow has established the following complete convergence result:

THEOREM (Chow [6]). Let (y, ..., {;, ... be independent and identically distrib-
uted random variables with E({;) =0 and E|(}* < oo for some q = 2. If for some
real constant K, not depending on n, Z?=1 c% < K and n'"max; <;<,lc € K,
then

V>0, Y P(m™"|U,| = 1) < o0.

n=1

The last inequality is a result of the complete convergence of n~4|U,| to 0.
This notion was introduced by Hsu and Robbins [17]. Complete convergence
implies the almost sure convergence from the Borel-Cantelli lemma. Li et al.
[20] extend this result to arrays (Cu)uz1,.z for g = 2. Recall also Yu [24]
who obtains a result analogous to Chow’s for martingale differences. Ghosal
and Chandra [15] extend previous results and prove some similar results
to those of Li et al. for martingale differences. As in [20], their main tool is
the Hoffmann-Jorgensen inequality [16]. Peligrad and Utev [22] propose
a central limit theorem for partial sums of a sequence U, = Z:=1 Cpi C;, where
Sup, c4 < 00, MaxX; <;<, |Cul = 0 as n— co and {;s are, in turn, pairwise mixing
martingale difference, mixing sequences or associated sequences. Mcleish [21],
De Jong [8], and, more recently, Shixin [23] extend previous results in the
case of L,-mixingale arrays. Those results have various applications. They are
used for the proof of strong convergence of kernel estimators. In this paper we
extend Li et al. results to our weak dependent frame. A straightforward con-
sequence of Proposition 2.2 is the following result:

CoroOLLARY 5.1. Under the assumptions of Proposition 2.2, if q is an even
integer such that k > q > p, and if for some real constant K, not depending on n,
YieiCoi-1 <K, and if & = 0@, with « > ((g—1)/(k—q)k, or &, = O(e™"),

i=1

then

Vt>0, Y P(n™"?|U,| = 1) < 0.

Proof Proposition 2.2 implies

2 _2| n n—1 _ _
EU,J1 < ((QL_i)l!c”k (M, 3 choms 3 (41172800

n n—1
VM, ( Z CEnmi as"—Z)/k)p,'z).
i=1 =
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If Z:=1 c2;_1 < K and & = O(r~) with a > ((g—1)/(k—q)) k, then there exists
a real constant K, such that E|U,? < K;, and the result follows from

E|U,

P(n™P|U,| > 1) < -

If ZL JCni-1 <K and & = @(e™"), then E|U,)* <K, for a real constant
K, and

YPn 'P|U,|>t)< 0. &

As a straightforward consequence of Proposition 3.1, we obtain the fol-
lowing result:

COROLLARY 5.2. Under the assumptions of Proposition 3.1, if q > p,
k>q>1, and

n n—i

2(k—
im ) i ), Cni+jVT <0, where m ==—(—q),

n—*oo,-=1 i=0 q k—].
then

V>0, Y P~ |U, > 1) < .

Proof. We obtain

n—i

ElUl*< (2K Y, €ai Y. Cn,i+j?3‘")q/2
i=1  j=0

from Proposition 3.1, and the relation lim, ., Z'.'_ Cni i CpizviVT < 00 im-
i=1 "Rl Lj=0 "MiTI
plies ' P(n~'?|U,| > t) < oo. This completes the proof. m

6. LINEAR REGRESSION

We consider a stationary (bounded) sequence (y,, x,) € R x R?, defined on
a probability space (Q, o7, 2).

We look for the vector Z* which minimizes the linear prediction error of
y. With x,,. We identify the R%-vector x, and its column matrix in the canonical
basis. Consequently, '

Z* = argmin E [(y,—xI Z2)?].
ZeR4

This problem leads to study the gradient algorithm

Zopi1=Zp+Ca(Unr1—Xa+1Zp) Xt 1

12 — PAMS 242
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where ¢, = g/n with g > 0 (so (c,) satisfies (2) and (5)). Let Cp41 = Xp41 X7+ 1;
then we obtain :

(24) Zosy =Zytcy(Ynr1%011—Car1 Z,).

Let us put U=E(yn+1xn+1)a C=E(Cn+1)a Yn =Z,,"‘*C—1 Ua and h(Y) =
—CY; then (24) becomes

(25) Yn+1 = K,+Cnh(Y,,)+C,,én+1
with
(26) bnt1=ntr1Xn41— Crs1 CTTU)H(C—Cpy 1) Y.

Remark that here the solutions of (3) are the trajectories

z(t) = zge™©,
s0 every trajectory converges to 0, the unique equilibrium point of the differen-
tiable function h (Dh(0) = —C and 0 is an attractive zero of h).
Putting %, = (6(Y); i <n) we define the following assumption:

A-lIr. C is not singular and (C,) and (y, x,,) are y-weakly dependent sequences
such that the y-weakly dependent coefficient v, is O (a") with a < 1.

Note. If (Vu, Xuuen is 0-weakly dependent in the Dedecker and Doukhan
sense (see [9]), then A-Ir is satisfied. This is proved in the Appendix.

Putting M = sup,||x,||> now we claim:

PROPOSITION 6.1. Under the assumption A-Ir, (Y,) is a.s. bounded and the
perturbation (£,) of the algorithm (25) splits into three terms, two of which are
y-weakly dependent and one is a rest leading to zero. Consequently, the ODE
method assures the a.s. convergence of Y, to zero (hence Z* = C~* U). Moreover,
if g <1/2M, then

27 JnY=0() as.

Proof of Proposition 6.1. To start with, we prove that Y, — 0 a.s. by
assuming that (Y,) is a.s. bounded. Then we justify this assumption and finally
we prove (27). ' _

The perturbation &, ; splits into two terms: (V4 Xp+1— Cp+1 C~ 1 U) and
(C—C,+1)Y,. The first term is centered and obviously y-weakly dependent with
dependence coefficient y,. And y, is ¢ (a") by the assumption A-lr. It remains to
Study (C - Cn + 1) Yn

Study of (C—C,+4)Y,. Write
(C—Cos) Y =Clas1+Tuss
with
liv1 =(C=Coy ) L—E[(C—Cy1y)Y,] and 1y =ENC-Chip) Y]
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We will prove that the sequence ({,) is y-weakly dependent with an appropriate
dependent coefficient and that r,—0. .
Notice that r,4; = E[(C—Cpi1) Z';,,,z (V41— Y)]+E[C—Cui1) Yopad,

J

and since }G'_}.l—)’j: —CjCj+1Y;'+Cj(yj+1Xj+1—Cj+1 C—IU), we have
n—1 n—1

Tat1 = — Z E(C—-Coi1)c;Ciry Y+ Z E(C_Cn+1)cj(yj+1xj+1_cj+1C_lU)
j=n/2 j=nj2

+E(C—Cpy1) Y.

If n/2 is not an integer, we replace it by (n—1)/2. In the same way, in the first

sum we replace Y; by Zf;;/z (Yi+1— Y)+ Y}, with the same remark as above if

j/2 is not an integer. Consequently,

. n—1
(28) ry+1=-— Z E(C—Cy+1)¢;Cjry
j=n2
i-1
x [ Z —¢;Ciy 1 Yitci(Die1 Xi01—Cin1 CTLU)+ Y5 ]
i=j/2
n—1
+ 3, E(C—Cpi1)Cj(yj+1%j51—Cns1 CTTU)+E(C—Cpy 1) Yp.

j=n/2

Expectations conditionally with respect to ;. ; of each term of the second sum
and with respect &%,, of the last term give, by assuming (¥,) bounded,
n—1
(29) llras 1]l < NlAI+ K4 Z CiVn+1-jPj+1 +K, Vniz +15
j=n/2 :
where A denotes the first sum of (28), and K; (for i = 1, 2, ...) is a non-negative
constant. Moreover,

n—1

A=— Z E(C—-Cu41)ci(Civ1—C)

j=n/2

j-1
x[ Y —CiCir1 YitCi(ir1 Xi01—Civt c'uy]
i=j/2
n—1

- Z E(C—Cy+1)ci(Cjs1— Q) Yy

j=n/2

n—1 j—1

+ Z E(C_Cn+1)cjc[ Z —¢;Civ1 Yi4ci(yiv 1 %41 —Cisq C_IU)]
j=nf2 L i=jl2 ) )
n—1

+ Y E(C—Cpi1)ciCYp.

j=n/2
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Expectations conditionally successively with respect to &%;,; and %;,, of
each term of the first and the third sum and with respect to %;, ,, then &, of
the second and the forth sum give, by assuming (Y,) bounded,

n—1 -1 n—1
(30) NAN < K3 Y ¢y 2, CiVi-itKa Y, €Vn—jVi2-
j=n)2 i=j/2 i=2

Since ¢; = g/j, (29) and (30) involve that r, is ¢ (n"2), so r, converges to
zero. On the other hand, for r = 6:

E(Cn+r| 'g:n) =E [(C_"' Cn+r) Yn+r—1 I eg-'n]_E(Cw+r)
ntr—2
= z E[(C—Cn+r).(Yj+1_I?)I'g’.rl]+E[(C—Cn+r)K+r}2|%]_rn+r-
j=n+r/2 :
Note also that if /2 is not an integer, we replace it by (r + 1)/2. Using the same
techniques as above, we obtain

n+r—2 j—1
E”E(Cn+r|=a/-’n)||<K5( Y CiYarr—jo1 Y, CiVi—it V) +O((m+1)73),
j=n+r/2 i=j/2

and hence
ENE Cosr | ZM < O((n+7/2) %)+ K5 pr2 + O ((n+1)7%),
and
IECuser| FMy=7vr  with i =0(F72).

Consequently, ({,) is y-weakly dependent, and since (20) is satisfied, the ODE
method may be used and ¥, converges to 0 as.

Now we prove that Y, is a.s. bounded. Let V(Y) = YTCY= ||\/EY||2.
Since C is not singular, V is a Lyapunov function and V'V (Y) = 2CY is a Lip-
schitz function, so we have

V(%)) S V) +(Yos 1 — VW) PV (V) + Ksl| Y . — Y12
Furthermore,
Yt — Yn”z < Zcrzl Uyn+1%n+1—Cusa c! U”z +203 “Cn+1YnHz)'

Since (y,, x,) is bounded, (C,) and [[yn+ 1 X4 1~ Cy+1 C~* U||? are also bound-
ed. Moreover,

K,
’lmin (C)
where A.;,(C) is the smallest eigenvalue of C. Consequently,

V(Y1) S V(L) +Kgc))+ Ko 2 +2(Y,4 1 — Y,)T CY,.

ICar1 BlI* < K 1T < V(Y),
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The last term becomes
2(Y 11— 5 CY, = =26, |ICY PP+ 26, (Pt 1 X%+ 1= Cas1 CT1U)' CY,
+2¢, 1 (C—C,44) CY,
< —26[ICHIP + 6. Ko ICT,ll+26, 1T (C—Cpi ) CT,
< =26, ICYI? +¢a K10 ICTll + 2¢a th 11 V(Ta),

where u, = max {X7 (C—~C,) X;, 1 <i<d}and {X,, ..., X;}is an orthogonal
basis of unit eigenvectors of C.
We now obtain

B1)  V(Yr1) S V(R)(1+Kgch 42ty 1)+ Ko 2 —cu2ICT > — Ko [CT]).

Note that under the assumption A-Ir (4,) is a y-weakly dependent sequence
with a weakly dependent coefficient y, = ¢ (a") and Z:;O Cpllp+1 < 00. More-
over, if V(Y,) 2= K%,/4Amnia (C), we have

ICYl > K102 and  —QIICYII>—KsolICYl) < 0.

Let us put

T=inf<n|V(Y,) < Kio
B " \4A-min(c) .
By the Robbins-Sigmund theorem, V(Y,) converges a.s. to a finite limit on
{T = + ©}, so (Y,) is bounded since V is a Lyapunov function.

On {liminf, V(Y;) € K}0/44min (C)}, V(Y,) does not converge to co and,
using Delyon [10], Theorem 2, we deduce that V(Y,) converges to a finite
limit if
32) vk >0, ZC;% Ik (Y) + Enaall? lywy<ny < 0,

(33) Vk >0, Y cylus1, VV(Z) Liyy<ig < ©.

Using the relation ) ¢? < oo and the fact that on {V(¥,) <k} the function
I (Y,)+ & || is bounded, we deduce (32). To prove (33) it is enough, by
Proposition 3.1, to show that {&,+1, VV(Y)) Lyw,)<x = €n+1 18 a p-weakly
dependent sequence with dependent coefficient which satisfies (20). But to use
the result of Proposition 3.1 it is necessary to center e,+;. SO we are going to
prove that ) c,Ee,.; < o and that (e,.; —Ee,,) is a y-weakly dependent
sequence with a dependent coefficient y? which is O (r~?).

Study of E(e,.,). First of all, we must note a few elements. Denoting by
I the unit matrix of RY, we obtain

Yn = (I'—cn—l Cn) Y;l—l +Cn-1 (xnyn_cn C_l U)
Let Amax (C,) be the largest eigenvalue of C,. Then note that A, (C,) = [|Ix,|> < M.
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E And for n large enough ¢,_; M <1 and (I—c,-; C,) is not singular. Con-
1 sequently, if M, = sup, {x,y,—C,C~* U}, we obtain
1

Wil € 57—
Hn 1” 1

—— (1%l + -1 M) < (1+bey- ) (1Tl A M),
—iln-1

" where b is some non-negative constant, not depending on n. Moreover,

V(%) <k=|%I” <

Amin (C)
and

Il < &' = V(Y,) < Amax (C) K2,
.which implies

Lywa<n = Lgwai<kd = Loi¥a- sl <ka- s

k"_j < (1+C"_1)j( RE%AMI)

Moreover, since ¢, = g/n, for any 0 < j < n it follows that (1 +ac,-,) is bound-
ed independently of n, so is k,_;. Consequently,

E(en+1) = E(Xpi1Yar1—Crs1t c! U)TCY,, 1{1_/(y,.)<k}+EYnT(C—Cn+1)CKa 1[V(Y,,)<k)-
| We have

where

n—1
E(es+1) = Z En+1%+1—Car1 C_lU)TC(K'H"lG)l{HYJIRkﬂ

j=n/2
+E(Yus1 Xps1—Cns1 CT UY CZ,p

n—1

+ Y E(Ye1 =B (C—Cou) C (Y1~ Dy <y
j=nj2
n—1 n-2 )
+2 > Y E(1— V) (C—Cos 1) C(Yir1— V) Ly <apniiivd <ka
jEm2i=j+
n—1
+2 Y EXL(C—Cord) C (Y1 — 1) Lyt <kintitoal <o)
j=m2

+EK./7;, (C“ Cos1) CY;:/Z llllanzll <kny2}

Note that if n/2 is not an integer, we replace it by (n—1)/2. Using always the
same technique, we obtain

Eepi1 = 0(n )+ 0@"?)+0m )+0(n"3H+0@"),

and hence Y c,Ee, < .
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Study of (e,— Ee,). We now prove that this sequence is y-weakly depen-
dent with a relevant dependent coefficient. Write

E(en+r_Een+r|'g;n) = Dn+r+Gn+r_Een+r

with
Dn+r =E [(yn+rxn+r_cn+1 C_l U)TCY;‘_H,_I 1(V(Y,.+r—1)<k}|'g'.n]s
Gn+r _'E[ n+tr— I(C Cn+r)CY;l+rﬁ11(V(Y,.+r—1)<k}|§)—|]:
nt+r—2
Dyy, = Z E[(Vn+rXn+r—Cht1 c! U)TC(Yj+1— Y)) 1(||y,~||<k,~)|=9’_n]
j=n+r/2

+E [(yn+rxn+r_cn+1 C_l U)T CY:l+r/2 1(||Yn+r/2”<kn+r/2} I yn]

Here again, if r/2 is not an integer, we replace it by (r—1)/2. Again, the same
techniques as for r, give

E|Dy+,ll = O((n+1)"?)+ 0 ("),
We study G,, in the same way and E||G,..|| = O((n+r)"?), and since
Ee,., = O((n+r)"?%), (20) is satisfied and the result is proved.
Proof of (27). For n> N, let us put

=({I—¢,Chs1)...I—cnCp+1).
Since g < 1/2M, for N > 1 it follows that IIy is not singular and we have
Y;,+1 = Hﬁ YN+ Z Cjﬂg(nﬁ'v)—lC}+l9
i=N
where (ji1=Yj+1%Xj+1—Cj+1 C~1U. And since Y, — 0, we get

w

—Yy= Z cj(ﬂﬂ")'l C}+1,

i=N

(IY) ' =(I—cyCy+1)"t...I—¢;Ciu1) 7,

and
e R P
! h HLN(l—CiM).
Hence
64 Iy = O esp(M Y. &) = 0(GINP*),

/N Yall =

i—[ HN)_1CJ+1
2K
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Since g < 1/2M, (34) involves that the sum converges. Indeed, (20) is satisfied
with k=5 and p =3 (so m = 3), and since {},; is y-weakly dependent with
a mixingale coefficient y, = @(a"). Hence the result is proved. =

7. PROOFS

7.1. Proof of Proposition 2.1. We use a sketch similar to Doukhan and
Louhichi’s proof in [12]. Therefore we get

(35) E(Y o)’ <pt Y ey lEG L)l
i=1 1 .

Let us put
Ap(n) = Z Ctyr iy E(,-- L‘tp)h

so for any ¢, <t, <t,_;

Ap(n) < Y e E G L) ECaas -G

+ Y Ceyre-Cep 1COV(Ley o Ctpr Loy - G )l
Let us write

Azlt (n) = Z CiyeeeCyy |E (Ctl "‘Ctm)E(Ctm+1"'C!p)Is

Ai(m) = D Cey - €y IOV (Gry v oo Copr Ctmas - Ci)l-

©1€H ... Stp<n _
Since the sequence (c,) is decreasing to 0, we deduce, as in [12],
(36) Ay (1) < Ap (1) Ap—m ().
By (9) we obtain

n n—1
A2 < Y B Y Cop" MP™2(r4+1)P 2,
t1i=1 r=0

and the expression ), cf>"_ ; C,p" MP~2(r+ 1) %¢, = V,(n) satisfies, for
any integer 2 < g < p—1, the following:

Vq(n) < VISq—Z)/(p—z) (n) Vz(p—q)/(p—Z} (n)
Now, Lemma 12 of [12] leads to

2p—2

- )(v:fz () v YV, ),

1
A ~x
,p(n) <p(
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and hence

This ensures the result. &

7.2. Proof of Proposition 2.2. Using the same notation as in the previous
proof, by (10) we get

n 1
V,) <M,y c[min(e~t (), n)’ " QF (u)du,
i=1 0

where &(u) = g, ([u] denotes the integer part of u). Let us write

n 1

W,(m) =M, Y ¢ [min(e~* @), n)° "' QF (u)du.
i=1 0

If (14) is satisfied, we obtain
W,(n) < W, (n)\9~ 2/~ 2) (1) e~ DIe = 2 (n).

Thus we can conclude as in the previous proof. m

7.3.. Proof of Proposition 3.1. Proceeding as in [9], we deduce that
EEDI< (20 3, b
i=1
where
b = max [l z E(ConsCor i) Fll

Let g = p/(p—2); then there exists Y such that ||Y]|, = 1. Applying Proposition 1
of [9], we obtain

n—i

Z CiCitj f Quvey 0 Gy, y (W) du,

j=

where Gy is the inverse of x — |, Qx(w)du.
The Fréchet inequality [14] yields

‘n—i 1
bin < Y, iCivj§ Lusawm @* W) Oy (W) du,
0

=0
where Q = Q. Using Hélder’s inequality, we also obtain

n—i 1

bin < Y, Ciri{f Luscon @7 W) d“)m-

j=0
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By (15), Q(u) < ¢y~ and setting K = (k—1)/kc'™ yields

n—i 1 2 n—i P; k(k— 1)~ (L —pfk)y2p—1
- i4 J
bin < i Y, Civj(J Lusapp ™™ du)" < ¢ ) a ,-(K ——)
j=0 0 j=0 Ci+j

The result follows with K, = K2¢—2/pk—1) g

8. APPENDIX

Proof of the Note in Section 6. This note claims that if (y,, X,)en IS
O-weakly dependent in the Dedecker and Doukhan sense [9], then A-Ir is
satisfied. Let us remind the definition of a f-weakly dependent R-valued se-
quence which is used in [9]:

If A% is a space of bounded 1-Lipschitz real-valued functions defined on
R, (X,) is O-weakly dependent if

0, = sup { Sljg)(llE [f Xr+n)l 0 (Xi, i < WI—ELf (Xarnllo)}

n20 fe
tends to zero as r tends to infinity. ,

For any feAY,|f(x)—f )| < |x*—yY+...4+|x?—)4, where the x’’s
(j=1,...,d) are the components of x.

First, note that if an R%-valued sequence (X,) is f-weakly dependent, any
Ri-valued (j =1, ..., d—1) sequence (Y,) = (X4, ..., X%) is O-weakly dependent.
So, if (ys, X,) is O-weakly dependent, then so are (y,) and (x}) (j=1,..., d).

Let f be a'bounded 1-Lipschitz function, defined on R, and g the function
defined on R? by g(x, y) = f (xy). It is enough to prove that g is a Lipschitz
function defined on R?. Indeed,

g, N—g O ¥ by=x'yl _ Mly—y1+lylIx—x]|
pe=xl+ly=yl ~Ix=xl+ly=y1 = Ix=x1+ly-yl

< max(|x|, [y']),

and g is Lipschitz if x and y are bounded.
Thus, since (x,) and (y,) are bounded, the result follows. m
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